Fast and Famine Existence
  • Jeanne S. Poindexter
Part of the Advances in Microbial Ecology book series (AMIE, volume 5)


According to A. Koch’s interpretation (Koch, 1971), Escherichia coli has evolved a strategy for surviving a “feast and famine” existence. Oligotrophic bacteria, in contrast, are conceived of as those never invited to a feast; their properties should include microbial adaptations to uninterrupted nutrient limitation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akagi, Y., Taga, N., and Simidu, U., 1977, Isolation and distribution of oligotrophic marine bacteria, Can. J. Microbiol. 23:981–987.CrossRefGoogle Scholar
  2. Boylen, C. W., 1973, Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation, J. Bacteriol. 113:33–37.PubMedGoogle Scholar
  3. Boylen, C. W., and Ensign, J. C., 1970, Intracellular substrates for endogenous metabolism during long-term survival of rod and spherical cells of Arthrobacter crystallopoietes, J. Bacteriol. 103:578–587.PubMedGoogle Scholar
  4. Breznak, J. A. Potrikus, C. J., Pfennig, N., and Ensign, J. C., 1978, Viability and endogenous substrates used during starvation survival of Rhodospirillum rubrum, J. Bacteriol. 134:381–388.PubMedGoogle Scholar
  5. Bulion, W. W., 1977, Extracellular production of phytoplankton, Usp. Sovrem. Biol. 84:294304 (in Russian).Google Scholar
  6. Carlucci, A. F., and Shimp, S. L., 1974, Isolation and growth of a marine bacterium in low concentration of substrate, in: Effect of the Ocean Environment on Microbial Activities (R. R. Colwell and R. Y. Morita, eds.), pp. 363–367, University Park Press, Baltimore.Google Scholar
  7. Dawes, E. A., 1976, Endogenous metabolism and the survival of starved prokaryotes, Symp. Soc. Gen. Microbiol. 26:19–53.Google Scholar
  8. Dawes, E. A., and Senior, P. J., 1973, The role and regulation of energy reserve polymers in micro-organisms, Adv. Microbial Physiol. 10:135–266.CrossRefGoogle Scholar
  9. Dills, S. S., Apperson, H., Schmidt, M. R., and Saier, M. H., Jr., 1980, Carbohydrate transport in bacteria, Microbiol. Rev. 44:385–418.PubMedGoogle Scholar
  10. Dommergues, Y. R., Belser, L. W., and Schmidt, E. L., 1978, Limiting factors for microbial growth and activity in soil, in: Advances in Microbial Ecology, Vol. 2 (M. Alexander, ed.), pp. 49–104, Plenum Press, New York.CrossRefGoogle Scholar
  11. Ely, B., Amarasinghe, A. B. C., and Bender, R. A., 1978, Ammonia assimilation and glutamate formation in Caulobacter crescentus, J. Bacteriol. 133:225–230.PubMedGoogle Scholar
  12. Ensign, J. C., 1970, Long-term starvation survival of rod and spherical cells of Arthrobacter crystallopoietes, J. Bacteriol. 103:569–577.PubMedGoogle Scholar
  13. Ensign, J. C., and Wolfe, R. S., 1964, Nutritional control of morphogenesis in Arthrobacter crystallopoietes, J. Bacteriol. 87:924–932.PubMedGoogle Scholar
  14. Fridovich, I., 1978, The biology of oxygen radicals, Science 201:875–880.PubMedCrossRefGoogle Scholar
  15. Gray, T. R. G., and Williams, S. T., 1971, Microbial productivity in soil, Symp. Soc. Gen. Microbiol. 21:256–286.Google Scholar
  16. Grula, E. A., and Hartsell, S. E., 1954, Intracyellular structures in Caulobacter vibrioides, J. Bacteriol. 68:498–504.PubMedGoogle Scholar
  17. Haars, E. G., and Schmidt, J. M., 1974, Stalk formation and its inhibition in Caulobacter crescentus, J. Bacteriol. 120:1409–1416.PubMedGoogle Scholar
  18. Hamilton, R. D., Morgan, K. M., and Strickland, J. D. H., 1966, The glucose uptake kinetics of some marine bacteria, Can. J. Microbiol. 12:995–1003.PubMedCrossRefGoogle Scholar
  19. Harder, W., Kuenen, J. G., and Matin, A., 1977, Microbial selection in continuous culture, J. Appl. Bacteriol. 43:1–24.PubMedCrossRefGoogle Scholar
  20. Harold, F. M., 1966, Inorganic polyphosphates in biology: Structure, metabolism, and function, Bacteriol. Rev. 30:772–794.PubMedGoogle Scholar
  21. Hirsch, P., 1979, Life under conditions of low nutrient concentrations, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 357–372, Dahlem Conference Life Sciences Research Report 13, Berlin.Google Scholar
  22. Hood, D. W. (ed.), 1970, Organic Matter in Natural Waters, Institute of Marine Science, Alaska.Google Scholar
  23. Hueting, S., deLange, T., and Tempest, D. W., 1979, Energy requirement for maintenance of the transmembrane potassium gradient inKlebsiella aerogenes NCTC418: A continuous culture study, Arch. Microbiol. 123:183–188.PubMedCrossRefGoogle Scholar
  24. Jannasch, H. W., 1963, Bacterial growth at low population densities (II),Nature (London) 197:1322.CrossRefGoogle Scholar
  25. Jannasch, H. W., 1965, Eine Notiz über die Anreicherung von Mikroorganismen in Chemostaten, in: Anreicherungskultur und Mutantenauslesen (H. G. Schlegel, ed.), Suppl. 1 to Zentralbl. Bakteriol., I. Abt., pp. 498–502.Google Scholar
  26. Jannasch, H. W., 1967a, Enrichment of aquatic bacteria in continuous culture, Arch. Mikrobiol. 59:165–173.PubMedCrossRefGoogle Scholar
  27. Jannasch, H. W., 1967b, Growth of marine bacteria at limiting concentrations of organic carbon in seawater, Limnol. Oceanogr. 12:264–271.CrossRefGoogle Scholar
  28. Jannasch, H. W., 1969, Estimation of bacterial growth rates in natural waters, J. Bacteriol. 99:156–160.PubMedGoogle Scholar
  29. Jannasch, H. W., and Jones, G. E., 1959, Bacterial populations in sea water as determined by different methods of enumeration, Limnol. Oceanogr. 4:128–139.CrossRefGoogle Scholar
  30. Jannasch, H. W., and Mateles, R. I., 1974, Experimental bacterial ecology studied in continuous culture, Adv. Microbial Physiol. 11:165–212.CrossRefGoogle Scholar
  31. Jordan, T. L., Porter, J. S., and Pate, J. L., 1974, Isolation and characterization of prosthecae of Asticcacaulis biprosthecum, Arch. Mikrobiol. 96:1–16.Google Scholar
  32. Keddie, R. M., 1974, Arthrobacter, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanan and N. E. Gibbons, eds.), pp. 618–625, Williams & Wilkins Company, Baltimore.Google Scholar
  33. Koch, A. L., 1971, The adaptive responses of Escherichia coli to a feast and famine existence, Adv. Microbial Physiol. 6:147–217.CrossRefGoogle Scholar
  34. Krulwich, T. A., and Ensign, J. C., 1969, Alteration of glucose metabolism of Arthrobacter crystallopoietes by compounds which induce sphere to rod morphogenesis, J. Bacteriol. 97:526–534.PubMedGoogle Scholar
  35. Kurn, N., Shapiro, L., and Agabian, N., 1977, Effect of carbon source and the role of cyclic adenosine 3′,5′-monophosphate on the Caulobacter cell cycle, J. Bacteriol. 131:951–959.PubMedGoogle Scholar
  36. Kurn, N., Contreras, I., and Shapiro, L., 1978, Galactose catabolism in Caulobacter crescentus, J. Bacteriol. 135:517–520.PubMedGoogle Scholar
  37. Kuznetsov, S. I., Dubinina, G. A., and Lapteva, N. A., 1979, Biology of oligotrophic bacteria, Annu. Rev. Microbiol. 33:377–387.PubMedCrossRefGoogle Scholar
  38. Larson, R. J., and Pate, J. L., 1975, Growth and morphology of Asticcacaulis biprosthecum in defined media, Arch. Microbiol. 106:147–157.PubMedCrossRefGoogle Scholar
  39. Larson, R. J., and Pate, J. L., 1976, Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum, J. Bacteriol. 126:282–293.PubMedGoogle Scholar
  40. Luscombe, B. M., and Gray, T. R. G., 1974, Characteristics of arthrobacter grown in continuous culture, J. Gen. Microbiol. 82:213–222.CrossRefGoogle Scholar
  41. Mallory, L. M., Austin, B., and Colwell, R. R., 1977, Numerical taxonomy and ecology of oligotrophic bacteria isolated from the estuarine environment, Can. J. Microbiol. 23:733–750.PubMedCrossRefGoogle Scholar
  42. Matin, A., 1979, Microbial regulatory mechanisms at low nutrient concentrations as studied in chemostat, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 323–339, Dahlem Conference Life Sciences Research Report 13, Berlin.Google Scholar
  43. Matin, A., and Veldkamp, H., 1978, Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment, J. Gen. Microbiol. 105:187–197.PubMedCrossRefGoogle Scholar
  44. Matin, A., Veldhuis, C., Stegeman, V., and Veenhuis, M., 1979, Selective advantage of a Spirillum sp. in a carbon-limited environment. Accumulation of poly-β-hydroxybutyric acid and its role in starvation, J. Gen. Microbiol. 112:349–355.PubMedCrossRefGoogle Scholar
  45. Morris, J. G., 1975, The physiology of obligate anaerobiosis, Adv. Microbial Physiol. 12:169246.Google Scholar
  46. Morris, J. G., 1976, Oxygen and the obligate anaerobe, J. Appl. Bacteriol. 40:229–244.PubMedCrossRefGoogle Scholar
  47. Mulder, E. G., 1963, Arthrobacter, in: Principles and Applications in Aquatic Microbiology (H. Heukelekian and N. C. Dondero, eds.), pp. 254–279, John Wiley & Sons, New York.Google Scholar
  48. Nazly, N., Carter, I. S., and Knowles, C. J., 1980, Adenine nucleotide pools during starvation of Beneckea natriegens, J. Gen. Microbiol. 116:295–303.Google Scholar
  49. Nikaido, H., and Nakae, T., 1979, The outer membrane of gram-negative bacteria, Adv. Microbial Physiol. 20:163–250.CrossRefGoogle Scholar
  50. Pate, J. L., and Ordal, E. J., 1965, The fine structure of two unusual stalked bacteria, J. Cell Biol. 27:133–150.PubMedCrossRefGoogle Scholar
  51. Pirt, S. J., 1972, Prospects and problems in continuous flow culture of microorganisms, J. Appl. Chem. Biotechnol. 22:55–64.CrossRefGoogle Scholar
  52. Poindexter, J. S., 1964, Biological properties and classification of the Caulobacter group, Bacteriol. Rev. 28:231–295.PubMedGoogle Scholar
  53. Poindexter, J. S., 1978, Selection for nonbuoyant morphological mutants of Caulobacter cres- centus, J. Bacteriol. 135:1141–1145.PubMedGoogle Scholar
  54. Poindexter, J. S., 1979, Morphological adaptation to low nutrient concentrations, in: Strategies of Microbial Life in Extreme Environyments (M. Shilo, ed.), pp. 341–356, Dahlem Conference Life Sciences Research Report 13, Berlin.Google Scholar
  55. Poindexter, J. S., 1981, The caulobacters: Ubiquitous unusual bacteria, Microbiol. Rev. 45:123–179.PubMedGoogle Scholar
  56. Poindexter, J. S., and Cohen-Bazire, G., 1964, The fine structure of stalked bacteria belonging to the family Caulobacteraceae, J. Cell Biol. 23:587–597.CrossRefGoogle Scholar
  57. Porter, J. S., and Pate, J. L., 1975, Prosthecae of Asticcacaulis biprosthecum: system for the study of membrane transport, J. Bacteriol. 122:976–986.PubMedGoogle Scholar
  58. Postgate, J. R., 1973, The viability of very slow-growing populations: A model for the natural ecosystem, Bull. Ecol. Res. Comm. (Stockholm) 17:287–292.Google Scholar
  59. Robinson, J. B., Salonius, P. O., and Chase, F. E., 1965, A note on the differential response of Arthrobacter spp. and Pseudomonas spp. to drying in soil, Can. J. Microbiol. 11:746–748.PubMedCrossRefGoogle Scholar
  60. Schmidt, J. M., and Stanier, R. Y., 1966, The development of cellular stalks in bacteria,J. Cell Biol. 28:423–436.PubMedCrossRefGoogle Scholar
  61. Shedlarski, J. G., Jr., 1974, Glucose-6-phosphate dehydrogenase fromCaulobacter crescentus, Biochim. Biophys. Acta 358:33–43.PubMedCrossRefGoogle Scholar
  62. Staley, J. T., 1968, Prosthecomicrobium and Ancalomicrobium: New prosthecate freshwater bacteria, J. Bacteriol. 95:1921–1942.PubMedGoogle Scholar
  63. Tempest, D. W., and Neijssel, O. M., 1978, Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments, in: Advances in Microbial Ecology, Vol. 2 (M. Alexander, ed.), pp. 105–153, Plenum Press, New York.CrossRefGoogle Scholar
  64. Tempest, D. W., Herbert D., and Phipps, P. J., 1967, Studies on the growth ofAerobacter aero- genes at low dilution rates in a chemostat, in: Microbial Physiology and Continuous Culture (E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 240–261, H. M. Stationery Office, London.Google Scholar
  65. Whittenbury, R., and Dow, C. S., 1977, Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria, Bacteriol. Rev. 41:754–808Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Jeanne S. Poindexter
    • 1
  1. 1.The Public Health Research Institute of New York, Inc.New YorkUSA

Personalised recommendations