Advertisement

Lignin Metabolism and the Carbon Cycle

Polymer Biosynthesis, Biodegradation, and Environmental Recalcitrance
  • J. G. Zeikus
Part of the Advances in Microbial Ecology book series (AMIE, volume 5)

Abstract

Lignin metabolism is of utmost importance to the carbon cycle on earth. As a major structural component of photosynthetic biomass, lignin makes up approximately 25% of the dry weight of vascular plants and is second only to cellulose, which accounts for about 50% of the dry weight of cellular carbon stored in the biosphere. However, lignin stores more solar energy and hence accounts for more fuel value in wood than does cellulose because of lignin’s unique chemical structure. Lignin is nature’s most abundant recalcitrant product. The recalcitrance of lignin in certain environments results in the formation of lignites and coals, which are the major forms of fossilized organic matter on earth. Understanding how lignin is mineralized represents a tremendous challenge to microbiologists because so little is known, and the presence of this polymer in biomass dictates that microorganisms and not higher life forms are the principal agents of organic decomposition in terrestial biological food chains.

Keywords

Carbon Cycle Cinnamyl Alcohol Kraft Lignin Coniferyl Alcohol Milled Wood Lignin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, T., 1977, Lignin chemistry—past, present and future, Wood Sci. Technol. 11:169–218.CrossRefGoogle Scholar
  2. Alexander, M., 1973, Nonbiodegradable and other recalcitrant molecules, Biotechnol. Bioeng. 15:611–647.CrossRefGoogle Scholar
  3. Alexander, M., 1975, Environmental and microbiological problems arising from recalcitrant molecules, Microb. Ecol. 2:17–27.CrossRefGoogle Scholar
  4. Ander, P., and Eriksson, K. -E., 1976, The importance of phenol oxidase activity in lignin degradation by the white-rot fungus Sporotrichum pulverulentum, Arch. Microbiol 109:18.CrossRefGoogle Scholar
  5. Ander, P., and Eriksson, K. -E., 1978, Lignin degradation and utilization by microorganisms, in: Progress in Industrial Microbiology, Vol. 14 (M. J. Bull, ed.) pp. 1–38 Elsevier, Amsterdam.Google Scholar
  6. Arai, T., and Mikami, Y., 1972, Chromogenicity of Streptomyces, Appl Microbiol 23:402–406.PubMedGoogle Scholar
  7. Ban, S, and Glauser-Soljan, M., 1979, Rapid biodegradation of calcium lignosulfonate by means of a mixed culture of microorganisms, Biotechnol. Bioeng. 21:1917–1928.CrossRefGoogle Scholar
  8. Bartsch, E., Lerbs, W., and Luckner, M., 1979, Phenol oxidase activity and pigment synthesis in conidiospores of Penicillium cyclopium, Z. Allg. Mikrobiol. 19:75–82.PubMedCrossRefGoogle Scholar
  9. Bolin, B., Degens, E. T., Kempe, S., and Ketner, P., 1979, The Global Carbon Cycle, John Wiley and Sons, New York.Google Scholar
  10. Bu’Lock, J. D., 1975, Secondary metabolism in fungi and its relationship to growth and development, in: The Filamentous Fungi(J. E. Smith and D. R. Berry, eds.), Industrial Mycology, Vol. 1, pp. 33–58, Wiley, New York.Google Scholar
  11. Bu’Lock, J. D., Detroy, R. W., Hostalek, A., and Munum-Al-Shakarcki, A., 1974, Regulation of secondary biosynthesis in Gibberella fujikuroi, Trans. Br. Mycol. Soc. 62:377–389.CrossRefGoogle Scholar
  12. Burdsall, H. H., and Eslyn, W. E., 1974, A newPhanerachaetewith a chrysosporiumstate, Mycotaxon 1:123–133.Google Scholar
  13. Buswell, J. A., and Eriksson, K.-E., 1979, Aromatic ring cleavage by the white-rot fungus Spo- rotrichum pulverulentum, FEBS Lett. 104:258–260.CrossRefGoogle Scholar
  14. Buswell, J. A., Ander, P., Pettersson, B., and Eriksson, K.-E., 1979a, Oxidative decarboxylation of vanillic acid by Sporotrichum pulverulentum. FEBS Lett. 103:98–101.CrossRefGoogle Scholar
  15. Buswell, J. A., Hamp, S., and Eriksson, K.-E., 1979b, Intracellular quinone reduction in Spo- rotricum pulverulentumby a NAD(P)H: Quinone osidoreductase. FEBS Lett. 108:229–232.Google Scholar
  16. Butler, J. H. A., and Buckerfield, J., 1979, Digestion of lignin by termites, Soil Biol. Biochem. 11:507–513.CrossRefGoogle Scholar
  17. Cain, R., 1980, The uptake and catabolism of lignin-related aromatic compounds and their regulation in microorganisms, in: Lignin Biodegradation: Microbiology, Chemistry and Potential Applications(T. K. Kirk, T. Higuchi, and H. M. Chang, eds.) pp. 21–60, CRC Press, Boca Raton, Florida.Google Scholar
  18. Cartwright, N. J., and Haldom, K. S., 1973, Enzymic lignin, its release and utilization by bacteria, Microbios 8:7–14.PubMedGoogle Scholar
  19. Chang, H. M., Chen, C.-L., and Kirk, T. K., 1980, Chemistry of lignin degraded by white-rot fungi, in: Lignin Biodegradation: Microbiology, Chemistry and Potential Applications(T. K. Kirk, T. Higuchi, and H. M. Chang, eds.), pp. 215–230, CRC Press, Inc., Boca Raton, Florida.Google Scholar
  20. Chen, C.-L., Chang, H.-M., and Kirk, T. K., 1977, Betulachrysoquinone Hemeketal: Ap-Ben- zoquinone Hemiketal macrocyclic compound produced by Phanerochaete chrysosporium, Phytochemistry 16:1983–1985.Google Scholar
  21. Christman, R. F., and Oglesby, R. T., 1971, Lignins: Microbiological degradation and the formation of humus, in: Lignins: Occurrence, Formation, Structure and Reactions(K. V. Sar- kanen and C. H. Ludwig, eds.), pp. 769–793, Wiley-Interscience, New York.Google Scholar
  22. Cote, W. A., 1977, Wood ultrastructure in relation to chemical composition, in: The Structure, Biosynthesis, and Degradation of Wood(F. A. Loewus and V. C. Runeckles, eds.), Recent Advances in Phytochemistry, Vol. 11, pp. 1–44, Plenum Press, New York.CrossRefGoogle Scholar
  23. Cowling, E. B., and Kirk, T. K., 1976, Properties of cellulose and lignocellulosic materials as substrates for enzymatic conversion processes, Biotechnol. Bioeng. Symp. 6:95–123.PubMedGoogle Scholar
  24. Crawford, D. L., and Crawford, R. L., 1976, Microbial degradation of lignocellulose: The lignin component, Appl. Environ. Microbiol. 31:714–717.PubMedGoogle Scholar
  25. Crawford, D. L., and Crawford, R. L., 1980, Microbial degradation of lignin, Enzyme Microbiol. Technol. 2:11–22.CrossRefGoogle Scholar
  26. Crawford, D. L., and Sutherland, J. B., 1979, The role of actinomycetes in the decomposition of lignocellulose, in: Developments in Industrial Microbiology, Vol. 20 (L. A. Underkofler, ed.), pp. 143–152, Proceedings of Thirty-Fifth General Meeting of the Society for Industrial Microbiology, Arlington.Google Scholar
  27. Crawford, D. L., Crawford, R. L., and Pometto, A. L., Ill, 1977a, Preparation of specifically labeled 14C-(lignin)- and 14C-(cellulose)-lignocelluloses and their decomposition by the microflora of soil, Appl. Environ. Microbiol. 33:1247–1251.PubMedGoogle Scholar
  28. Crawford, R. L., Crawford, D. L., Olafsson, C., Wikstrom, L., and Wood, J. M., 1977b, Biodegradation of natural and man-made recalcitrant compounds with particular reference to lignin, J. Agric. Food Chem. 25:704–708.PubMedCrossRefGoogle Scholar
  29. Dagley, S., 1975, Microbial degradation of organic compounds in the biosphere, Am. Sci. 63:681–689.PubMedGoogle Scholar
  30. Dagley, S., 1978a, Determinants of biodegradability, Q. Rev. Biophys. II 4:577–602.CrossRefGoogle Scholar
  31. Dagley, S., 1978b, Microbial catabolism, the carbon cycle and environmental pollution, Naturwissenschaften 65:85–89.PubMedCrossRefGoogle Scholar
  32. Dekker, R. F. H., and Richards, G. N., 1973, Effect of delignification of the in vitrorumen digestion of polysaccharides of Bagasse, J. Sci. Food Agric. 24:375–379.CrossRefGoogle Scholar
  33. Drew, S. W., and Kadam, K. L., 1979, Lignin metabolism by Aspergillus fumigatusand white- rot fungi, in: Developments in Industrial Microbiology, Vol. 20 (L. A. Underkofler, ed.), pp. 153–164, Proceedings of the Thirty-Fifth General Meeting of the Society for Industrial Microbiology, Arlington, Virginia.Google Scholar
  34. Esenther, G. R., and Kirk, T. K., 1974, Catabolism of aspen sapwood in Reticulitermes flavipes(Isoptera: Rhinotermitidae), Ann. Entomol. Soc. Am. 67:989–991.Google Scholar
  35. Eslyn, W. E., Kirk, T. K., and Effland, M. J., 1975, Changes in the chemical composition of wood caused by six soft-rot fungi, Phytopathology 65:473–476.CrossRefGoogle Scholar
  36. Evans, N. C., 1977, Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments, Nature 270:17–22.PubMedCrossRefGoogle Scholar
  37. Faber, M. D., 1979, Microbial degradation of recalcitrant compounds and synthetic aromatic polymers, Enzyme Microbiol. Technol. 1:226–232.CrossRefGoogle Scholar
  38. Fenchel, T. M., and Jorgenson, B. B., 1977, Detritus food chains of aquatic ecosystems: The role of bacteria, in: Advances in Microbial Ecology, Vol. 1 (M. Alexander, ed.), pp. 1–58, Plenum Press, New York.Google Scholar
  39. Fenn, P., and Kirk, T. K., 1979, Ligninolytic system of Phanerochaete chrysosporium:Inhibition by o-phthalate, Arch. Microbiol. 134:307–309.CrossRefGoogle Scholar
  40. Forney, L. J., and Reddy, C. A., 1979, Bacterial degradation of Kraft lignin, in: Developments in Industrial Microbiology, Vol. 20 (L. A. Underkofler, ed.), pp. 138–142, Proceedings of the Thirty-Fifth General Meeting of the Society for Industrial Microbiology, Arlington, Virginia.Google Scholar
  41. Freudenberg, K., and A. C. Neish, 1968, The constitution and biosynthesis of lignin, in: Constitution and Biosynthesis of Lignin, pp. 1–168, Springer-Verlag, New York.CrossRefGoogle Scholar
  42. Froehner, S. C., and Eriksson, K.-E., 1974a, Induction of Neurospora crassaLaccase with protein synthesis inhibitors, J. Bacteriol. 1:450–457.Google Scholar
  43. Froehner, S. C., and Eriksson, K.-E., 1974b, Purification and properties of Neurospora crassaLaccase, J. Bacteriol. 120:458–465.PubMedGoogle Scholar
  44. Glennie, D. W., 1971, Lignins: Reactions in sulfite pulping, in: Lignins: Occurrence, Formation, Structure and Reactions(K. V. Sarkanen and C. H. Ludwig, eds.), pp. 597–638, Wiley- Interscience, New York.Google Scholar
  45. Godshalk, G. L., and Wetzel, R. G., 1978, Decomposition of aquatic angiosperms. II.Particulate components, Aquat. Bot. 5:301–327.CrossRefGoogle Scholar
  46. Goring, D. A. I., 1971, Polymer properties of lignin and lignin derivatives, in: Lignins: Occurrence, Formation, Structure and Reactions(K. V. Sarkanen and C. H. Ludwig, eds.), pp. 695–768, Wiley-Interscience, New York.Google Scholar
  47. Grant, D., 1977, Chemical structure of humic substances, Nature 270:709–710.CrossRefGoogle Scholar
  48. Grant, W. D., 1976, Microbial degradation of condensed tannins, Science 193:1137–1139.PubMedCrossRefGoogle Scholar
  49. Gross, G. G., 1977, Biosynthesis of lignin and related monomers, in: The Structure, Biosynthesis, and Degradation of Wood(F. A. Loewus and V. C. Runeckles, eds.), pp. 141–184, Recent Advances in Phytochemistry, Vol. 11, Plenum Press, New York.Google Scholar
  50. Hackett, W. F., 1975, Microbial Degradation of Synthetic I4C-Lignins in Natural Environments, M. S. Thesis, University of Wisconsin, Madison.Google Scholar
  51. Hackett, W. F., Connors, W. J., Kirk, T. K., and Zeikus, J. G., 1977, Microbial decomposition of synthetic l4C-labeled lignins in nature: Lignin biodégradation in a variety of natural materials. Appl. Environ. Microbiol. 33:43–51.PubMedGoogle Scholar
  52. Ha-Huy-Kê, and Luckner, M., 1979, Structure and function of the conidiospore pigments of Pénicillium cyclopium, Z. Allg. Mikrobiol. 2:117–122.CrossRefGoogle Scholar
  53. Haider, K., and Trojanowski, J., 1975, Decomposition of specifically 14C-labeled phenols and dehydropolymers of coniferyl alcohol as models for lignin degradation by soft and white rot fungi, Arch. Microbiol. 105:33–41.CrossRefGoogle Scholar
  54. Haider, K., and Trojanowski, J., 1980, A comparison of the degradation of,4C-labeled DHP and cornstalk lignins by micro- and macrofungi and by bacteria, in: LigninBiodégradation:Google Scholar
  55. Virginia.Microbiology, Chemistry and Potential Applications(T. K. Kirk, T. Higuchi, and H. M. Chang, eds.) pp. 111–134, CRC Press, Boca Raton, Florida.Google Scholar
  56. Haider, K., Trojanowski, J., and Sundman, V., 1978, Screening for lignin degrading bacteria by means of I4C-labeled lignins, Arch. Microbiol. 119:103–106.PubMedCrossRefGoogle Scholar
  57. Halliwell, B., 1979, Oxygen-free radicals in living system: Dangerous but useful? in: Strategies of Microbial Life in Extreme Environments(M. Shilo, ed.), pp. 195–221, Dahlem Konferenzen, Berlin.Google Scholar
  58. Haraguchi, T., and Hatakeyama, H., 1980, Biodégradation of lignin related polystyrenes, in: Lignin Biodégradation: Microbiology, Chemistry and Potential Applications(T. K. Kirk, T. Higuchi, and H. M. Chang, eds.), pp. 147–160, CRC Press, Boca Raton, Florida.Google Scholar
  59. Hayatsu, R., Winans, R. E., McBeth, R. L., Scott, R. G., Moore, L. P., and Studier, M. H., 1979, Lignin-like polymers in coals, Nature 278:41–43.CrossRefGoogle Scholar
  60. Healy, J. B., and Young, L. Y., 1979, Anaerobic biodégradation of eleven aromatic compounds to methane, Appl. Environ. Microbiol. 38:84–89.PubMedGoogle Scholar
  61. Higuchi, T., 1980, Lignin structure and morphological distribution in plant cell walls, in: Lignin Biodégradation: Microbiology, Chemistry and Potential Applications(T. K. Kirk, T. Higuchi and H. M. Chang, eds.), pp. 1–20, CRC Press, Boca Raton, Florida.Google Scholar
  62. Hiroi, T., and Eriksson, K.-E., 1976, Microbiological degradation of lignin. Part 1. Influence of cellulose on the degradation of lignins by the white-rot fungus Pleurotus ostreatus, Sven. Papperstidn. 5:157–161.Google Scholar
  63. Hiroi, T., Eriksson, K.-E., and Stenlund, B., 1976. Microbiological degradation of lignin. Part 2. Influence of cellulose upon the degradation of calcium lignosulfonate of various molecular sizes by the white-rot fungusPleurotus ostreatus, Sven. Papperstidn. 5:162–166.Google Scholar
  64. Horvath, R. S., 1972, Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol. Rev. 36:146–155.PubMedGoogle Scholar
  65. Huttermann, V.-A., Gebauer, M., Volger, C., and Rosger, C., 1977, Polymerisation ured abbau von natrium—lignin sulfonat durch Fomes annosus(Fr.), Cooke. Holzforschung 31:8389.CrossRefGoogle Scholar
  66. Ishihara, T., 1980, The role of laccase in lignin biodégradation, in: Lignin Biodégradation:Microbiology, Chemistry, and Potential Applications(T. K. Kirk, T. Higuchi, and H. M. Chang, eds.) pp. 17–32, CRC Press, Boca Raton, Florida.Google Scholar
  67. Iwahara, S., 1980, Microbial degradation of DHP, in: Lignin Biodégradation: Microbiology, Chemistry and Potential Applications(T. K. Kirk, T. Higuchi and H. M. Chang, eds.) pp. 151–170, CRC Press, Boca Raton, Florida.Google Scholar
  68. Jethwa, S. A., Stanford, J. B., and Sugden, J. K, 1979, Light stability of vanillin solutions in ethanol, Drug Dev. Ind. Pharmacy 5:79–85.CrossRefGoogle Scholar
  69. Jurgensen, M. F., and Patton, J. T., 1979, Bioremoval of lignosulphonates from sulphite pulp mill effluents, Process Biochem. 14.Google Scholar
  70. Kaneshiro, T., 1977, Lignocellulosic agricultural wastes degraded byPleurotus ostreatus, in: Developments in Industrial Microbiology, Vol. 18, pp. 591–597, Society for Industrial Microbiology, Arlington, Virginia.Google Scholar
  71. Kawakami, M., 1980, Metabolism of lignin related compounds by several Pseudomonas, in: Lignin Biodégradation: Microbiology, Chemistry and Potential Applications(T. K. Kirk, T. Higuchi and H. M. Chang, eds.), pp. 103–126, CRC Press, Boca Raton, Florida.Google Scholar
  72. Keyser, P., Kirk, T. K., and Zeikus, J. G., 1978, Lignionolytic enzyme system of Phanerochaete chrysosporium:Synthesized in the absence of lignin in response to nitrogen starvation, J. Bacteriol. 135:790–797.PubMedGoogle Scholar
  73. Kirk, T. K., 1975, Effects of a brown-rot fungus, Lenzites trabea, on lignin in spruce wood, Holzforschung 29:99–107.CrossRefGoogle Scholar
  74. Kirk, T. K., and Chang, H.-M., 1974, Decomposition of lignin by white-rot fungi. I. Isolation of heavily degraded lignins from decayed spruce, Holzforschung 28:217–222.CrossRefGoogle Scholar
  75. Kirk, T. K., and Chang, H.-M., 1975, Decomposition of lignin by white-rot fungi. II.Characterization of heavily degraded lignins from decayed spruce, Holzforschung 29:56 -64.CrossRefGoogle Scholar
  76. Kirk, T. K., and Highley, T. L., 1973, Quantitative changes in structural components of conifer woods during decay by white- and brown-rot fungi, Phytopathology 63:1338–1342.CrossRefGoogle Scholar
  77. Kirk, T. K., and Lorenz, L. F., 1973, Methoxyhydroquinone, an intermediate of vanillate catab- olism by Polyporus dichrous, Appl. Microbiol. 26:173–175.Google Scholar
  78. Kirk, T. K., Lorenz, L. F., and Larsen, M. J., 1975a, Partial characterization of a phenolic pigment from sporocarps of Phellinus igniarius, Phytochemistry 14:281–284.CrossRefGoogle Scholar
  79. Kirk, T. K., Connors, W. J., Bleam, R. D., Hackett, W. F., and Zeikus, J. G., 1975b, Preparation and microbial decomposition of synthetic [I4C] lignins, Proc. Nat. Acad. Sci. 72:2515–2519.PubMedCrossRefGoogle Scholar
  80. Kirk, T. K., Connors, W. J., and Zeikus, J. G., 1976, Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi, Appl. Environ. Microbiol. 32:192–194.PubMedGoogle Scholar
  81. Kirk, T. K., Connors, W. J., and Zeikus, J. G., 1977, Advances in understanding the microbiological degradation of lignin, in: The Structure, Biosynthesis, and Degradation of Wood(F. A. Loewus and V. C. Runeckles, eds.), Recent Advances in Phytochemistry, Vol. 11, pp. 369–394, Plenum Press, New York.CrossRefGoogle Scholar
  82. Kirk, T. K., Schultz, E. M., Connors, W. J., Lorenz, L. F., and Zeikus, J. G., 1978, Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium, Arch. Microbiol. 117:277–285.CrossRefGoogle Scholar
  83. Kirk, T. K., Higuchi, T., and Chang, H. M., 1980, Lignin Biodégradation: Microbiology, Chemistry and Potential Applications, CRC Press, Boca Raton, Florida.Google Scholar
  84. Lai, Y. Z., and Sarkenen, K. V., 1971, Isolation and structural studies, in: Lignins: Occurrence, Formation, Structure and Reactions(K. V. Sarkanen and C. H. Ludwig, eds.), pp. 165–240, Wiley-Interscience, New York.Google Scholar
  85. Lundquist, K., and Kirk, T. K., 1978, De novosynthesis and decomposition of veratryl alcohol by a lignin-degrading Basidiomycete, Phytochemistry 17:1676.Google Scholar
  86. Lundquist, K., Kirk, T. K., and Connors, W. J., 1977, Fungal degradation of Kraft lignin and lignin sulfonates prepared from synthetic I4C-lignins, Arch. Microbiol. 112:291–296.CrossRefGoogle Scholar
  87. Martin, J. P., and Haider, K., 1979, Biodégradation of,4C-labeled model and cornstalk lignins, phenols, model phenolase humic polymers, and fungal melanins as influenced by a readily available carbon source and soil, Appl. Environ. Microbiol. 38:283–289.PubMedGoogle Scholar
  88. Martin, J. P., and Haider, K., 1980, Microbial degradation and stabilization of l4C-labeled lignins, phenols and phenolic polymers in relation to soil humus formation, in: Lignin Biodégradation: Microbiology, Chemistry and Potential Applications(T. K. Kirk, T. Higuchi and H. M. Chang, eds.), pp. 77–100, CRC Press Inc., Boca Raton, Florida.Google Scholar
  89. Marton, J., 1971, Lignins: reactions in alkaline pulping, in: Lignins: Occurrence, Formation, Structure and Reactions(K. V. Sarkanen and C. H. Ludwig, eds.), pp. 639–694, Wiley- Interscience, New York.Google Scholar
  90. Mayaudon, J., and Batistic, L., 1970, Degradation biologique de la lignine,4C dans le sol, Ann. Inst. Pasteur 118:191–198.Google Scholar
  91. McCarty, P. L., Young, L. Y., Stuckey, D. C., and Healy, J. B., 1976, Heat treatment for increasing methane yields from organic materials, in: Microbial Energy Conversion(H. G. Schlegel and J. Barnea, eds.), pp. 179–200. Erich Goltze K. G., Gottingen.Google Scholar
  92. Millet, M. A., Baker, A. J., and Satter, L. D., 1975, Pretreatments to enhance chemical, enzymatic and microbiological attack of cellulose materials, in: Cellulose as a Chemical and Energy Resource(C. R. Wilke, ed.), Biotechnology and Bioengineering Symposium No. 5, pp. 193–220, John Wiley & Sons, New York.Google Scholar
  93. Neish, A. C., 1968, Monomeric intermediates in the biosynthesis of lignin, in: Constitution and Biosynthesis of Lignin, pp. 169–238, Springer-Verlag, New York.Google Scholar
  94. Nelson, D. W., Martin, J. D., and Ervin, J. O., 1979, Decomposition of microbial cells and components in soil and their stabilization through complexing with model humic acid-type phenolic polymers,Soil S ci. Soc. Am. J. 43:84–88.CrossRefGoogle Scholar
  95. Neuhauser, E. F., Hartenstein, R., and Connors, W. J., 1978, Soil invertebrates and the degradation of vanillin, cinnamic acid, and lignins, Soil Biol. Biochem. 10:431–435.CrossRefGoogle Scholar
  96. Nickerson, W. J., 1971, Decomposition of naturally-occurring organic polymers, in: Organic Compounds in Aquatic Environments(S. D. Faust and J. V. Hunter, eds.), pp. 599–609, Marcel Dekker, New York.Google Scholar
  97. Ohta, M., Higuchi, T., and Iwahara, S., 1979, Microbial degradation of dehydrodiconiferyl alcohol, a lignin substructure model, Arch. Microbiol. 121:23–28.CrossRefGoogle Scholar
  98. Pandila, M. M., 1973, Microorganisms associated with microbiological degradation of lignosul- phonates: A review of literature, Pulp Pap. Mag. Can. 74:T78-T82.Google Scholar
  99. Perry, J. J., 1979, Microbial cooxidations involving hydrocarbons,Microbiol. Rev. 43:59–72.PubMedGoogle Scholar
  100. Râihâ, M., and Sundman, V., 1975, Characterization of lignosulfonate-induced phenol oxidase activity in the atypical white-rot fungus Polyporus dichrous, Arch. Microbiol. 105:73–76.CrossRefGoogle Scholar
  101. Reiners, W. A., 1973, Terrestrial detritus and the carbon cycle, in:Carbon and the Biosphere(G. M. Woodswell and E. V. Pecan, eds.), pp. 303–327, Proceedings of the 24th Brook- haven Symposium in Biology, Technical Information Center, Office of Information Services, U.S. Atomic Energy Commission, Springfield, Virginia.Google Scholar
  102. Robinson, L. E., and Crawford, R. L., 1978, Degradation of 14C-labeled lignins by Bacillus meg- aterium, FEMS Microbiol. Lett. 4:301–302.CrossRefGoogle Scholar
  103. Rosenberg, S. L., 1979, Physiological studies of lignocellulose degradation by the thermotolerant mold,Chrysosporium pruinosum, in:Developments in Industrial Microbiology, Vol. 20 (L. A. Underkofler, ed.), Proceedings of the 35th General Meeting of the Society for Industrial Microbiology, Arlington, Virginia.Google Scholar
  104. Sarkanen, K. V., 1971, Lignins: Precursors and their polymerization, in: Lignins: Occurrence, Formation, Structure and Reactions(K. V. Sarkanen and C. H. Ludwig, eds.), pp. 95–164, Wiley-Interscience, New York.Google Scholar
  105. Sarkanen, K. V., and Hergert, H. L., 1971, Lignins: Classification and distribution, in:Lignins: Occurrence, Formation, Structure and Reactions(K. V. Sarkanen and C. H. Ludwig, eds.), Wiley-Interscience, New York.Google Scholar
  106. Selin, J.-F., and Sundman, V., 1971, Microbial actions on lignosulfonates, Finska Kemists. MEDD.80N:11–19.Google Scholar
  107. Selin, J.-F., Sundman, V., and Râihâ, M., 1975, Utilization of polymerization of lignosulfonates by wood-rotting fungi, Arch. Mikrobiol. 103:63–70.Google Scholar
  108. Sorensen, H., 1962, Decomposition of lignin by soil bacteria and complex formation between autoxidized lignin and organic nitrogen compounts, J. Gen. Microbiol. 27:21–34.PubMedCrossRefGoogle Scholar
  109. Sorenson, H., 1963, Studies on the decomposition of 14C-labeled barley straw in soil, Soil Sci. 9:45–51.Google Scholar
  110. Stern, A. M., and Gasner, L. L., 1974, Degradation of lignin by combined chemical and biological treatment, Biotechnol. Bioeng. 16:789–805.CrossRefGoogle Scholar
  111. Sundman, V., 1964, A description of some ligninolytic soil bacteria and their ability to oxidize simple phenolic compounds, J. Gen. Microbiol. 36:171–183.PubMedCrossRefGoogle Scholar
  112. Sutherland, J. B., Blanchette, R. A., Crawford, D. L., and Pometto, A. L., Ill, 1979, Breakdown of Douglas fir phloem by a lignocellulose-degrading Streptomyces, Curr. Microbiol.2: 123- 126.CrossRefGoogle Scholar
  113. Swain, F. M., 1970, Non-marine Organic Geochemistry, Cambridge Earth Science Series, Cambridge University Press, Cambridge.Google Scholar
  114. Tansey, M. R., Murrmann, D. N., Behnke, B. K., and Behnke, E. R., 1977, Enrichment, isolation and assay of growth of thermophilic and thermotolerant fungi in lignin-containing media, Mycologia 69:463–476.CrossRefGoogle Scholar
  115. Walters, A. H., 1974, Microbial biodeterioration of materials: Relevance to waste recycling, Chem. Ind. N.Y. 4:365–372.Google Scholar
  116. Wardrop, A. B., 1971, Lignins: Occurrence and formation in plants, in:Lignins: Occurrence, Formation, Structure and Reactions(K. V. Sarkanen and C. H. Ludwig, eds.), pp. 14–42, Wiley-Interscience, New York.Google Scholar
  117. Wayman, M., and Obiaga, T. I., 1974, Molecular weights of milled-wood lignins, Tappi 57:123–126.Google Scholar
  118. Weinstein, D. A., Krisnangkura, K., Mayfield, M., and Gold, M. H., 1980, Metabolism of radiolabeled β-guanacyl ether-linked lignin dimeric compounds by Phanerochaete chrysosporium, Appl. Environ. Microbiol. 39:535–540.Google Scholar
  119. Westermark, U., and Eriksson, K.-E., 1974a, Carbohydrate-dependent enzymic quinone reduction during lignin degradation, Acta Chem. Scand. 28:204–208.CrossRefGoogle Scholar
  120. Westermark, U., and Eriksson, K.-E., 1974b, Cellobiose: Quinone oxidoreductase, a new wood- degrading enzyme from white-rot fungi, Acta Chem. Scand. 28:209–214.CrossRefGoogle Scholar
  121. Whittaker, R. H., and Likens, G. E., 1973, Carbon in the biota, in: Carbon and the Biosphere(G. M. Woodwell and E. V. Pecan, eds.), Proceedings of 24th Brookhaven Symp. in Biology, Technical Information Center, Office of Information Services, U.S. Atomic Energy Commission, Springfield, Virginia.Google Scholar
  122. Wilke, C. R., 1975, Cellulose as a Chemical and Energy Resource, Biotechnology and Bioengineering Symposium #5, John Wiley & Sons, New York.Google Scholar
  123. Wood, J. M., Crawford, R. L., Munck, E., Zimmerman, R., Lipscomb, J. D., Stephens, R. S., Bromley, J. W., Que, L., Jr., Howard, J. B., and Orme-Johnson, W. H., 1977, Structure and function of dioxygenases. One approach to lignin degradation, J. Agric. Food Chem. 25:698–704.PubMedCrossRefGoogle Scholar
  124. Yaku, F., Tsuji, S., and Koshijima, T., 1979, Lignin carbohydrate complex. Part III. Formation of micelles in the aqueous solution of acidic lignin carbohydrate complex,Holzforschung 33:54–59.CrossRefGoogle Scholar
  125. Zeikus, J. G., 1980a, Chemical and fuel production by anaerobic bacteria, Annu. Rev. Microbiol. Google Scholar
  126. Zeikus, J. G., 1980b, Fate of lignin and related aromatic substrates in anaerobic environments, in: Lignin Biodégradation: Microbiology, Chemistry, and Applications(T. K. Kirk, T. Higuchi and H. M. Chang, eds.), pp. 101–110, CRC Press, Boca Raton, Florida.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. G. Zeikus
    • 1
  1. 1.Department of BacteriologyUniversity of WisconsinMadisonUSA

Personalised recommendations