Molecular Anthropology pp 197-219

Part of the Advances in Primatology book series (AEMB, volume 62)

| Cite as

Evolutionary Rates in Proteins: Neutral Mutations and the Molecular Clock

  • Walter M. Fitch
  • Charles H. Langley


There is an interesting relationship between neutral mutations and the molecular clock. The theory of neutral mutations requires that the rate of fixation of a mutation be equal to the neutral mutation rate. Thus the fixation of neutral mutations should be clocklike, with each “tick” of the clock representing another fixation. Naturally the clock will not be metronomic but, like a radioactive clock, stochastic, with fixation events in the unit time interval showing a Poisson distribution. Although a test of the clock hypothesis is a test of the neutral hypothesis, the existence of a clock does not depend on the correctness of the neutral hypothesis (see also Sarich and Cronin, this volume). This has resulted in past confusion. In a similar fashion, the covarion (concomitantly variable codons) concept (Fitch and Markowitz, 1970) is also independent of the correctness of the neutral hypothesis. We shall consider in turn a statistical model to test evolutionary rates, the results of that test, a comparison of our estimated rates with those from other sources, and some problems in testing evolutionary clocks.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dayhoff, M. O., 1972, Atlas of Protein Sequences, National Biomedical Research Foundation, Washington, D.C.Google Scholar
  2. Dickerson, R. E., 1971, The structure of cytochrome c and the rates of molecular evolution, J. Mol. Evol 1: 26.PubMedCrossRefGoogle Scholar
  3. Fitch, W. M., 1971, Toward defining the course of evolution: Minimum change for a specific tree topology, Syst. Zool 20: 406.CrossRefGoogle Scholar
  4. Fitch, W. M., 1972a, Evolutionary variability in hemoglobins, Haematol. Bluttransfus. 10: 199.Google Scholar
  5. Fitch, W. M., 1972b, Does the fixation of neutral mutations form a significant part of observed evolution in proteins? Brookhaven Symp. Biol. 23: 186.Google Scholar
  6. Fitch, W. M., 1973, Aspects of molecular evolution, Annu. Rev. Genet. 7: 343.PubMedCrossRefGoogle Scholar
  7. Fitch, W. M., 1976, An evaluation of molecular evolutionary clocks, in: Molecular Study of Biological Evolution (F. J. Ayala, ed.) Sinauer Assoc., Sunderland, Mass.Google Scholar
  8. Fitch, W. M., and Farris, J. S., 1974, Evolutionary trees with minimum nucleotide replacements from amino acid sequences, J. Mol. Evol. 3: 263.PubMedCrossRefGoogle Scholar
  9. Fitch, W. M., and Langley, C. H., 1976, Protein evolution and the molecular clock, Fed. Proc. 35: 2092.PubMedGoogle Scholar
  10. Fitch, W. M., and Margoliash, E., 1967, The construction of phylogenetic trees—A generally applicable method utilizing estimates of the mutation distance obtained from cytochrome c sequences, Science 155: 279.PubMedCrossRefGoogle Scholar
  11. Fitch, W. M., and Markowitz, E., 1970, An improved method for determining codon variability in a gene and its application to the rate of fixations of mutations in evolution, Biochem. Genet. 4: 579.PubMedCrossRefGoogle Scholar
  12. Forget, B. G., Marotta, C. A., Weisman, S. M., Verma, I. M., McCaffrey, R. P., and Baltimore, D., 1974, Nucleotide sequences of human globin messenger RNA, Ann. N.Y. Acad. Sci. 241: 290.PubMedCrossRefGoogle Scholar
  13. Goodman, M., Moore, G. W., Barnabas, J., and Matsuda, G., 1974, The phylogeny of human globin genes investigated by the maximum parsimony method, J. Mol. Evol. 3: 1.PubMedCrossRefGoogle Scholar
  14. Haldane, J. B. S., 1957, The cost of natural selection, Genetics 55: 511.CrossRefGoogle Scholar
  15. Holmquist, R., 1972, Empirical support for a stochastic model of evolution, J. Mol. Evol. 1: 211.PubMedCrossRefGoogle Scholar
  16. Jones, K. W., and Purdom, J. F., 1975, The evolution of defined classes of human and primate DNA, in: Proceedings of the Society for the Study of Evolutionary Biology ( A. J. Boyce, ed.), pp. 39–51, Taylor and Francis, London.Google Scholar
  17. Jukes, T. H., and Holmquist, R., 1972, Evolutionary clock: Nonconstancy of rate in different species, Science 177: 530.PubMedCrossRefGoogle Scholar
  18. Kimura, M., 1968, Evolutionary rate at the molecular level, Nature (London) 217: 624.CrossRefGoogle Scholar
  19. Kohne, D. E. 1970, Evolution of higher-organism DNA, Quart. Rev. Biophys. 33: 327.CrossRefGoogle Scholar
  20. Langley, C. H., and Fitch, W. M., 1973, The constancy of evolution: A statistical analysis of the α and β hemoglobins, cytochrome c and fibrinopeptide A, in: Genetic Structure of Populations ( N. E. Morton, ed.), pp. 246–262, University Press of Hawaii, Honolulu.Google Scholar
  21. Langley, C. H., and Fitch, W. M., 1974, An examination of the constancy of the rate of molecular evolution, J. Mol Evol. 3: 161.PubMedCrossRefGoogle Scholar
  22. Margoliash, E., and Fitch, W. M., 1968, Evolutionary variability of cytochrome c primary structures, Proc. N.Y. Acad. Sci. 151: 359.CrossRefGoogle Scholar
  23. Markusen, J., and Sundby, F., 1973, Isolation and amino acid sequence of the C-peptide of duck proinsulin, Eur. J. Biochem. 34: 401.CrossRefGoogle Scholar
  24. Matsuda, G., Maita, J., Watanabe, B., Araya, A., Morokuma, K., Goodman, M., and Prychodko, W., 1973, The amino acid sequences of the α and β polypeptide chains of adult hemoglobin of the savannah monkey (Cercopithecus aethiops), Physiol. Chem. 354: 1153.Google Scholar
  25. Maxson, L. R., and Wilson, A. C., 1975, Relationship between albumin evolution and organismal evolution in tree frogs (Hylidae), Syst. Zool. 24: 1.CrossRefGoogle Scholar
  26. Moore, G. W., Barnabas, J., and Goodman, M., 1973, A method for constructing maximum parsimony ancestral amino acid sequences on a given network, J. Theor. Biol. 38: 459.PubMedCrossRefGoogle Scholar
  27. Moore, G. W., Barnabas, J., and Goodman, M., 1975, Darwinian evolution in the genealogy of haemoglobin, Nature (London) 253: 603.CrossRefGoogle Scholar
  28. Ohta, T., and Kimura, M., 1971, On the constancy of the evolutionary rate of cistrons, J. Mol. Evol. 1: 18.CrossRefGoogle Scholar
  29. Prager, E. M., and Wilson, A. C., 1971, The dependence of immunological cross-reactivity upon sequence resemblance among lysozymes, J. Mol. Biol. 246: 5978.Google Scholar
  30. Romero-Herrera, A. E., Lehmann, H., Joysey, K. A., and Friday, A. E., 1973, Molecular evolution of myoglobin and the fossil record: A phylogenetic synthesis, Nature (London) 246: 389.CrossRefGoogle Scholar
  31. Salser, W., Bowen, S., Browne, D., El Adli, F., Federoff, N., Fry, K., Heindell, H., Paddock, G., Poon, R., Wallace, B., and Whitcome, P., 1975, Investigation of the organization of mammalian chromosomes at the DNA sequence level, Fed. Proc. 35: 23.Google Scholar
  32. Sneath and Sokal, 1973, Numerical Taxonomy, W. H. Freeman and Co., San Francisco, 573 pp.Google Scholar
  33. Tager, H. S., and Steiner, D. F., 1972, Primary structures of the proinsulin connecting peptides of the rat and the horse, J. Biol. Chem. 247: 7936.PubMedGoogle Scholar
  34. Tashian, R. E., Tanis, R. J., Ferrell, R. E., and Stroup, S. K., 1972, Differential rates of evolution in the carbonic anhydrase isozymes of catarrhine primates, J. Hum. Evol. 1: 545.CrossRefGoogle Scholar
  35. Tetaert, D., Han, K.-K., Plancot, M.-T., Dautrevaux, M., Ducastaing, S., Hombrados, I., and Neuzil, E., 1974, The primary sequence of badger myoglobin, Biochim. Biophys. Acta 351: 317.PubMedGoogle Scholar
  36. Tobias, P. V., 1975, Long or short hominid phylogenies? Palaeontological and molecular evidences, in: The Role of Natural Selection in Human Evolution (F. M. Salzano, ed.) 34 pp., Wenner-Gren Foundation for Anthropological Research, New York.Google Scholar
  37. Wilson, A. C., and Prager, E. M., 1974, Antigenic comparison of lysozymes, in: Lysozyma ( E. F. Osserman, R. E. Canfield, and S. Beychok, eds.), pp. 127–141, Academic Press, New York.Google Scholar
  38. Wilson, A. C., and Sarich, V. M., 1969, A molecular time scale for human evolution, Proc. Natl. Acad. Sci USA 63: 1088.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Walter M. Fitch
    • 1
  • Charles H. Langley
    • 2
  1. 1.Department of Physiological ChemistryUniversity of Wisconsin Medical SchoolMadisonUSA
  2. 2.National Institute of Environmental Health ServicesUSA

Personalised recommendations