Advertisement

Microbial Ecology of the Oral Cavity

  • G. H. W. Bowden
  • D. C. Ellwood
  • I. R. Hamilton
Part of the Advances in Microbial Ecology book series (AMIE, volume 3)

Abstract

The importance of the oral microorganisms to the process of dental caries was first recognized by Miller (1889) at the end of the last century. In his chemico-parasitic theory, he stated that carbohydrate food particles were decomposed to organic acids by bacteria, which resulted in the decalcification of the enamel surface of the tooth. Despite this early recognition that the mouth carried an indigenous microflora, it is only in the last 18 years that any interest has been shown in oral microbial ecology. Earlier studies had concentrated on the role of specific acidogenic bacteria in dental caries and often neglected the possibility of the influence of microbial interactions on this and other oral diseases, such as periodontal disease. One of the earlier workers to recognize such interactions was MacDonald in his studies of the pathogenicity of oral organisms in oral infections. He and his co-workers, in a variety of studies on mixed anaerobic infections (MacDonald et al., 1954, 1960, 1963), employed combinations of pure cultures of oral anaerobic organisms to demonstrate that minimum synergistic groupings were capable of producing pathogenic lesions in guinea pigs.

Keywords

Periodontal Disease Oral Cavity Dental Caries Tooth Surface Dental Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aasenden, R., De Paola, P. F., and Brudevold, F., 1972, Effects of daily rinsing and ingestion of fluoride solutions upon dental caries and enamel fluoride, Arch. Oral Biol 17: 1705–1714.PubMedGoogle Scholar
  2. Alexander, M., 1971, Microbial Ecology, John Wiley and Sons, New York.Google Scholar
  3. Alshamony, L., Goodfellow, M., Minnikin, D. E., Bowden, G. H., and Hardie, J. M., 1977, Fatty and mycolic acid composition of Bacterionema matruchotti and related organisms, J. Gen. Microbiol. 98: 205–213.Google Scholar
  4. Backer Dirks, O., 1974, The benefits of water fluoridation, Caries Res. Suppl. 8: 2–15.Google Scholar
  5. Baier, R. E., 1977, On the formation of biological films, Swed. Dent. J. 1: 261–271.PubMedGoogle Scholar
  6. Baker, J. J., Chan, S. P., Socransky, S. S., Oppenheim, J. J., and Mergenhagen, S. E., 1976, Importance of Actinomyces and certain gram-negative anaerobic organisms in the transformation of lymphocytes from patients with periodontal disease, Infect. Immun. 13: 1363–1368.PubMedCentralPubMedGoogle Scholar
  7. Beighton, D., and Colman, G., 1976, A medium for the isolation of Actinomycetaceae from human dental plaque, J. Dent. Res. 55: 875–878.PubMedGoogle Scholar
  8. Beighton, D., and MacDougall, W. A., 1977, The effects of fluoride on the percentage bacterial composition of dental plaque, on caries incidence, and on the in vitro growth of Streptococcus mutans, Actinomyces viscosus, and Actinobacillus sp., J. Dent. Res. 56: 1185–1191.PubMedGoogle Scholar
  9. Beighton, D., and Miller, W. A., 1977, A microbiological study of normal flora of macropod dental plaque, J. Dent. Res. 56: 995–1000.PubMedGoogle Scholar
  10. Berg, R. D., and Savage, D. C., 1975, Immune responses of specific pathogen free and gnotobiotic mice to antigens of indigenous and nonindigenous microorganisms, Infect. Immun. 11: 320–329.PubMedCentralPubMedGoogle Scholar
  11. Berger, U., 1967, Zur Systematik der Neisseriaceae, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1: Orig. 205: 241–248.Google Scholar
  12. Berger, U., and Catlin, B. W., 1975, Biochemische Unterscheidung von Neisseria sicca und Neisseria per flava, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1: Orig. Reihe A 232: 129–130.Google Scholar
  13. Berger, U., and Wulf, B., 1961, Untersuchungen an saprophytischen Neisserien, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I 147: 257–268.Google Scholar
  14. Berglund, S. E., Rizzo, A. A., and Mergenhagen, S. E., 1969, The immune response in rabbits to bacterial somatic antigen administered via the oral mucosa, Arch. Oral Biol. 14: 7–17.PubMedGoogle Scholar
  15. Berkowitz, R. J., and Jordan, H. V., 1975, Similarity of bacteriocins of Streptococcus mutans from mother and infant, Arch. Oral Biol. 20: 725–730.PubMedGoogle Scholar
  16. Berman, K. S., and Gibbons, R. J., 1966, Iodophilic polysaccharide synthesis by human and rodent oral bacteria, Arch. Oral Biol. 11: 533–542.PubMedGoogle Scholar
  17. Berman, K. S., Gibbons, R. J., and Nalbandian, J., 1967, Localization of intracellular polysaccharide panules in Streptococcus mitis, Arch. Oral Biol. 12: 1133–1138.PubMedGoogle Scholar
  18. Beveridge, T. J., and Goldner, M., 1973, Statistical relationships between the presence of human subgingival anaerobic diphtheroids and periodontal disease, J. Dent. Res. 52: 451–453.PubMedGoogle Scholar
  19. Bibby, B. G., 1976, Influence of diet on the bacterial composition of plaques, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 2: 477–490.Google Scholar
  20. Bibby, B. G., and van Kesteren, M., 1940, The effect of fluorine on mouth bacteria, J. Dent. Res. 19: 391–401.Google Scholar
  21. Bill, N. J., and Washington, J. A., 1975, Bacterial interference by Streptococcus salivarius, Am. J. Clin. Pathol. 64: 116–120.PubMedGoogle Scholar
  22. Black, G. V., 1899, Susceptibility and immunity in dental caries, Dent. Cosmos 41: 826–830.Google Scholar
  23. Blank, C. H., and Georg, L. K., 1968, The use of fluorescent antibody methods for the detection and identification of Actinomyces species in clinical material, J. Lab. Clin. Med. 71: 283–293.Google Scholar
  24. Bovre, K., 1967, Transformation and DNA base composition in taxonomy, with special reference to recent studies in Moraxella and Neisseria, Acta Pathol Microbiol Scand 69: 123–144.Google Scholar
  25. Bowden, G. H., 1969, The components of the cell walls and extracellular slime of four strains of Staphylococcus salivarius isolated from human dental plaque, Arch. Oral Biol 14: 685–697.PubMedGoogle Scholar
  26. Bowden, G. H., and Hardie, J. M., 1971, Anaerobic organisms from the human mouth, in: Isolation of Anaerobes (D. A. Shapton and R. G. Board, eds.), pp. 177–205, Academic Press, London.Google Scholar
  27. Bowden, G. H., and Hardie, J., 1973, Commensal and pathogenic Actinomyces species in man, in: Actinomycetales: Characteristics and Practical Importance (G. Sykes and F. A. Skinner, eds.), pp. 277–299, Academic Press, London.Google Scholar
  28. Bowden, G. H., and Hardie, J. M., 1978, Gram-positive pleomorphic (coryneform) organisms from the mouth, in: Coryneform Bacteria (I. J. Bousefíeld and A. G. Callely, eds.), pp. 235–263, Academic Press, London.Google Scholar
  29. Bowden, G. H., Hardie, J. M., and Slack, G. L., 1975, Microbial variations in approximal dental plaque, Caries Res. 9: 253–277.PubMedGoogle Scholar
  30. Bowden, G. H., Hardie, J. M., McKee, A. S., Marsh, P. D., Fillery, E. D., and Slack, G. L., 1976, The microflora associated with developing carious lesions of the distal surfaces on the upper first premolars in 13–14 year old children, in: Microbial Aspects of Dental Caries (H. J. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol Abstr. Spec. Suppl. 1: 223–241.Google Scholar
  31. Bowden, G. H., Hardie, J. M., Fillery, E. D., Marsh, P. D. and Slack, G. L., 1978, Microbial analyses related to caries susceptibility, in: Methods of Caries Prediction (Workshop Proceedings) (B. G. Bibby and R. J. Shern, eds.), Microbiol. Abstr. Spec. Suppl. pp. 83–97, Information Retrieval, Inc., Washington, D.C.Google Scholar
  32. Bowen, W. H., 1969, A vaccine against dental caries. A pilot experiment with monkeys (Macaca irus), Br. Dent. J. 126: 159–160.PubMedGoogle Scholar
  33. Bowen, W. H., 1976, Nature of plaque, Oral Sci. Rev. 9: 3–22.PubMedGoogle Scholar
  34. Bowen, W. H., and Hewitt, M. J., 1974, Effect of fluoride on extracellular polysaccharide production by Streptococcus mutans, J. Dent. Res. 53: 627–629.Google Scholar
  35. Bowen, W. H., Cohen, B., and Colman, G., 1975, Immunisation against dental caries, Br. Dent. J. 139: 45–58.PubMedGoogle Scholar
  36. Bowen, W. H., Genco, R. J., and O’Brien, T. (eds.), 1976, Immunologic Aspects of Dental Caries, Immunol. Abstr. Spec. Suppl, Information Retrieval, Inc., Washington, D.C.Google Scholar
  37. Bramstedt, F., and Lusty, C. J., 1968, The nature of the intracellular polysaccharides synthesized by streptococci in the dental plaque, Caries Res. 2: 201–213.PubMedGoogle Scholar
  38. Brandtzaeg, P., 1976, Synthesis and secretion of secretory immunoglobulins: With special references to dental diseases, J. Dent. Res. Spec. Iss. C 55: 102–114.Google Scholar
  39. Brandtzaeg, P., and Tolo, K., 1977, Immunoglobulin systems of the gingiva, in: The Borderland between Caries and Periodontal Disease (T. Lehner, ed.), pp. 145–183, Academic Press, London.Google Scholar
  40. Brandtzaeg, P., Fjellanger, I., and Gjeruldsen, S. T., 1968, Adsorption of Immunoglobulin A onto oral bacteria “in vivo,” J. Bacteriol. 96: 242–249.PubMedCentralPubMedGoogle Scholar
  41. Bratthall, D., and Gibbons, R. J., 1975, Antigenic variation of S. mutans colonizing gnoto-biotic rats, Infect. Immun. 11: 1231–1236.Google Scholar
  42. Brooks, J. B., Kellogg, D. S., Thacker, L., and Turner, E. M., 1971, Analysis by gas chromatography of fatty acids found in whole cultural extracts of Neisseria species, Can. J. Microbiol. 17: 531–543.PubMedGoogle Scholar
  43. Broukal, Z., and Zajicek, O., 1974, Amount and distribution of extracellular polysaccharides in dental microbial plaque, Caries Res. 8: 97–104.PubMedGoogle Scholar
  44. Brown, A. T., and Wittenberger, C. L., 1972, Fructose-l,6-diphosphate-dependent lactate dehydrogenase from a cariogenic Streptococcus: Purification and regulatory properties, J. Bacteriol 110: 604–615.PubMedCentralPubMedGoogle Scholar
  45. Brown, L. R., Handler, S., Allen, S. S., Shea, C., Wheatcroft, M. G., and Frome, W. J., 1973, Oral microbial flora of the marmoset, J. Dent. Res. 52: 815–822.PubMedGoogle Scholar
  46. Brown, L. R., Dreizen, S., and Handler, S., 1976, Effects of selected caries preventive regimens on microbial changes following irradiation-induced zerostomia in cancer patients, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbial Abstr. Spec. Suppl. 1: 275–290.Google Scholar
  47. Brown, W. E., and Konig, K. G., 1977, Cariostatic mechanisms of fluorides, Caries Res. 11: 1–327.Google Scholar
  48. Brown, W. R., and Lee, E., 1974, Radioimmunological measurements of bacterial antibodies, Gastroenterology 66: 1145–1153.PubMedGoogle Scholar
  49. Buchanan, B. B., and Pine, L., 1963, Factors influencing the fermentation and growth of an atypical strain of Actinomyces naeslundii, Sabouraudia 3: 26–39.PubMedGoogle Scholar
  50. Buchanan, B. B., and Pine, L., 1967, Path of glucose breakdown and cell yields of a facultative anaerobe Actinomyces naeslundii, J. Gen. Microbiol. 46: 225–236.PubMedGoogle Scholar
  51. Buchanan, R. E., and Gibbons, N. E., (eds.), 1974, Bergey’s Manual of Determinative Bacteriology, Williams and Wilkins, Baltimore.Google Scholar
  52. Bulleid, A., 1925, An experimental study of Leptothrix buccalis, Br. Dent. J. 46: 289–300.Google Scholar
  53. Bunting, R. W., Nicherson, G., Hard, D., and Crowley, M., 1928, Further studies of the relation of Bacillus acidophilus to dental caries, II, Dent. Cosmos 70: 1–15.Google Scholar
  54. Burckhardt, J. J., 1978, Rat memory T lymphocytes: In vitro proliferation induced by antigens of Actinomyces viscosus, Scand. J. Immunol. 7: 167–172.PubMedGoogle Scholar
  55. Caldwell, J., Challacombe, S. J., and Lehner, T., 1977, A sequential bacteriological and serological investigation of rhesus monkeys immunized against dental caries with Streptococcus mutans, J. Med. Microbiol. 10: 213–224.PubMedGoogle Scholar
  56. Carlsson, J., 1967, Presence of various types of non-hemolytic streptococci in dental plaque and in other sites of the oral cavity of man, Odontol. Revy 18: 55–74.PubMedGoogle Scholar
  57. Carlsson, J., 1970, A levansucrase from Streptococcus mutans, Caries Res. 4: 97–113.PubMedGoogle Scholar
  58. Carlsson, J., 1971, Growth of Streptococcus mutans and Streptococcus sanguis in mixed culture, Arch. Oral Biol. 16: 963–965.PubMedGoogle Scholar
  59. Carlsson, J., and Gothefors, L., 1975, Transmission of Lactobacillus jensenii and Lactobacillus acidophilus from mother to child at delivery, J. Clin. Microbiol. 1: 124–128.PubMedCentralPubMedGoogle Scholar
  60. Carlsson, J., and Griffith, C. J., 1974, Fermentation products and bacterial yields in glucose-limited and nitrogen-limited cultures of streptococci, Arch. Oral Biol. 19: 1105–1109.PubMedGoogle Scholar
  61. Carlsson, J., and Johansson, J., 1973, Sugar and the production of bacteria in the human mouth, Caries Res. 7: 273–282.PubMedGoogle Scholar
  62. Carlsson, J., Newbrun, E., and Krasse, B., 1969, Purification and properties of dextransu-crase from Streptococcus sanguis, Arch. Oral Biol. 14: 469–478.PubMedGoogle Scholar
  63. Carlsson, J., Graham, H., and Jonsson, G., 1975, Lactobacilli and streptococci in the mouth of children, Caries Res. 9: 333–339.PubMedGoogle Scholar
  64. Challacombe, S. J., and Lehner, T., 1976, Serum and salivary antibodies to cariogenic bacteria in man, J. Dent. Res. 55: 139–148.Google Scholar
  65. Charlton, G., Fitzgerald, D. B., and Keyes, P. H., 1971, Hydrogen ion activity in dental plaques of hamsters during metabolism of sucrose, glucose and fructose, Arch. Oral Biol. 16: 655–661.PubMedGoogle Scholar
  66. Chet, I., and Mitchell, R., 1976, Ecological aspects of microbial chemotactic behavior, Annu. Rev. Microbiol. 30: 221–239.PubMedGoogle Scholar
  67. Clark, W. B., and Gibbons, R. J., 1977, Influence of salivary components and extracellular polysaccharide synthesis from sucrose on the attachment of Streptococcus mutans 6715 to hydroxyapatite surfaces, Infect. Immun. 18: 514–523.PubMedCentralPubMedGoogle Scholar
  68. Clark, W. B., Bamman, L. L., and Gibbons, R. J., 1978, Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces, Infect. Immun. 19: 846–853.PubMedCentralPubMedGoogle Scholar
  69. Clarke, J. K., 1924, On the bacterial factor in the aetiology of dental caries, Br. J. Exp. Pathol. 5: 141–146.PubMedCentralGoogle Scholar
  70. Clewell, D. B., Oliver, D. R., Dunny, G. M., Franke, A. E., Yagi, Y., van Houte, J., and Brown, B. L., 1976, Plasmids in cariogenic streptococci, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 3: 713–724.Google Scholar
  71. Cole, M. F., Arnold, R. R., Mestecky, J., Prince, S., Kulhavy, R., and McGhee, J. R., 1976, Studies with human lactoferrin and Streptococcus mutans, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 2: 359–373.Google Scholar
  72. Colman, G., and Williams, R. E. O., 1972, Taxonomy of some human viridans streptococci, in: Streptococci and Streptococcal Diseases (L. W. Wanamaker, and J. M. Matsu, eds.), pp. 281–299, Academic Press, New York.Google Scholar
  73. Cornick, D. E. R., and Bowen, W. H., 1971, Development of the oral flora in newborn monkeys (Macaca irus), Br. Dent. J. 130: 231–234.PubMedGoogle Scholar
  74. Cowman, R. A., Perrella, M. M., Adams, B. O., and Fitzgerald, R. J., 1975, Amino acid requirements and proteolytic activity of Streptococcus sanguis, Appl. Microbiol. 30: 374–480.PubMedCentralPubMedGoogle Scholar
  75. Coykendall, A. L., 1976, On the evolution of Streptococcus mutans and dental caries, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 3: 703–712.Google Scholar
  76. Coykendall, A. L., Specht, P. A., and Samol, H. H., 1974, Streptococcus mutans in a wild, sucrose-eating rat population, Infect. Immun. 10: 216–219.PubMedCentralPubMedGoogle Scholar
  77. Crawford, A., Socransky, S. S., and Bratthall, G., 1975, Predominant cultivable microbiota of advanced periodontitis, J. Dent. Res. Spec. Iss. A 54: Abstract No. 209.Google Scholar
  78. Critchley, P., 1969, The breakdown of the carbohydrate and protein matrix of dental plaque, Caries Res. 3: 249–265.PubMedGoogle Scholar
  79. Critchley, P., Wood, J. M., Saxton, C. A., and Leach, S. A., 1967, The polymerisation of dietary sugars by dental plaque, Caries Res. 1: 112–129.PubMedGoogle Scholar
  80. Cummins, C. S., 1975, Identification of Propionibacterium acnes and related organisms by precipitin tests with trichloracetic acid extracts, J. Clin. Microbiol. 2: 104–110.PubMedCentralGoogle Scholar
  81. Cummins, C., and Johnson, J. L., 1974, Corynebacterium parvum: A synonym for Propionibacterium acnes, J. Gen. Microbiol. 80: 433–442.PubMedGoogle Scholar
  82. Da Costa, T., and Gibbons, J. R., 1968, Hydrolysis of levan by mouth plaque streptococci, Arch. Oral Biol. 13: 609–618.Google Scholar
  83. Da Costa, T., Bier, L. C., and Gaida, F., 1974, Dextran hydrolysis by a Fusobacterium strain isolated from human dental plaque, Arch. Oral. Biol. 19: 341–342.PubMedGoogle Scholar
  84. Darwish, S., Hyppa, T., and Socransky, S. S., 1978, Studies of the predominant cultivable microbiota of early periodontitis, J. Periodontal Res. 13: 1–16.PubMedGoogle Scholar
  85. Dawes, E. A., and Ribbons, D. W., 1964, Some aspects of the endogenous metabolism of bacteria, Bacteriol Rev. 28: 1126–1149.Google Scholar
  86. Davies, R. M., Borglum-Jensen, S. C., Rindom Schiøtt, C., and Löe, H., 1970, The effect of topical application of Chlorhexidine on the bacterial colonization of teeth and gingiva, J. Periodontal Res. 5: 96–l01.PubMedGoogle Scholar
  87. Dellebarre, C.W., Franken, H. C. M., Camp, P. J. M., and van der Hoeven, J. S., 1977, Determination of organic acid in dental plaque by isotachophoresis, J. Dent Res. Spec. Iss. A 56: Abstract No. 313.Google Scholar
  88. Dent, V. E., Hardie, J. M., and Bowden, G. H., 1976, A preliminary study of dental plaque on animal teeth, J. Dent. Res. Spec. Iss. D 55: Abstract No. 85D.Google Scholar
  89. Dent, V. E., Hardie, J. M., and Bowden, G. H., 1978, Streptococci isolated from dental plaque of animals, J. Appl Bacteriol. 44: 249–258.PubMedGoogle Scholar
  90. De Paola, P. F., Jordan, H. V., and Berg, J., 1974, Temporary suppression of Streptococcus mutans in humans through topical application of vancomycin, J. Dent. Res. 53: 108–114.PubMedGoogle Scholar
  91. de Stoppelaar, J. D., van Houte, J., and Backer Dirks, O., 1969, The relationship between extracellular polysaccharide-producing streptococci and smooth surface caries in 13-year old children, Caries Res. 3: 190–199.PubMedGoogle Scholar
  92. de Stoppelaar, J. D., van Houte, J., and Backer Dirks, O., 1970, The effect of carbohydrate restriction on the presence of Streptococcus mutans, Streptococcus sanguis and iodophilic polysaccharide-producing bacteria in human dental plaque, Caries Res. 4: 114–123.PubMedGoogle Scholar
  93. Dewar, M. G., and Walker, G. J., 1975, Metabolism of the polysaccharides of human dental plaque, Caries Res. 9: 21–35.PubMedGoogle Scholar
  94. Dibdin, G. H., Shellis, R. P., and Wilson, C. M., 1976, An apparatus for the continuous culture of microorganisms on solid surfaces with special reference to dental plaque, J. Appl Bacteriol 40: 261–268.PubMedGoogle Scholar
  95. Dipersio, T. R., Mattingly, S. J., Higgins, M. L., and Shockman, G. D., 1974, Measurement of intracellular polysaccharide in two cariogenic strains of Streptococcus mutans by cytochemical and chemical methods, Infect. Immun. 19: 597–604.Google Scholar
  96. Dirksen, T. R., Little, M. F., and Bibby, B. G., 1963, The pH of carious cavities II. The pH at different depths in isolated cavities, Arch. Oral Biol 8: 91–97.PubMedGoogle Scholar
  97. Dobbs, E. C., 1932, Local factors in dental caries, J. Dent. Res. 12: 853–856.Google Scholar
  98. Donoghue, H. D., and Tyler, J. E., 1975a, Antagonisms amongst streptococci isolated from the human oral cavity, Arch. Oral Biol 20: 381–387.PubMedGoogle Scholar
  99. Donoghue, H. D., and Tyler, J. E., 1975b, Role of lactic and acetic acids in microbial antagonism, Caries Res. 9: 322.Google Scholar
  100. Douglas, H. C., 1950, On the occurrence of the lactate fermenting anaerobe Micrococcus lactilyticus in human saliva, J. Dent. Res. 29: 304–306.PubMedGoogle Scholar
  101. Dreizen, S., and Brown, L. R., 1976, Xerostomia and dental caries, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 1: 263–273.Google Scholar
  102. Drucker, D. B., and Melville, T. H., 1968, Fermentation end-products of cariogenic and non-cariogenic streptococci, Arch. Oral Biol 13: 563–570.Google Scholar
  103. Duchin, S., and van Houte, J., 1978, Colonization of teeth in humans by Streptococcus mutans as related to its concentration in saliva and host age, Infect. Immun. 20: 120–125.PubMedCentralPubMedGoogle Scholar
  104. Dvarskas, R. A., and Coykendall, A. L., 1975, Streptococcus mutans in wild rats on a low sucrose diet, J. Dent. Res. Spec. Iss. A 54: Abstract No. 330.Google Scholar
  105. Edgar, W. M., 1976, The role of saliva in the control of pH changes in human dental plaque, Caries Res. 10: 241–254.PubMedGoogle Scholar
  106. Edwardsson, S., 1968, Characteristics of caries-inducing human streptococci resembling Streptococcus mutans, Arch. Oral Biol 13: 637–646.PubMedGoogle Scholar
  107. Edwardsson, S., 1974, Bacteriological studies on deep areas of carious dentine, Odontol. Revy 25(Suppl. 32):1–143.Google Scholar
  108. Ellen, R. P., 1976, Microbiological assays for dental caries and periodontal disease susceptibility, Oral Sci. Rev. 8: 3–23.PubMedGoogle Scholar
  109. Ellen, R. P., and Onose, H., 1978, pH Measurements of Actinomyces viscosus colonies grown on media containing dietary carbohydrates, Arch. Oral Biol. 23: 105–109.PubMedGoogle Scholar
  110. Ellwood, D. C., 1976, Chemostat studies of oral bacteria, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 3: 785–798.Google Scholar
  111. Ellwood, D. C., Hunter, J. R., and Longyear, V. M. C., 1974, Growth of Streptococcus mutans in a chemostat, Arch. Oral Biol. 19: 659–665.PubMedGoogle Scholar
  112. Ellwood, D. C., Hunter, J. C. and Longyear, V. M. C., 1977, Growth of Actinomyces viscosus in a chemostat, J. Dent. Res. 56: 311.Google Scholar
  113. Ellwood, D. C., Phipps, P. J., and Hamilton, I. R., 1979, Effect of growth rate and glucose concentration on the activity of the phospho-enolpyruvate phosphotransferase system in Streptococcus mutans grown in continuous culture, Infect. Immun. 23: 224–231.PubMedCentralPubMedGoogle Scholar
  114. Emilson, C. S., Krasse, B., and Westergren, G., 1976, Effect of a fluoride-containing Chlorhexidine gel on bacteria in human plaque, Scand. J. Dent. Res. 84: 56–62.PubMedGoogle Scholar
  115. Emmings, F. G., Evans, R. T., and Gemco, R. T., 1975, Antibody response in the parotid fluid and serum of irus monkeys (Macaca fascicularis) after local immunization with Streptococcus mutans, Infect. Immun. 12: 281–292.PubMedCentralPubMedGoogle Scholar
  116. Ennever, J., 1960, Intracellular calcification of oral filamentous organisms, J. Periodontol. 31: 304–307.Google Scholar
  117. Ennever, J., 1963, Microbiologic calcification, Ann. N. Y. Acad. Sci. 109: 4–13.Google Scholar
  118. Ennever, J., and Creamer, H., 1967, Microbiological calcification: Bone mineral and bacteria, Calcif. Tissue Res. 1: 87–93.PubMedGoogle Scholar
  119. Enright, J. J., Friesell, H. E., and Trescher, M. O., 1932, Studies of the cause and nature of dental caries, J. Dent. Res. 12: 759–827.Google Scholar
  120. Ericson, T., Carlen, A., and Dagerskag, E., 1976, Salivary aggregating factors, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 1: 151–162.Google Scholar
  121. Evans, R. T., Spaeth, S., and Mergenhagen, S. E., 1966, Bacteriocidal antibody in mammalian serum to obligatory aerobic Gram-negative bacteria, J. Immunol. 97: 112–119.PubMedGoogle Scholar
  122. Evans, R. T., Emmings, F. G. and Gemco, R. T., 1975, Prevention of Streptococcus mutans infection of tooth surfaces by salivary antibody in Irus monkeys (Macaca fascicularis), Infect. Immun. 12: 293–302.PubMedCentralPubMedGoogle Scholar
  123. Fahr, A. M., and Berger, U., 1975, Wie anspruchslos sind die sog. anspruchslosen Neisserien, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I: Orig. Reihe A 230: 551–555.Google Scholar
  124. Fejerskov, O., Theilade, E., Karring, T., and Theilade, J., 1977, Plaque and caries development in experimental human fissures. Structural and microbiological features, J. Dent. Res. Spec. Iss. A 56: Abstract No. 456.Google Scholar
  125. Fillery, E. D., Bowden, G. H., and Hardie, J. M., 1978, A comparison of strains of bacteria designated Actinomyces viscosus and Actinomyces naeslundii, Caries Res. 12: 299–312.PubMedGoogle Scholar
  126. Finegold, S. M., and Barnes, E. M., 1977, Report of the ICSB taxonomic subcommittee on gram-negative anaerobic rods, Int. J. Syst. Bacteriol. 27: 388–391.Google Scholar
  127. Foo, M. C., and Lee, A., 1974, Antigenic cross reaction between mouse intestine and a member of the autochthonous microflora, Infect. Immun. 9: 1066–1069.PubMedCentralPubMedGoogle Scholar
  128. Foo, M. C., Lee, A., and Cooper, G. N., 1974, Natural antibodies and the intestinal flora of rodents, Aust. J. Exp. Biol. Med. Sci. 52: 321–330.PubMedGoogle Scholar
  129. Foubert, E. L., Jr., and Douglas, H. C., 1948, Studies on the anaerobic micrococci. II. The fermentation of lactate by Micrococcus lactilyticus, J. Bacteriol. 56: 35–36.PubMedCentralGoogle Scholar
  130. Fox, R. H., and McClain, D. E., 1974, Evaluation of the taxonomic relationship of Micrococcus cryophilus, Branhomella catarrhalis, and Neisseria by comparative Polyacrylamide gel electrophoresis of soluble protein, Int. J. Syst. Bacteriol. 24: 172–176.Google Scholar
  131. Freedman, M. L., and Coykendall, A. L., 1975, Variation in internal polysaccharide synthesis among Streptococcus mutans strains, Infect. Immun. 12: 475–479.PubMedCentralPubMedGoogle Scholar
  132. Freedman, M. L., and Tanzer, J. M., 1974, Dissociation of plaque formation from glucan-induced agglutination in mutants of Streptococcus mutans, Infect. Immun. 10: 189–196.PubMedCentralPubMedGoogle Scholar
  133. Freedman, M. L., Tanzer, J. M., and Eifert, R. L., 1976, Isolation and characterization of mutants of Streptococcus mutans with defects related to intracellular polysaccharide, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 3: 581–596.Google Scholar
  134. Friberg, S., 1977, Colloidal phenomena encountered in the bacterial adhesion to the tooth surface, Swed. Dent. J. 1: 207–214.PubMedGoogle Scholar
  135. Frostell, G., 1973, Effects of mouth rinses with sucrose, glucose, fructose, lactose, sorbitol and lycasin, Odontol. Revy 24: 217–223.PubMedGoogle Scholar
  136. Fukui, Y., Fukui, K., and Moryama, T., 1973, Source of neuraminidase in human whole saliva, Infect. Immun. 8: 329–334.PubMedCentralPubMedGoogle Scholar
  137. Gawronski, T. H., Statt, R. A., Zaki, H. A., Harris, R. S., and Folke, L. E. A., 1975, Effects of dietary sucrose levels on extracellular polysaccharide metabolism of human dental plaque, J. Dent. Res. 54: 881–890.PubMedGoogle Scholar
  138. Geddes, D. A. M., 1972, The production of L(+) and D(-) lactic acid and volatile acids by human dental plaque and the effect of plaque buffering and acidic strength on pH, Arch. Oral Biol. 17: 537–545.PubMedGoogle Scholar
  139. Geddes, D. A. M., 1975, Acids produced by human dental plaque metabolism in situ, Caries Res. 9: 98–109.PubMedGoogle Scholar
  140. Geddes, D. A. M., and Jenkins, G. N., 1974, Intrinsic and extrinsic factors influencing the flora of the mouth, in: The Normal Microbial Flora of Man (F. A. Skinner and J. G. Carr, eds.), pp. 85–100, Academic Press, London.Google Scholar
  141. Genco, R. J. (ed.), Immunological Aspects of Dental Caries (Symposium), J. Dent. Res. Spec. Iss. C 55: c1–c230.Google Scholar
  142. Gibbons, R. J., 1964a, Bacteriology of caries, J. Dent. Res. 43: 1021–1028.PubMedGoogle Scholar
  143. Gibbons, R. J., 1964b, Metabolism of intracellular polysaccharide by Streptococcus mitis and its relation to inducible enzyme formation, J. Bacteriol. 87: 1512–1520.PubMedCentralPubMedGoogle Scholar
  144. Gibbons, R. J., and Banghart, S. B., 1967, Synthesis of extracellular dextran by cariogenic bacteria and its presence in human dental plaque, Arch. Oral Biol. 12: 11–24.PubMedGoogle Scholar
  145. Gibbons, R. J., and Kapsimalis, B., 1963, Synthesis of intracellular iodophilic polysaccharide by Streptococcus mitis, Arch. Oral Biol. 8: 319–329.PubMedGoogle Scholar
  146. Gibbons, R. J., and Nyggaard, M., 1970, Interbacterial aggregation of plaque bacteria, Arch. Oral Biol. 15: 1397–1400.PubMedGoogle Scholar
  147. Gibbons, R. J., and Qureshi, J. V., 1976, Interactions of Streptococcus mutans and other oral bacteria with blood group reacting substances, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl 1: 163–184.Google Scholar
  148. Gibbons, R. J., and Socransky, S. S., 1962, Intracellular polysaccharide stored by organisms in dental plaques. Its relation to dental caries and microbiological ecology of the oral cavity, Arch. Oral Biol 7: 73–80.PubMedGoogle Scholar
  149. Gibbons, R. J., and van Houte, J., 1973, On the formation of dental plaques, J. Periodontol 44: 347–360.PubMedGoogle Scholar
  150. Gibbons, R. J., and van Houte, J., 1975a, Bacterial adherence in oral microbial ecology, Annu. Rev. Microbiol. 29: 19–44.PubMedGoogle Scholar
  151. Gibbons, R. J., and van Houte, J., 1975b, Dental caries, Annu. Rev. Med. 26: 121–136.PubMedGoogle Scholar
  152. Gibbons, R. J., Socransky, S. S., Sawyer, S., Kapsimalis, B., and MacDonald, J. B., 1963, The microbiota of the gingival crevice area of man. II. The predominant cultivable organisms, Arch. Oral Biol. 8: 281–289.PubMedGoogle Scholar
  153. Gibbons, R. J., Socransky, S. S., De Aravjo, W. C., and van Houte, J., 1964, Studies on the predominant cultivable flora of dental plaque, Arch. Oral Biol. 9: 365–370.PubMedGoogle Scholar
  154. Gibbons, R. J., De Paola, R. P., Spinell, D. M., and Skobe, Z., 1974, Interdental localization of Streptococcus mutans as related to dental caries experience, Infect. Immun. 9: 481–488.PubMedCentralPubMedGoogle Scholar
  155. Gilmour, M. N., and Nisengard, R. J., 1974, Interactions between serum titres to filamentous bacteria and their relationship to human periodontal disease, Arch. Oral Biol. 19: 959–968.PubMedGoogle Scholar
  156. Gilmour, M. N., and Poole, A. E., 1967, The fermentation capacities of dental plaque, Caries Res. 1: 247–267.Google Scholar
  157. Gilmour, M. N., Green, G. C., Zahn, L. M., Sparmann, C. D., and Pearlman, J., 1976, The C1-C4 monocarboxylic and lactic acids in dental plaques before and after exposure to sucrose in vivo, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl 2: 539–556.Google Scholar
  158. Gjermo, P., and Eriksen, H. M., 1974, Unchanged plaque inhibiting effect of Chlorhexidine in human subjects after two years of continuous use, Arch. Oral Biol 19: 317–319.PubMedGoogle Scholar
  159. Glantz, P. O., 1969, On wettability and adhesiveness, Odontol Revy 20: 1–132.Google Scholar
  160. Gordon, D. F., Jr., and Gibbons, R. J., 1966, Studies on the predominant cultivable microorganisms from the human tongue, Arch. Oral Biol. 11: 627–632.PubMedGoogle Scholar
  161. Gordon, D. F., Jr., and Jong, B. B., 1968, Indigenous flora from human saliva, Appl. Microbiol. 16: 428–429.PubMedCentralPubMedGoogle Scholar
  162. Gordon, H. A., and Pesti, L., 1971, The gnotobiotic animal as a tool in the study of host microbial relationships, Bacteriol Rev. 35: 390–429.PubMedCentralPubMedGoogle Scholar
  163. Guggenheim, B., 1970, Extracellular polysaccharides and microbial plaque, Int. Dent. J. 20: 657–678.PubMedGoogle Scholar
  164. Guggenheim, B., 1976, Ultrastructure and some biochemical aspects of dental plaque: A review, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol Abstr. Spec. Suppl. 1: 89–108.Google Scholar
  165. Guggenheim, B., and Burckhardt, J. J., 1974, Isolation and properties of a dextranase from Streptococcus mutans OMZ 176, Helv. Odontol. Acta 18: 101–113.PubMedGoogle Scholar
  166. Guggenheim, B., Muhlerman, H. R., Regolati, B., and Schmid, R., 1970, The effect of immunization against streptococci on glucosyl transferases on plaque formation and dental caries in rats, in: Dental Plaque (W. D. McHugh, ed.), pp. 287–296, E. and S. Livingstone, London.Google Scholar
  167. Hadi, A. W., and Russell, C., 1968, Quantitative estimations of fusiforms in saliva from normal individuals and cases of acute ulcerative gingivitis, Arch. Oral Biol. 13: 1371–1376.PubMedGoogle Scholar
  168. Hamilton, I.R., 1968, Synthesis and degradation of intracellular polyglucose in Streptococcus salivarius, Can. J. Microbiol 14: 67–77.Google Scholar
  169. Hamilton, I. R., 1969, Growth characteristics of adapted and ultraviolet induced mutants of Streptococcus salivarius resistant to sodium fluoride, Can. J. Microbiol. 15: 287–295.PubMedGoogle Scholar
  170. Hamilton, I. R., 1976, Intracellular polysaccharide synthesis by cariogenic microorganisms, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 3: 683–701.Google Scholar
  171. Hamilton, I. R., 1977, Effects of fluoride on enzymatic regulation of bacterial carbohydrate metabolism, Caries Res. 11: 262–291.PubMedGoogle Scholar
  172. Hamilton, I. R., and Ellwood, D. C., 1977, PEP phosphotransferase activity in Actinomyces viscosus Evidence for fluoride resistance, J. Dent. Res. 56: 310.Google Scholar
  173. Hamilton, I. R., and Ellwood, D. C., 1978a, Effects of fluoride on carbohydrate metabolism by washed cells of Streptococcus mutans grown at various pH values in a chemostat, Infect. Immun. 19: 434–442.PubMedCentralPubMedGoogle Scholar
  174. Hamilton, I. R., and Ellwood, D. C., 1978b, Fluoride sensitivity and phosphotransferase (PT) activity in cells of Streptococcus mutans Ingbritt grown in the chemostat, J. Dent. Res. 57: 800.Google Scholar
  175. Hammond, B. F., 1971, Intracellular polysaccharide production by human oral strains of Lactobacillus casei, Arch. Oral Biol 16: 323–338.PubMedGoogle Scholar
  176. Hammond, B. F., and Darkes, M., 1976, Plasmids of Lactobacillus casei, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 3: 737–747.Google Scholar
  177. Handleman, S. L., and Mills, J. R., 1965, Enumeration of selected salivary bacterial groups, J. Dent. Res. 44: 1343–1353.Google Scholar
  178. Hardie, J. M., and Bowden, G. H., 1974a, The normal microbial flora of the mouth, in: The Normal Microbial Flora of Man (G. Sykes and F. A. Skinner, eds.), pp. 47–83, Academic Press, London.Google Scholar
  179. Hardie, J. M., and Bowden, G. H., 1974b, Cell wall and serological studies on Streptococcus mutans, Caries Res. 8: 301–316.PubMedGoogle Scholar
  180. Hardie, J. M., and Bowden, G. H., 1976a, The microbial flora of dental plaque: Bacterial succession and isolation considerations, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol Abstr. Spec. Suppl. 1: 63–87.Google Scholar
  181. Hardie, J. M., and Bowden, G. H., 1976b, Physiological classification of oral viridans streptococci, J. Dent. Res. Spec. Iss. A 55: 166–176.Google Scholar
  182. Hardie, J. M., and Marsh, P. J., 1979, Streptococci and the human oral flora, in: Streptococci (F. Skinner and L. Quesnel, eds.), Academic Press, London (in press).Google Scholar
  183. Hardie, J. M., Thomson, P. L., South, R. J., Marsh, P. D., Bowden, G. H., McKee, A. S., Fillery, E. D., and Slack, G. L., 1977, A longitudinal epidemiological study on dental plaque and the development of dental caries, J. Dent. Res. Spec. Iss. C 56: 90–98.Google Scholar
  184. Hay, D. I., and Hartles, R. L., 1965, The effect of saliva on the metabolism of the oral flora, Arch. Oral Biol 10: 485–498.PubMedGoogle Scholar
  185. Hayes, M. L., and Hyatt, A. L., 1974, The decarboxylation of amino acids by bacteria derived from human dental plaque, Arch Oral Biol. 19: 361–369.PubMedGoogle Scholar
  186. Herremans, J. F., 1974, Immunoglobin A, in: The Antigens (M. Sela, ed.), Vol. II, pp. 365–522, Academic Press, New York.Google Scholar
  187. Hofstad, T., 1974, Antibodies reacting with lipopolysaccharides from Bacteroides melanino-genicus, Bacteroides fragilis, and Fusobacterium nucleatum in serum from normal human subjects, J. Infect. Dis. 129: 349–352.PubMedGoogle Scholar
  188. Hofstad, T., and Skaug, N., 1978, A polysaccharide antigen from the Gram positive organism Eubacterium saburreum containing dideoxyhexose as the immunodominant sugar, J. Gen. Microbiol 106: 227–232.PubMedGoogle Scholar
  189. Holbrook, I. B., and Molan, P. C., 1975, The identification of a peptide in human parotid saliva particularly active in enhancing the glycolytic activity of the salivary microorganisms, Biochem. J. 149: 489–492.PubMedCentralPubMedGoogle Scholar
  190. Holbrook, W. P., and Duerden, B. I., 1974, A comparison of some characteristics of reference strains of Bacteroides oralis with Bacteroides melaninogenicus, Arch. Oral Biol 19: 1231–1235.PubMedGoogle Scholar
  191. Holdeman, L. V., and Moore, W. E. C., 1977, Anaerobe Laboratory Manual, Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.Google Scholar
  192. Holmberg, K., 1976, Isolation and identification of Gram-positive rods in human dental plaque, Arch. Oral Biol 21: 153–160.PubMedGoogle Scholar
  193. Holmberg, K., and Hallander, H. O., 1973, Production of bactericidal concentrations of hydrogen peroxide by Streptococcus sanguis. Arch. Oral Biol 18: 423–434.PubMedGoogle Scholar
  194. Holmberg, K., and Nord, C. E., 1975, Numerical taxonomy and laboratory identification of Actinomyces and Arachnia and some related bacteria, J. Gen. Microbiol. 91: 1744–1751.Google Scholar
  195. Holten, E., 1974, Glucokinase and glucose-6-phosphate dehydrogenase in Neisseria, Acta Pathol Microbiol. Scand. Sect. B 82: 201–206.Google Scholar
  196. Hoogendoorn, H., 1976, The inhibitory action of the lactoperioxidase system on Streptococcus mutans and other microorganisms, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol Abstr. Spec. Suppl. 2: 353–357.Google Scholar
  197. Hoshino, E., Yamada, T., and Araya, S., 1976, Lactate degradation by a strain of Neisseria isolated from human dental plaque, Arch. Oral Biol. 21: 677–683.PubMedGoogle Scholar
  198. Hotz, P., Guggenheim, B., and Schmid, R., 1972, Carbohydrates in pooled dental plaque, Caries Res. 6: 103–121.PubMedGoogle Scholar
  199. Howell, A., and Jordan, H. V., 1963, A filamentous microorganism isolated from periodontal plaque in hamsters. II. Physiological and biochemical characteristics, Sabouraudia 3: 93–105.PubMedGoogle Scholar
  200. Howell, A., Jr., Rizzo, A., and Paul, F., 1965, Cultivable bacteria in developing and mature human dental calculus, Arch. Oral Biol. 10: 307–313.PubMedGoogle Scholar
  201. Hughes, R. C., 1975, The complex carbohydrates of mammalian cell surfaces and their biological roles, Essays Biochem 11: 1–38.PubMedGoogle Scholar
  202. Huis, int’Veld, J. H. J., van Palenstein Helderman, W. H., and Sampaio Camargo, P., 1978, A sequential study of the incidence and prevalence of Streptococcus mutans serotypes on approximal surfaces and in fissures, J. Dent. Res. Spec. Iss. A 57: 142, Abstract No. 272.Google Scholar
  203. Hunter, J. R., Baird, J. K., and Ellwood, D. C., 1973, Effect of fluoride on the transport of sugars into chemostat grown Streptococcus mutans, J. Dent. Res. 52: 954.Google Scholar
  204. Hurtado, R. C., Rola-Pleszczynski, M., Merida, M. A., Hensen, S. A., Vincent, M. M., Thong, Y. H., and Bellanti, J. A., 1975, The immunologic role of tonsillar tissues in local cell mediated immune responses, J. Pediatr. 86: 405–408.PubMedGoogle Scholar
  205. Hutchinson, G. E., 1965, The niche: An abstractly inhabited hyper-volume, in: The Ecological Theater and the Evolutionary Play, Chapter 2, Yale University Press, New Haven, Connecticut.Google Scholar
  206. Huxley, H. G., 1972, The recovery of microorganisms from the fissures of rat molar teeth, Arch. Oral Biol 17: 1481–1485.PubMedGoogle Scholar
  207. Huxley, H. G., 1976, The relationship between plaque bacteria and dental caries at specifictooth sites in rats, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol Abstr. Spec. Suppl 3: 773–784.Google Scholar
  208. Ikeda, T., Sandham, H. J., and Bradley, E. L., 1973, Changes in Streptococcus mutans and lactobacilli in relation to the initiation of dental caries in Negro children, Arch. Oral Biol 18: 555–566.PubMedGoogle Scholar
  209. Imfeld, T., 1977, Evaluation of the cariogenicity of confectionary by intra-oral wire-telemetry, Helv. Odontol Acta 21: 1–28.Google Scholar
  210. Ivanyi, L., and Lehner, T., 1970, Stimulation of lymphocyte transformation by bacterial antigens in patients with periodontal disease, Arch. Oral Biol 15: 1089–1096.PubMedGoogle Scholar
  211. Iwani, Y., Higuchi, M., Yamada, T., and Araya, S., 1972, Degradation of lactate by Bacterionema matruchotii under aerobic and anaerobic conditions, J. Dent Res. 51: 1683.Google Scholar
  212. Jantzen, E., Bryn, K., Bergan, T., and Boure, K., 1975, Gas chromatography of bacterial whole cell methanolysates, Acta Pathol. Microbiol Scand 83: 569–580.Google Scholar
  213. Jenkins, G. N., Edgar, W. M., and Ferguson, D. B., 1969, The distribution and metabolic effects of human plaque fluorine, Arch. Oral Biol 14: 105–119.PubMedGoogle Scholar
  214. Johnson, D. A., Behling, U. H., Lai, C. H., Iistgarten, M., Socransky, S., and Nowotny, A., 1978, Role of bacterial products in periodontitis: Immune response in gnotobiotic rats monoinfected with Eikenella corrodens, Infect. Immun. 19: 905–913.Google Scholar
  215. Johnson, M. C., Bozzola, J. J. and Shechmeister, I. L., 1974, Morphological study of Streptococcus mutans and two extracellular polysaccharide mutants, J. Bacteriol 118: 304–311.PubMedCentralPubMedGoogle Scholar
  216. Johnson, R., and Sneath, P. H. A., 1973, Taxonomy of Bordetella and related organisms of the families Achromobacteriaceae, Brucellaceae and Neisseriaceae, Int. J. Syst. Bacteriol 23: 381–404.Google Scholar
  217. Jordan, H. V., 1965, Bacteriological aspects of experimental dental caries, Ann. N.Y. Acad. Sci. 131: 905–913.PubMedGoogle Scholar
  218. Jordan, H. V., and Keyes, P. H., 1964, Aerobic, gram positive, filamentous bacteria as etiologic agents of experimental periodontal disease in hamsters, Arch. Oral Biol 9: 401–414.PubMedGoogle Scholar
  219. Jordan, H. V., and Sumney, D. L., 1973, Root surface caries: Review of the literature and significance of the problem, J. Periodontol. 44: 158–163.PubMedGoogle Scholar
  220. Jordan, H. V., Englander, H. R., and lim, S., 1969, Potentially cariogenic streptococci in selected population groups in the western hemisphere, J. Am. Dent. Assoc. 78: 1331–1335.PubMedGoogle Scholar
  221. Jordan, H. V., Keyes, P. H., and Beilack, S., 1972, Periodontal lesions in hamsters and gnotobiotic rats infected with Actinomyces of human orgin, J. Periodontol. Res. 7: 21–28.Google Scholar
  222. Kanapka, J. A., and Hamilton, I.R., 1971, Fluoride inhibition of enolase activity in vivo and its relationship to the inhibition of glucose-6-P formation in Streptococcus salivarius, Arch. Biochem. Biophys. 146: 167–174.PubMedGoogle Scholar
  223. Kanapka, J. A., Khandelwal, R. L., and Hamilton, I. R., 1971, Fluoride inhibition of glucose-6-P formation in Streptococcus salivarius: Relation to glycogen synthesis and degradation, Arch. Biochem. Biophys. 2: 596–602.Google Scholar
  224. Kaslick, R. S., Tuckman, M. A., and Chasens, A. I., 1973, Effect of topical vancomycin on plaque and chronic gingival inflammation, J. Periodontol. 44: 366–368.PubMedGoogle Scholar
  225. Kaufman, E. J., Mashimo, P.A., Hausmann, E., Hanks, C.T., and Ellison, S.A., 1972, Fusobacterial infection: Enhancement by cell free extracts of Bacteroides melanino-genicus possessing collagenolytic activity, Arch. Oral Biol. 17: 577–580.PubMedGoogle Scholar
  226. Kelstrup, J., and Gibbons, R. J., 1969, Bacteriocins from human and rodent streptococci, Arch. Oral Biol 14: 251–258.PubMedGoogle Scholar
  227. Kelstrup, J., Richmond, S., West, C., and Gibbons, R. J., 1971, Fingerprinting human oral streptococci by bacteriocin production and sensitivity, Arch. Oral Biol. 15: 1109–1116.Google Scholar
  228. Kenney, E. B., and Ash, M. M., Jr., 1969, Oxidation-reduction potential of developing plaque, periodontal pockets and gingival sulci, J. Periodontol 40: 630–633.PubMedGoogle Scholar
  229. Keyes, P. H., 1968, Research in dental caries, J. Am. Dent. Assoc. 76: 1357–1373.PubMedGoogle Scholar
  230. Khandelwal, R. L., Spearman, T. N., and Hamilton, I. R., 1972, Isolation and characterization of glycogen from Streptococcus salivarius, Can. J. Biochem 50: 140–142.Google Scholar
  231. Killian, M., 1976, A taxonomic study of the genus Haemophilus with the proposal of a new species, J. Gen. Microbiol. 93: 9–62.Google Scholar
  232. Killian, W. F., and Ennever, J., 1975, Effect of magnesium on Bacterionema matruchotii calcification, J. Dent. Res. 54: 185.PubMedGoogle Scholar
  233. Kleinberg, I., 1961, Studies on dental plaque. I. The effect of different concentrations of glucose on the pH of dental plaque in vivo, J. Dent. Res. 40: 1087–1111.Google Scholar
  234. Kleinberg, I., 1967a, Effect of varying sediment and glucose concentrations on the pH and production in human salivary sediment mixtures, Arch. Oral Biol. 12: 1457–1473.PubMedGoogle Scholar
  235. Kleinberg, L, 1967b, Effect of urea concentration on human plaque pH levels in situ, Arch. Oral Biol. 12: 1475–1484.PubMedGoogle Scholar
  236. Kleinberg, I., 1970, Regulation of the acid-base metabolism of the dento-gingival plaque and its relation to dental caries and periodontal disease, Int. Dent. J. 29: 451–465.Google Scholar
  237. Kleinberg, I., and Jenkins, G. N., 1964, The pH of dental plaques in the different areas of the mouth before and after meals and their relationship to the pH and rate of flow of resting saliva, Arch. Oral Biol. 9: 493–516.PubMedGoogle Scholar
  238. Kleinberg, I., Craw, D., and Komiyama, K., 1973, Effect of salivary supernatant on the glycolytic activity of the bacteria in salivary sediment, Arch. Oral Biol. 18: 787–798.PubMedGoogle Scholar
  239. Kleinberg, I., Kanapka, J. A., and Craw, D., 1976, Effect of saliva and salivary factors on the metabolism of the mixed oral flora, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 2: 433–464.Google Scholar
  240. Kligler, I. J., 1915, A biochemical study and differentiation of oral bacteria with special reference to dental caries, J. Allied Dent. Soc. 10: 445–458.Google Scholar
  241. Koch, G. (ed.), 1977, International Working Seminar on Surface and Colloid Phenomena in the Oral Cavity, Swed. Dent. J. 1: 205–272.Google Scholar
  242. Kocur, M., Bergen, T., and Mortensen, N., 1971, DNA base composition of Gram-positive cocci, J. Gen. Microbiol. 69: 167.PubMedGoogle Scholar
  243. Kohler, B., and Bratthall, D., 1976, Intrafamilial levels of Streptococcus mutans; a comparison between mother and child, J. Dent. Res. Spec. Iss. A 56: Abstract No. 457.Google Scholar
  244. Krasse, B., 1968, Effects of dietaries on oral microbiology, in: Art and Science of Dental Caries Research (R. S. Harris, ed.), pp. 111–124, Academic Press, New York.Google Scholar
  245. Krasse, B., and Carlsson, J., 1970, Various types of streptococci and experimental caries in hamsters, Arch. Oral Biol. 15: 25–32.PubMedGoogle Scholar
  246. Krasse, B., and Jordan, H. V., 1977, Effect of orally applied vaccines on oral colonization by Streptococcus mutans in rodents, Arch. Oral Biol. 22: 479–484.PubMedGoogle Scholar
  247. Krasse, B., Edwardson, S., Svenson, I., and Trell, L., 1967, Implantation of caries-inducing streptococci in the human oral cavity, Arch. Oral Biol. 12: 231–236.PubMedGoogle Scholar
  248. Krasse, B., Jordan, H. V., and Edwardson, S., 1968, The occurrence of certain “caries-inducing” streptococci in human dental plaque material with special reference to the frequency and activity of caries, Arch. Oral Biol. 13: 911–918.PubMedGoogle Scholar
  249. Kristoffersen, T., and Hofstad, T., 1970, Antibodies in humans to an isolated antigen from oral fusobacteria, J. Periodontal Res. 5: 110–115.PubMedGoogle Scholar
  250. Lang, N. P., and Smith, F. N., 1977, Lymphocyte blastogenesis to plaque antigens in human periodontal disease. I. Populations of varying severity of disease, J. Periodontal Res. 12: 298–309.PubMedGoogle Scholar
  251. Larje, O., and Frostell, G., 1968, Acid production activities of caries-inducing streptococci, Acta Pathol. Microbiol. Scand 72: 463.PubMedGoogle Scholar
  252. Leach, S. A., and Hayes, M. L., 1968, A possible correlation between the specific bacterial enzyme activities, dental plaque formation and cariogenicity, Caries Res. 2: 38–46.PubMedGoogle Scholar
  253. Leach, S. A., and Melville, T., 1970, Investigation of some human oral organisms capable of releasing the carbohydrate from salivary glycoproteins, Arch. Oral Biol. 15: 87–88.PubMedGoogle Scholar
  254. Leach, S. A., Appleton, J., Dada, O. A., and Hayes, M. L., 1972, Some factors affecting the metabolism of fructan by human oral flora, Arch. Oral Biol. 17: 137–146.PubMedGoogle Scholar
  255. Lehner, T. (ed.), 1977a, The Borderland between Caries and Periodontal Disease, Academic Press, London.Google Scholar
  256. Lehner, T., 1977b, Immunological mechanism in caries and gingivitis, in: The Borderland between Caries and Periodontal Disease (T. Lehner, ed.), pp. 129–144, Academic Press, London.Google Scholar
  257. Lehner, T., Challacombe, S. J., and Caldwell, J., 1975a, An experimental model for immunological studies of dental caries in the rhesus monkey, Arch. Oral Biol. 20: 299–304.PubMedGoogle Scholar
  258. Lehner, T., Challacombe, S. J., and Caldwell, J., 1975b, An immunological investigation into the prevention of caries in deciduous teeth of rhesus monkeys, Arch. Oral Biol. 20: 305–310.PubMedGoogle Scholar
  259. Lehner, T., Challacombe, S. J., Wilton, J. M. A., and Caldwell, J., 1976a, Cellular and humoral immune responses in vaccination against dental caries in monkeys, Nature (London) 264: 69–71.Google Scholar
  260. Lehner, T., Challacombe, S. J., Wilton, J. M. A. and Ivanyi, L. 1976b, Immunoprotentiation by dental microbial plaque and its relationship to oral diseases in man, Arch. Oral Biol. 21: 749–754.PubMedGoogle Scholar
  261. Levine, M. J., Herzberg, M. C., Levine, M. S., Ellison, S. A., Stinson, M. W., Li, H. C., and van Dyke, T., 1978, Specificity of salivary-bacterial interactions: Role of terminal sialic acid residues in the interaction of salivary glycoproteins with Streptococcus sanguis and Streptococcus mutans, Infect. Immun. 19: 107–116.PubMedCentralPubMedGoogle Scholar
  262. Liljemark, W. F., and Gibbons, R. J., 1971, Ability of Veillonella and Neisseria species to attach to oral surfaces and their proportions present indigenously, Infect. Immun. 4: 264–268.PubMedCentralPubMedGoogle Scholar
  263. Liljemark, W. F., and Gibbons, R. J., 1973, Suppression of Candida albicans by human oral streptococci in gnotobiotic mice, Infect. Immun. 8: 846–849.PubMedCentralPubMedGoogle Scholar
  264. Listgarten, M. A., 1976, Structure of the microbial flora associated with periodontal disease and health in man. A light and electron microscope study, J. Periodontol. 47: 1–18.PubMedGoogle Scholar
  265. Listgarten, M. A., and Lewis, D. W., 1967, The distribution of spirochetes in the lesion of acute necrotising ulcerative gingivitis: An electron microscopic and statistical survey, J. Periodontol. 38: 379–386.Google Scholar
  266. Listgarten, M. A., Mayo, H., and Amsterdam, M., 1973, infrastructure of the attachment device between coccal and filamentous microorganisms in “corn cob” formations of dental plaque, Arch. Oral Biol. 18: 651–656.PubMedGoogle Scholar
  267. Listgarten, M. A., Mayo, H. E., and Tremblay, R., 1975, Development of dental plaque on epoxy resin crowns in man, J. Periodontol. 46: 10–26.PubMedGoogle Scholar
  268. Littleton, N. W., and White, C. F., 1964, Dental findings from a preliminary study of children receiving extended antibiotic therapy, J. Am. Dent. Assoc. 68: 520–526.PubMedGoogle Scholar
  269. Littleton, N. W., McCabe, R. M, and Carter, C. H., 1967, Studies of oral health in persons nourished by stomach tube II. Acidogenic properties and selected bacterial components of plaque material, Arch. Oral Biol. 12: 601–609.PubMedGoogle Scholar
  270. Llory, H., Guillo, B., and Frank, R. M., 1971, A cariogenic Actinomyces viscosus. A bacteriological and gnotobiotic study, Helv. Odontol. Acta 15: 134–138.PubMedGoogle Scholar
  271. Löe, H., and Schiøtt, C. R., 1970, The effect of mouthrinses and topical application of Chlorhexidine on the development of dental plaque and gingivitis in man, J. Periodontol. 3: 79–83.Google Scholar
  272. Löe, H., and Silness, J., 1963, Periodontal disease in pregnancy. I. Prevalence and severity, Acta Odontol. Scand 21: 533–551.PubMedGoogle Scholar
  273. Löe, H., Theilade, E., and Jensen, S. B., 1965, Experimental gingivitis in man, J. Periodontol. 36: 177–187.PubMedGoogle Scholar
  274. Löe, H., Karring, T., and Theilade, E., 1973, An “in vivo” method for the study of the microbiology of occlusal fissures, Caries Res. 7: 120–129.PubMedGoogle Scholar
  275. Löe, H., Schiøtt, C. R., Glavind, L., and Karring, T., 1976, Two years oral use of Chlorhexidine in man I. General design and clinical effects, J. Periodontal Res. 11: 135–144.PubMedGoogle Scholar
  276. Loesche, W. J., 1968, Importance of nutrition in gingival crevice microbial ecology, Periodontics 6: 245–249.PubMedGoogle Scholar
  277. Loesche, W. J., 1975, Bacterial succession in dental plaque: Role in dental disease, in: Microbiology-1975 (D. E. Schlessinger, ed.), pp. 132–136, American Society for Microbiology, Washington, D.C.Google Scholar
  278. Loesche, W. J., 1976a, Chemotherapy of dental plaque infections, Oral Sci. Rev. 9: 65–107.PubMedGoogle Scholar
  279. Loesche, W. J., 1976b, Periodontal disease and the treponemes, in: The Biology of Parasitic Spirochetes (R. C. Johnson, ed.), pp. 261–275, Academic Press, New York.Google Scholar
  280. Loesche, W. J., 1977, Topical fluorides as an antibacterial agent, J. Prev. Dent. 4: 21–26.PubMedGoogle Scholar
  281. Loesche, W. J., and Gibbons, R. J., 1968, Amino acid fermentation by Fusobacterium nucleatum, Arch. Oral Biol. 13: 191–201.PubMedGoogle Scholar
  282. Loesche, W. J., and Henry, C. A., 1967, Intracellular microbial polysaccharide production and dental caries in a Guatemalan Indian village, Arch. Oral Biol. 12: 189–194.PubMedGoogle Scholar
  283. Loesche, W. J., and Syed, S. A., 1973, The predominant cultivable flora of carious plaque and carious dentine, Caries Res. 7: 201–216.PubMedGoogle Scholar
  284. Loesche, W. J., and Syed, S. A., 1978, Bacteriology of human experimental gingivitis: Effect of plaque and gingivitis score, Infect. Immun. 21: 830–839.PubMedCentralPubMedGoogle Scholar
  285. Loesche, W. J., Hockett, R. N., and Syed, S. A., 1972, The predominant cultivable flora of tooth surface plaque removed from institutionalized subjects, Arch. Oral Biol. 17: 1311–1325.PubMedGoogle Scholar
  286. Loesche, W. J., Rowan, J., Straffon, L. H., and Loos, P. J., 1975a, Association of Streptococcus mutans with human dental decay, Infect. Immun. 11: 1252–1260.PubMedCentralPubMedGoogle Scholar
  287. Loesche, W. J., Syed, S. A., Murray, R. J., and Mellberg, J. R., 1975b, Effect of topical acidulated phosphate fluoride on percentage of Streptococcus mutans and Streptococcus sanguis in plaque, Caries Res. 9: 139–155.PubMedGoogle Scholar
  288. Loesche, W. J., Bradbury, D. R., and Woolfolk, M. P., 1977, Reduction of dental decay in rampant caries individuals following short-term kanamycin treatment, J. Dent. Res. 56: 254–265.PubMedGoogle Scholar
  289. Loesche, W. J., Straffon, L. H., and Walker, M. C., 1978, Interim report on longitudinal studies of Streptococcus mutans colinization of human caries free fissures, J. Dent. Res. Spec. Iss. A 57: Abstract No. 790.Google Scholar
  290. Long, S. S., and Svenson, R. M., 1976, Determinants of the developing oral flora in normal newborns, Appl. Environ. Microbiol. 32: 494–497.PubMedCentralPubMedGoogle Scholar
  291. MacDonald, J. B., and Gibbons, R. J., 1962, The relationship of indigenous bacteria to periodontal disease, J. Dent. Res. 41: 320–326.PubMedGoogle Scholar
  292. MacDonald, J. B., Sutton, R. M., and Knoll, M. L., 1954, The production of fusospirochetal infections in guinea pigs with recombined pure cultures, J. Infect. Dis. 92: 275–284.Google Scholar
  293. MacDonald, J. B., Gibbons, R. J., and Socransky, S. S., 1960, Bacterial mechanisms in periodontal disease, Ann. N. Y. Acad. Sci. 85: 467–478.PubMedGoogle Scholar
  294. MacDonald, J. B., Socransky, S. S., and Gibbons, R. J., 1963, Aspects of the pathogenesis of mixed anaerobic infections of mucous membranes, Bull. Tokyo Dent. Coll. 18: 217–229.Google Scholar
  295. Maeder, C. L., Karge, H. J., Angel, I., and Newman, M. G., 1978, Comparison of oral gliding bacteria isolated from various periodontal conditions with the order Cytophagales, J. Dent. Res. Spec. Iss. A. 57: Abstract No. 1105.Google Scholar
  296. Makinen, K. K., and Scheinin, A., 1972, The effect of various sugars and sugar mixtures on the activity and formation of enzymes of dental plaque and oral fluid, Acta Odontol. Scand 30: 259–275.PubMedGoogle Scholar
  297. Mandel, I. D., 1976, Salivary products in plaque and saliva in relation to caries, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abst. Spec. Suppl. 3: 859–866.Google Scholar
  298. Mandel, I. D., 1978, Salivary factors in caries prediction, in: Methods of Caries Prediction (Workshop Proceedings) (B. G. Bibby, and R. J. Shern, eds.), Microbiol. Abstr. Spec. Suppl. pp. 147–158, Information Retrieval, Inc., Washington, D.C.Google Scholar
  299. Manly, R. S., and Richardson, D. T., 1968, Metabolism of levan by oral samples, J. Dent. Res. 47: 1080–1086.PubMedGoogle Scholar
  300. Marsh, P. D., Bowden, G. H., and Hardie, J. M., 1978, Numerical fluctuations of Streptococcus mutans in approximal plaque, J. Dent. Res. (British Division IADR) 57: 88.Google Scholar
  301. Marshall, K. C., 1976, Interfaces in Microbial Ecology, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  302. Marthaler, T. M., and Germann, M., 1970, Radiographic and visual appearance of small smooth surface caries lesions studied on extracted teeth, Caries Res. 4: 224–242.PubMedGoogle Scholar
  303. Mattingly, S. J., Dipersio, T. R., Higgins, M. L., and Shockman, G. D., 1976, Unbalanced growth and macromolecules synthesis in Streptococcus mutans FA-I, Infect. Immun. 13: 941–948.PubMedCentralPubMedGoogle Scholar
  304. Mattingly, S. J., Daneo-Moore, L., and Shockman, G. D., 1977, Factors regulating cell wall thickening and intracellular iodophilic polysaccharide storage in Streptocosccus mutans, Infect. Immun. 16: 967–973.PubMedCentralPubMedGoogle Scholar
  305. McCabe, R. M, and Donkersloot, J. A., 1977, Adherence of Veillonella species mediated by extracellular glucosyl-transferase from Streptococcus salivarius, Infect. Immun. 18: 726–734.PubMedCentralPubMedGoogle Scholar
  306. McCarthy, C., Snyder, M. L., and Parker, P. B., 1965, The indigenous oral flora of man. I. The newborn to the 1 year old infant, Arch. Oral Biol. 10: 61–70.PubMedGoogle Scholar
  307. McGhee, J. R., Michalek, S. M., Webb, J., Nauk, J. M., Rahman, A. F. R., and Ledher, D. W., 1975, Effective immunity to dental caries: Protection of gnotobiotic rats by local immunization with Streptococcus mutans, J. Immunol. 114: 300–305.PubMedGoogle Scholar
  308. McGhee, J. R., Mestecky, J., and Babb, J. L. (eds), 1978, Secretory Immunity and Infection, Plenum Press, New York.Google Scholar
  309. McHugh, W. D. (ed.), 1970, Dental Plaque, E. and S. Livingstone, Edinburgh.Google Scholar
  310. McKee, A., and Shah, H. N., 1979, Identification of anaerobic Gram-negative rods from dental plaque, J. Dent. Res. (British Division IADR) 58: Abstract No. 165 (in press).Google Scholar
  311. Melisch, D. F., Loesche, W. J., and Syed, S. A., 1978, Intrafamilial comparisons of bac-teriocin codes of Streptococcus mutans, J. Dent. Res. Spec. Iss. A 57: Abstract No. 273.Google Scholar
  312. Mestecky, J., 1976, Introduction to the structural and cellular aspects of the secretory IgA, system, J. Dent. Res. Spec. Iss. C 55: 98–101.Google Scholar
  313. Michalek, S. M., McGhee, J. R., Mestecky, J., Arnold, R. R., and Bozzo, L., 1976a, Ingestion of Streptococcus mutans induces secretory immunoglobulin A and caries immunity, Science, 192: 1238–1240.PubMedGoogle Scholar
  314. Michalek, S. M., McGhee, J. R., Nauia, J. M., and Narkates, A. J., 1976b, Effective immunity to dental caries: Protection of malnourished rats by local injection of Streptococcus mutans, Infect. Immun. 13: 782–789.PubMedCentralPubMedGoogle Scholar
  315. Michalek, S. M., McGhee, J. R., and Babb, J. L., 1978, Effective immunity to dental caries: Dose dependent studies on secretory immunity by oral administration of Streptococcus mutans to rats, Infect. Immun. 19: 217–224.PubMedCentralPubMedGoogle Scholar
  316. Michaud, R. N., and Delwiche, E. A., 1970, Multiple impairment of glycolysis of Veillonella alcalescens, J. Bacteriol. 101: 138–140.PubMedCentralPubMedGoogle Scholar
  317. Michaud, R. N., Carrow, J. A., and Delwiche, E. A., 1970, Non-oxidative pentose phosphate pathway in Veillonella alcalescens, J. Bacteriol. 101: 141–144.PubMedCentralPubMedGoogle Scholar
  318. Mikx, F. H. M., and Svanberg, M., 1978, Considerations about microbial interactions in relation to modification of the microflora of dental plaque, in: Methods of Caries Prediction (B. G. Bibby and R. J. Shern, eds.), Microbiol. Abstr. Spec. Suppl. pp. 109–118, Information Retrieval, Inc., Washington, D.C.Google Scholar
  319. Mikx, F. H. M., and van der Hoeven, J. S., 1975, Symbiosis of Streptococcus mutans and Veillonella alcalescens in mixed continuous cultures, Arch. Oral Biol. 20: 407–410.PubMedGoogle Scholar
  320. Mikx, F. H. M., van der Hoeven, J. S., König, K. G., Plasschaert, A. J. M., and Guggenheim, B., 1972, Establishment of defined microbial ecosystems in germ-free rats, Caries Res. 6: 211–223.PubMedGoogle Scholar
  321. Mikx, F. H. M., van der Hoeven, J. S., Plasschaert, A. J. M., and König, K. G., 1975a, Effect of Actinomyces viscosus on the establishment and symbiosis of Streptococcus mutans and Streptococcus sanguis in SPF rats on different sucrose diets, Caries Res. 9: 1–20.PubMedGoogle Scholar
  322. Mikx, F. H. M., van der Hoeven, J. S., Plasschaert, A. J. M., and König, K. G., 1975b, Establishment and symbiosis of Actinomyces viscosus, Streptococcus sanguis and Streptococcus mutans in germ-free Osborne Mendel rats, Caries Res. 9: 286–324.Google Scholar
  323. Mikx, F. H. M., van der Hoeven, J. S., and Walker, G. J., 1976a, A microbial symbiosis in dental plaque studied in gnotobiotic rats and in the chemostat, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 3: 763–772.Google Scholar
  324. Mikx, F. H. M., van der Hoeven, J. S., Plasschaert, A. J. M., and Maltha, J. C., 1976b, Establishment of defined microbial ecosystems in germ-free rats. II. Diassociation of Osborne-Mendel rats with Veillonella alcalescens and several oral microorganisms, Caries Res. 10: 49–58.PubMedGoogle Scholar
  325. Miller, B. F., and Muntz, J. A., 1939, The quantity of lactic acid in carious areas of human teeth, and its relationship to the soluble calcium and phosphate in these lesions, J. Dent. Res. 18: 259–265.Google Scholar
  326. Miller, C. E., Wong, K. H., Feeley, J. C., and Forlies, M. E., 1972, Immunological conversion of Vibrio cholerae in gnotobiotic mice, Infect. Immun. 6: 739–742.PubMedCentralPubMedGoogle Scholar
  327. Miller, C. H., and Kleinman, J. L., 1974, Effect of microbial interactions on in vitro plaque formation by Streptococcus mutans, J. Dent. Res. 53: 427–434.PubMedGoogle Scholar
  328. Miller, W. D., 1889, Mikroorganismen der Mundhöhle, Georg Thieme, Leipzig.Google Scholar
  329. Minah, G. E., and Bowman, G., 1978, Identity and cariogenicity of the microflora colonizing removable enamel surfaces, J. Dent. Res. Spec. Iss. A 57: Abstract No. 426.Google Scholar
  330. Minah, G. E., and Loesche, W. J., 1977a, Sucrose metabolism in resting cell suspensions of caries-associated and non-caries-associated dental plaque, Infect. Immun. 17: 43–54.PubMedCentralPubMedGoogle Scholar
  331. Minah, G. E., and Loesche, W. J., 1977b, Sucrose metabolism by prominent members of the flora isolated from cariogenic and non-cariogenic dental plaques, Infect. Immun. 17: 55–61.PubMedCentralPubMedGoogle Scholar
  332. Mishiro, Y., Kirimura, K., and Ishihara, H., 1966, Observations on the saliva factor that enhances the production of lactic acid by the oral flora, J. Dent. Res. 45: 1824.PubMedGoogle Scholar
  333. Mitchell, R., 1976, Mechanism of attachment of microorganisms to surfaces, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds. Microbiol. Abstr. Spec. Suppl. 1: 47–53.Google Scholar
  334. Moore, B. W., Carter, W. J., Dunn, J. K., and Fosdick, L. S., 1956, The formation of lactic acid in dental plaques. I. Caries-active individuals, J. Dent. Res. 35: 778–785.PubMedGoogle Scholar
  335. Mühlemann, H. R., and de Boever, J., 1970, Radiotelemetry of the pH of interdental areas exposed to various carbohydrates, in: Dental Plaque (W. D. McHugh, ed.), pp. 179–186, E. and S. Livingstone, Edinburgh.Google Scholar
  336. Muntz, J. A., 1943, Production of acids from glucose by dental plaque material, J. Biol. Chem. 148: 225–236.Google Scholar
  337. Naeslund, C., 1926, Studies of tartar formation, Acta Pathol. Microbiol. Scand 3: 637–677.Google Scholar
  338. Nakamura, T., Suginaka, Y., Orata, T., Obata, N., and Yamazaki, N., 1977, Bacteriocin-like activities of human dental plaque flora against oral anaerobic microorganisms, Bull. Tokyo Dent. Coll. 18: 217–229.PubMedGoogle Scholar
  339. Neff, D., 1967, Acid production from different carbohydrate sources in human plaque in situ, Caries Res. 1: 78–87.PubMedGoogle Scholar
  340. Newbrun, E., 1972, Water fluoridation and dietary fluoride, in: Fluorides and Dental Caries (E. Newbrun, ed.), Charles C. Thomas, Springfield, Illinois.Google Scholar
  341. Newbrun, E., 1976, Polysaccharide synthesis in plaque, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 3: 649–664.Google Scholar
  342. Newman, H. N., and Poole, D. F. G., 1974, Structural and ecological aspects of dental plaque, in: The Normal Microbial Flora of Man (F. A. Skinner and J. G. Carr, eds.), Soc. Appl. Bacterial. Symp. Ser., No. 3: 111–134.Google Scholar
  343. Newman, M. G., and Socransky, S. S., 1977, Predominant cultivable microbiota in periodontosis, J. Periodontal Res. 12: 120–128.PubMedGoogle Scholar
  344. Newman, M. G., Williams, R. C., Crawford, A., Manganiello, A. D., and Socransky, S. S., 1973, Predominant cultivable microbiota of periodontitis and periodontosis. III. Periodontosis, J. Dent. Res. Spec. Iss. 52: Abstract No. 290.Google Scholar
  345. Newman, M. G., Socransky, S. S., Sarritt, E. D., Propas, D. A., and Crawford, A., 1976. Studies of the microbiology of periodontosis, J. Periodontol. 47: 373–379.PubMedGoogle Scholar
  346. Ng, S. K. C., and Hamilton, I. R., 1971, Lactate metabolism by Veillonella parvula, J. Bacteriol. 105: 999–1005.PubMedCentralPubMedGoogle Scholar
  347. Ng, S. K. C., and Hamilton, I. R., 1973, Carbon dioxide fixation by Veillonella parvula M4 and its relation to propionic acid formation, Can. J. Microbiol. 19: 715–723.PubMedGoogle Scholar
  348. Ng, S. K. C., and Hamilton, I. R., 1974, Gluconeogensis by Veillonella parvula M4: Evidence for the indirect conversion of pyruvate to P-enolpyruvate, Can. J. Microbiol. 20: 19–28.PubMedGoogle Scholar
  349. Ng, S. K. C., and Hamilton, I. R., 1975, Purification and regulatory properties of pyruvate kinase from Veillonella parvula, J. Bacteriol. 122: 1274–1282.PubMedCentralPubMedGoogle Scholar
  350. Nisengard, R. J., 1977, The role of immunology in periodontal disease, J. Periodontal. 48: 505–515.Google Scholar
  351. Orstavik, D., and Brandtzaeg, P., 1977, Serum antibodies to plaque bacteria in subjects with dental caries and gingivitis, Scand. J. Dent. Res. 85: 106–113.PubMedGoogle Scholar
  352. Palenik, C. J. and Miller, C. H., 1975, Extracellular invertase activity from Actinomyces viscosus, J. Dent. Res. 54: 186.PubMedGoogle Scholar
  353. Parker, R. B., 1970, Paired culture interaction of the oral microbiota, J. Dent. Res. 49: 804–809.PubMedGoogle Scholar
  354. Parker, R. B., and Creamer, H. R., 1971, Contribution of plaque polysaccharides to growth of cariogenic microorganisms, Arch. Oral Biol. 16: 855–862.PubMedGoogle Scholar
  355. Pine, L., and Howell, A., 1956, Comparison and biochemical characters of Actinomyces spp. with those of Lactobacillus bifidus, J. Gen. Microbiol. 15: 428–435.PubMedGoogle Scholar
  356. Posner, A. S., 1969, Crystal chemistry of bone mineral, Physiol. Rev. 49: 760–792.PubMedGoogle Scholar
  357. Raina, J. L., and Ravin, A. W., 1976, Enhanced transformability with heterospecific deoxyribonucleic acid in a Streptococcus sanguis mutant impaired in ribonucleic acid polymerase activity, J. Racteriol. 127: 380–391.Google Scholar
  358. Ranney, R. R., 1970, Specific antibody in gingiva and submandibular nodes of monkeys with allergic periodontal disease, J. Periodontal Res. 5: 1–7.PubMedGoogle Scholar
  359. Renggli, H. H., 1977, Phagocytosis and killing by crevicular neutrophils, in: The Borderland between Caries and Periodontal Disease (T. Lehner, ed.), pp. 221–222, Academic Press, London.Google Scholar
  360. Ritz, H. L., 1967, Microbial population shifts in developing human dental plaque, Arch. Oral Biol. 12: 1561–1568.PubMedGoogle Scholar
  361. Rizzo, A. A., and Mitchell, G. T., 1966, Chronic allergic inflammation induced by repeated deposition of antigen in rabbit gingival pockets, Periodontics 4: 5–10.PubMedGoogle Scholar
  362. Rizzo, A. A., Scott, D. B., and Bladen, H. A., 1963, Calcification of oral bacteria, Ann. N. Y. Acad. Sci. 109: 14–22.PubMedGoogle Scholar
  363. Robrish, S. A., and Krichevsky, M. I., 1972, Acid production from glucose and sucrose by growing cultures of caries-conducive streptococci, J. Dent. Res. 51: 734–739.PubMedGoogle Scholar
  364. Rogers, A. H., 1975, Bacteriocin types of Streptococcus mutans in human mouths, Arch. Oral Biol. 20: 853–858.PubMedGoogle Scholar
  365. Rogers, A. H., 1976a, Bacteriocin patterns of strains belonging to various serotypes of Streptococcus mutans, Arch. Oral Biol. 21: 243–249.PubMedGoogle Scholar
  366. Rogers, A. H., 1976b, Bacteriocinogeny and the properties of some bacteriocins of Streptococcus mutans, Arch. Oral Biol. 21: 99–104.PubMedGoogle Scholar
  367. Rogers, A. H., van der Hoeven, J. S., and Mikx, F. H. M., 1978, Inhibition of Actinomyces viscosus by bacteriocin-producing strains of Streptococcus mutans in the dental plaque of gnotobiotic rats, Arch. Oral Biol. 23: 477–483.PubMedGoogle Scholar
  368. Rogosa, M., 1964, The genus Veillonella, 1. General cultural, ecological and biochemical considerations, J. Bacteriol. 87: 162–170.PubMedCentralPubMedGoogle Scholar
  369. Rogosa, M., 1965, The genus Veillonella. IV. Serological poupings, and genus and species emendations, J. Bacteriol. 90: 704–709.PubMedCentralPubMedGoogle Scholar
  370. Rogosa, M., 1970, Characters used in the classification of lactobacilli, Int. J. Syst. Bacteriol. 20: 519–533.Google Scholar
  371. Rogosa, M., and Bishop, F. S., 1964, The genus Veillonella. 2. Nutritional studies. J. Bacteriol. 87: 574–580.PubMedCentralPubMedGoogle Scholar
  372. Rogosa, M., Krichevsky, M. I., and Bishop, F. S., 1965, Truncated glycolytic system in Veillonella, J. Bacteriol. 90: 164–171.PubMedCentralPubMedGoogle Scholar
  373. Rolla, G., 1976, Inhibition of adsorption-general considerations, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 2: 309–324.Google Scholar
  374. Rolla, G., and Meisen, B., 1975, Desorption of protein and bacteria from hydroxyapatite by fluoride and monofluorophosphate, Caries Res. 9: 66–73.PubMedGoogle Scholar
  375. Rolla, G., Löe, H., and Schiøtt, R., 1970, The affinity of Chlorhexidine for hydroxyapatite and salivary mucins, J. Periodontal Res. 5: 90–95.PubMedGoogle Scholar
  376. Rosan, B., and Hammond, B. F., 1974, Extracellular polysaccharides of Actinomyces viscosus, infect. Immun. 10: 304–308.PubMedCentralPubMedGoogle Scholar
  377. Roseman, S., 1970, The synthesis of complex carbohydrates by multi-glycosyl transferase systems and their potential role in intercellular adhesion. Chem. Phys. Lipids 5: 270–297.PubMedGoogle Scholar
  378. Roth, S., McGuire, E. J., and Roseman, S., 1971, Evidence for cell surface glycosyl transferases, their potential role in cellular recognition, J. Cell Biol. 51: 536–547.PubMedCentralPubMedGoogle Scholar
  379. Rugg-Gunn, A. J., Holloway, P. J., and Davies, T. G. H., 1973, Caries prevention by daily fluoride mouthrinsing, Br. Dent. J. 135: 353–360.PubMedGoogle Scholar
  380. Russell, A. L., 1956, A system for classification and scoring for prevalence surveys of periodontal disease, J. Dent. Res. 35: 350–359.PubMedGoogle Scholar
  381. Russell, R. R. B., and McDonald, I. J., 1976, Comparison of the cell envelope proteins of Micrococcus cryophilus with those of Neisseria and Branhamella species, Can. J. Microbiol. 22: 309–312.PubMedGoogle Scholar
  382. Russell, R. R. B., Johnson, K. G., and McDonald, I. J., 1975, Envelope proteins in Neisseria, Can. J. Microbiol 21: 1519–1534.PubMedGoogle Scholar
  383. Rutter, P. R., 1979, The accumulation of organisms on the teeth, in: Adhesion of Microorganisms to Surfaces (D. C. Ellwood, J. Melling, and P. Rutter, eds.), Academic Press, London (in press).Google Scholar
  384. Rutter, P. R., and Abbott, A., 1978, A study of the interaction between oral streptococci and hard surfaces, J. Gen. Microbiol. 105: 219–226.PubMedGoogle Scholar
  385. Sandham, H. J., and Kleinberg, I., 1969, The effect of fluoride on the interrelation between glucose utilization, pH and carbohydrate storage in a salivary sediment system, Arch. Oral Biol. 14: 619–628.PubMedGoogle Scholar
  386. Sanyal, B., and Russell, C., 1978, Non-sporing anaerobic Gram-positive rods in saliva at the gingival crevice of humans, Appl. Environ. Microbiol. 35: 670–678.PubMedCentralPubMedGoogle Scholar
  387. Sasaki, S., Slots, J., Hammond, B., and Socransky, S. S., 1978, Enumeration of Bacteroides melaninogenicus and Capnocytophaga sp. in subgingival plaque by fluorescent antibody technique, J. Dent. Res. Spec. Iss. A 57: Abstract No. 966.Google Scholar
  388. Savage, D. C., 1977, Interactions between the host and its microbes, in: Microbial Ecology of the Gut (R.T.J. Clarke and T. Bauchop, eds.), pp. 277–310, Academic Press, London.Google Scholar
  389. Saxton, C. A., 1973, Scanning electron microscope study of the formation of dental plaque, Caries Res. 7: 102–119.PubMedGoogle Scholar
  390. Saxton, C. A., 1975a, The formation of dental plaque: A study by electron microscopy, Ph.D. Thesis, London University, London.Google Scholar
  391. Saxton, C. A., 1975b, Determination by electron microscope autoradiography of the distribution in plaque of organisms that synthesize intracellular polysaccharide in situ, Caries Res. 9: 418–437.PubMedGoogle Scholar
  392. Scardovi, V., and Crociani, F., 1974, Bifidobacterium catenulatium, Bifidobacterium den-tium and Bifidobacterium angulatum: Three new species and their deoxynucleic acid homology relationships, Int. J. Syst. Bacteriol. 24: 6–20.Google Scholar
  393. Schachtele, C. F., and Mayo, J. A., 1973, Phosphoenolpyruvate-dependent glucose transport in oral streptococci, J. Dent. Res. 52: 1209–1215.PubMedGoogle Scholar
  394. Schachtele, C. F., Staat, R. H., and Harlander, S. K., 1975, Dextranases of oral bacteria: Inhibition of water insoluble glucan production and adherence to smooth surfaces by Streptococcus mutans, Infect. Immun. 12: 309–317.PubMedCentralPubMedGoogle Scholar
  395. Schamschula, R. G., Adkins, B. L., Barmes, D. E., Charlton, G., and Davey, B. G., 1978, WHO Study of Dental Caries Etiology in Papua, New Guinea, WHO Offset Publication No. 40, World Health Organization, Geneva.Google Scholar
  396. Schiøtt, C. R., Briner, W. W., and Löe, H., 1976, Two years oral use of Chlorhexidine in man. II. The effect on salivary bacteriol flora, J. Periodontal Res. 11: 145–152.PubMedGoogle Scholar
  397. Schroeder, H. E., 1969, Formation and Inhibition of Dental Calculus, Hans Huber, Berne, Switzerland.Google Scholar
  398. Schroeder, H. E., 1977, Histopathology of the gingival sulcus, in: The Borderland between Caries and Periodontal Disease (T. Lehner, ed.), pp. 43–78, Academic Press, London.Google Scholar
  399. Shah, H. N., Williams, R. A. D., Bowden, G. H., and Hardie, J. M., 1976, Comparison of the biochemical properties of Bacteroides melaninogenicus from human dental plaque and other sites, J. Appl. Bacteriol. 41: 473–492.PubMedGoogle Scholar
  400. Sharma, M., Dhillon, A. S., and Newbrun, E., 1974, Cell-bound glucosyl transferase of Streptococcus sanguis strain 804, Arch. Oral Biol. 19: 1063–1073.PubMedGoogle Scholar
  401. Shedlofsky, S., and Freier, R., 1974, Synergism between ecological and immunological control mechanisms of intestinal flora, J. Infect. Dis. 129: 296–303.PubMedGoogle Scholar
  402. Shockman, G. D., Tsien, H. C., Kessler, R. E., Mychajlouka, M., Higgins, M. L., and Daneo-Moore, L., 1976, Effect of environmental factors on the surface properties of oral microorganisms, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 3: 631–648.Google Scholar
  403. Sidaway, D. A., 1978a, A microbiological study of dental calculus. I. The microbial flora of mature calculus, J. Periodontal Res. 13: 349–359.PubMedGoogle Scholar
  404. Sidaway, D. A., 1978b, A microbiological study of dental calculus. II. The in vitro calcification of microorganisms from dental calculus, J. Periodontal Res. 13: 360–366.PubMedGoogle Scholar
  405. Silverstone, L. M., 1977, Remineralization phenomena, Caries Res. 11 (Suppl. 1): 59–84.PubMedGoogle Scholar
  406. Sims, W., 1970, Oral haemophili, J. Med. Microbiol. 3: 615–625.PubMedGoogle Scholar
  407. Sirisinha, S., 1970, Reaction of human salivary immunoglobulins with indigenous bacteria, Arch. Oral Biol. 15: 551–554.Google Scholar
  408. Sirisinha, S., and Charupatana, C., 1971, Antibodies to indigenous bacteria in human serum, secretion and urine, Can. J. Microbiol. 17: 1471–1473.PubMedGoogle Scholar
  409. Slack, G. L., and Bowden, G. H., 1965, Preliminary studies of experimental dental plaque “in vivo” Adv. Fluorine Res. Dent. Caries Prev. 3: 193–215.Google Scholar
  410. Slack, J. M., and Gerencser, M. A., 1975, Actinomyces, Filamentous Bacteria, Biology and Pathogenicity, Burgess Publishing Co., Minneapolis, Minnesota.Google Scholar
  411. Slots, J., 1976, The predominant cultivable organisms in juvenile periodontosis, Scand. J. Dent. Res. 84: 1–10.PubMedGoogle Scholar
  412. Slots, J., 1977a, Microflora in the healthy gingival sulcus in man, Scand. J. Dent. Res. 85: 247–254.PubMedGoogle Scholar
  413. Slots, J., 1977b, The predominant cultivable microflora of advanced periodontitis, Scand J. Dent. Res. 85: 114–121.PubMedGoogle Scholar
  414. Slots, J., and Gibbons, R. J., 1978, Attachment of Bacterioides melaninogenicus subsp. asaccharolyticus to oral surfaces and its possible role in colonization of the mouth and periodontal pockets, Infect. Immun. 19: 254–264.PubMedCentralPubMedGoogle Scholar
  415. Slots, J., Moenbo, D., Largeback, J., and Frandsen, A., 1978, Microbiota of gingivitis in man, Scand. J. Dent. Res. 86: 174–181.PubMedGoogle Scholar
  416. Smith, D. J., and Taubman, M. A., 1976, Immunization studies using the rodent caries model, J. Dent. Res. Spec. Iss. C 55: 193–205.Google Scholar
  417. Smith, F. M., and Lang, N. P., 1977, Lymphocyte blastogenesis to plaque antigens in human periodontal disease. II. The relationship to clinical parameters, J. Periodontal Res. 12: 310–317.PubMedGoogle Scholar
  418. Socranksy, S. S., 1970, Relationship of bacteria to the etiology of periodontal disease, J. Dent. Res. 49: 203–222.Google Scholar
  419. Socransky, S. S., 1977 Microbiology of periodontal disease-present status and future considerations, J. Periodontol. 48: 497–504.PubMedGoogle Scholar
  420. Socransky, S. S., and Gibbons, R. J., 1965, Required role of Bacteroides melaninogenicus in mixed anaerobic infections, J. Infect. Dis. 115: 247–253.PubMedGoogle Scholar
  421. Socransky, S. S., and Manganiello, S. D., 1971, The oral microbiota of man from birth to senility, J. Periodontol. 42: 485–494.PubMedGoogle Scholar
  422. Socransky, S. S., Loesche, W. J., Hubersak, C., and MacDonald, J. B., 1964, Dependency of Treponema microdentium on other oral organisms for isobutyrate, polyamines and a controlled oxidation-reduction potential, J. Bacteriol. 88: 200–209.PubMedCentralPubMedGoogle Scholar
  423. Socransky, S. S., Manganiello, A. D., Propas, D., Oram, V., and van Houte, J., 1977, Bacteriological studies of developing supragingival dental plaque, J. Periodontal Res. 12: 90–106.PubMedGoogle Scholar
  424. Socransky, S. S., Sasaki, S., and To, L., 1978, “Piggyback” hypothesis of subgingival colonization of non-motile organisms. II. Migration in or on agar, J. Dent. Res. Spec. Iss. A 57: Abstract No. 969.Google Scholar
  425. Sonju, T., and Glantz, P. O., 1975, Chemical composition of salivary integuments formed in vivo on solids with some established surface characteristics, Arch. Oral Biol. 20: 687–691.PubMedGoogle Scholar
  426. Springer, G. F., and Horton, E. H., 1969, Blood group isoantibody stimulation in man by feeding blood group active bacteria, J. Clin. Invest. 48: 1280–1291.PubMedCentralPubMedGoogle Scholar
  427. Staat, R. H., and Schachtele, C. F., 1974, Evaluation of dextranase production by the cariogenic bacterium Streptococcus mutans, Infect. Immun. 9: 467–469.PubMedCentralPubMedGoogle Scholar
  428. Staat, R. H., Gawronski, T. H., and Schachtele, C. F., 1973, Detection and preliminary studies on dextranase-producing microorganisms from human dental plaque, Infect. Immun. 8:1009–1016.PubMedCentralPubMedGoogle Scholar
  429. Stephan, R. M., 1940, Changes in hydrogen-ion concentration on tooth surfaces and in carious lesions, J. Am. Dent. Assoc. 27: 718–723.Google Scholar
  430. Stephan, R. M., 1944, Intra-oral hydrogen-ion concentrations associated with dental caries activity, J. Dent. Res. 23: 257–266.Google Scholar
  431. Stephan, R. M., and Hemmens, E. S., 1947, Studies of changes in pH produced by pure cultures of oral microorganiams, J. Dent. Res. 26: 15–41.PubMedGoogle Scholar
  432. Stiles, H. M., Loesche, W. J., and O’Brien, T. C. (eds.), 1976, Microbial Aspects of Dental Caries, Microbiol, Abstr. Spec. Suppl. 1–3.Google Scholar
  433. Straitors, A., 1948, Studies on the microbiology of caries. II. The acid fermentation in dental plaque in situ compared with lactobacillus counts, J. Dent. Res. 27: 576–581.Google Scholar
  434. Stralfors, A., 1950, Investigations into the bacterial chemistry of dental plaques, Odontol. Tidskr. 58: 155–341.Google Scholar
  435. Streckfuss, J. L., Smith, W. N., Brown, L. R., and Campbell, M. M., 1974, Calicification of selected strains of Streptococcus mutans and Streptococcus sanguis, J. Bacteriol. 120: 502–506.PubMedCentralPubMedGoogle Scholar
  436. Sumney, D. L., and Jordon, H. V., 1974, Characterization of bacteria isolated from human root surface carious lesions, J. Dent. Res. 53: 343–351.PubMedGoogle Scholar
  437. Sundquist, G., 1976, Bacteriologic studies of necrotic dental pulps, Ph.D. Thesis, Umea University, Umea, Sweden.Google Scholar
  438. Sundquist, G., and Carlsson, J., 1974, Lactobacilli of infected dental root canals, Odontol. Revy 25: 233–258.Google Scholar
  439. Svanberg, M., and Loesche, W. J., 1977, The salivary concentration of Streptococcus mutans and Streptococcus sanguis and their colonization of artificial tooth fissures in man, Arch. Oral Biol. 22: 441–447.PubMedGoogle Scholar
  440. Svanberg, M. L., and Loesche, W. J., 1978a, Implantation of Streptococcus mutans on tooth surfaces in man, Arch Oral Biol. 23: 551–556.PubMedGoogle Scholar
  441. Svanberg, M. L., and Loesche, W. J., 1978b, Intra-oral spread of Streptococcus mutans in mm, Arch. Oral Biol. 23: 557–561.PubMedGoogle Scholar
  442. Swindlehurst, C. A., Shah, H. N., Parr, C. W., and William, R. A. D., 1978, Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of polypeptides from Bacterioides melani-nogenicus, J. Appl. Bacterial. 43: 319–324.Google Scholar
  443. Syed, S. A., and Loesche, W. J., 1978, Bacteriology of human experimental gingivitis: Effect of plaque age, Infect. Immun. 21: 821–829.Google Scholar
  444. Syed, S. A., Loesche, W. J., Pape, H. L., and Grenier, E., 1975, Predominant cultivable flora isolated from human root surface carious plaque, Infect. Immun. 11: 727–731.PubMedCentralPubMedGoogle Scholar
  445. Takazoe, I., 1961, Study on the intracellular calcification of oral aerobic leptotrichia, Shika Gakuho 61: 394–401.Google Scholar
  446. Takazoe, I., and Nakamura, T., 1965, The relationship between metachromatic granules and intracellular calcification of Bacterionema matruchotii, Bull. Tokyo Dent. Coll. 6: 29–42.Google Scholar
  447. Takazoe, I., Takeuchi, T., and Nakamura, T., 1963, A chemical investigation of the intracellular calicification of Bacterionema matruchotii, Bull. Tokyo Dent. Coll. 4: 61–75.Google Scholar
  448. Takazoe, I., Matsukubo, T., and Katow, T., 1978, Experimental formation of “corn cob” in vitro, J. Dent. Res. 57: 384.PubMedGoogle Scholar
  449. Tanzer, J. M., Krichevsky, M. I., and Keyes, P. H., 1969, The metabolic fate of glucose catabolized by washed stationary phase caries-conducive streptococcus, Caries Res. 3: 167–177.PubMedGoogle Scholar
  450. Tanzer, J. M., Chassy, B. M., and Krichevsky, M. I., 1972, Sucrose metabolism by Streptococcus mutans SL-1, Biochim. Biophys. Acta 261: 379–387.Google Scholar
  451. Tanzer, J. M., Hageage, G. J., and Lamon, R. H., 1973, Variable experiences in immunization of rats against Streptococcus mutans-associated dental caries, Arch. Oral Biol. 18: 1425–1439.PubMedGoogle Scholar
  452. Tanzer, J. M., Freedman, M. L., Woodiel, F. N., Eifert, R. L., and Rinehimer, L. A., 1976, Association of Streptococcus mutans virulence with synthesis of intracellular polysaccharide, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 3: 597–616.Google Scholar
  453. Taubman, M. A., and Smith, D. J., 1974, Effects of local immunization with Streptococcus mutans on induction of salivary immunoglobulin A antibody and experimental dental caries in rats, Infect. Immun. 9: 1078–1091.Google Scholar
  454. Taubman, M. A., and Smith, D. J., 1977, Effects of local immunization with glucosyl transferase fraction from Streptococcus mutans on dental caries in rats and hamsters, J. Immunol. 118: 710–720.PubMedGoogle Scholar
  455. Theilade, E., Wright, W. H., Jensen, S. B., and Löe, H., 1966, Experimental gingivitis in man. II. A longitudinal clinical and bacteriological investigation. J. Periodontal Res. 1: 1–13.PubMedGoogle Scholar
  456. Theilade, E., Larson, R. H., and Karring, T., 1973, Microbiological studies of plaque in artificial fissures implanted in human teeth, Caries Res. 7: 130–138.PubMedGoogle Scholar
  457. Theilade, E., Fejerskov, O., Prachyabrued, W., and Kilian, M., 1974, Microbiological study on developing plaque in human fissures, Scand. J. Dent. Res. 82: 420–427.PubMedGoogle Scholar
  458. Thott, E. K., Folke, L. E. A., and Sveen, O. B., 1974, A microbiologic study of human fissure plaque, Scand. J. Dent. Res. 82: 428–436.PubMedGoogle Scholar
  459. Tinanoff, N., Glick, P. L., and Weber, D. F., 1976, Ultrastructure on organic films on the enamel surface, Caries Res. 10: 19–32.PubMedGoogle Scholar
  460. To, L., Sasaki, S., and Socransky, S. S., 1978, “Piggyback” hypothesis of subgingival colonization of non-motile organisms. I. Migration through liquids, J. Dent. Res. Spec. Iss. A 57: Abstract No. 968.Google Scholar
  461. Tyler, J. E., 1971, Quantitative estimation of volatile fatty acids in carious enamel by gas chromatography of their methyl esters, J. Dent. Res. 50: 1189.Google Scholar
  462. van der Hoeven, J. S., 1974, A slime producing microorganism in dental plaque of rats selected by glucose feeding. Chemical composition of extracellular slime elaborated by Actinomyces viscosus Nyl, Caries Res. 8: 193–210.PubMedGoogle Scholar
  463. van der Hoeven, J. S., 1976, Carbohydrate metabolism by Streptococcus mutans in dental plaque in gnotobiotic rats, Arch. Oral Biol. 21: 431–434.PubMedGoogle Scholar
  464. van der Hoeven, J. S., and Rogers, A. H., 1978, Discussion of microbial interactions and modification of the microflora, in: Methods of Caries Prediction (Workshop Proceedings) (B. G. Bibby and R. J. Shern, eds.), Microbiol. Abstr. Spec. Suppl. pp. 119–126, Information Retrieval, Inc., Washington, D.C.Google Scholar
  465. van der Hoeven, J. S., Mikx, F. H. M., Plasschaert, A. J. M., and Konig, K. G., 1972, Methodological aspects of gnotobiotic caries experimentation, Caries Res. 6: 203–210.PubMedGoogle Scholar
  466. van der Hoeven, J. S., Mikx, F. H. M., Konig, K. G., and Plasschaert, A. J. M., 1974, Plaque formation and dental caries on gnotobiotic and SPF Osborne-Mendel rats associated with Actinomyces viscosus, Caries Res. 8: 211–223.PubMedGoogle Scholar
  467. van der Hoeven, J. S., Vogels, G. B., and Bekkers, M. F. J., 1976, A levansucrase horn Antinomyces viscosus, Caries Res. 10: 33–48.PubMedGoogle Scholar
  468. van der Hoeven, J. S., Toorop, A. I., and Mikx, F. H. M., 1978, Symbiotic relationship of Veillonella alcalescens and Streptococcus mutans in dental plaque in gnotobiotic rats, Caries Res. 12: 142–147.PubMedGoogle Scholar
  469. van Houte, J., 1964, Relationship between carbohydrate intake and polysaccharide-storing microorganisms in dental plaque, Arch. Oral Biol. 9: 91–93.Google Scholar
  470. van Houte, J., 1976, Oral bacterial colonization: Mechanism and implications, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 1: 3–32.Google Scholar
  471. van Houte, J., and Jansen, H. M., 1968a, The iodophilic polysaccharide synthesized by Streptococcus salivarius, Caries Res. 2: 47–56.PubMedGoogle Scholar
  472. van Houte, J., and Jansen, H. M., 1968b, Levan degradation by streptococci isolated from human dental plaque, Arch. Oral Biol. 13: 827–830.PubMedGoogle Scholar
  473. van Houte, J., and Jansen, H. M., 1970, Role of glycogen in the survival of Streptococcus mitis, J. Bacteriol. 101: 1083–1085.PubMedCentralPubMedGoogle Scholar
  474. van Houte, J., and Saxton, C. A., 1971, Cell wall thickening and intracellular polysaccharide in microorganisms from dental plaque, Caries Res. 5: 30–43.PubMedGoogle Scholar
  475. van Houte, J., and Backer Dirks, O., de Stoppelaar, J. D., and Jansen, H. M., 1969a, Iodophilic polysaccharide-producing bacteria and dental caries in children consuming fluoridated and non-fluoridated drinking water, Caries Res. 3: 178–189.PubMedGoogle Scholar
  476. van Houte, J., Winkler, K. C., and Jansen, H. M., 1969b, Iodophilic polysaccharide synthesis, acid production and growth in oral streptococci, Arch. Oral Biol. 14: 45–61.PubMedGoogle Scholar
  477. van Houte, J., de Moor, C. E., and Jansen, H. M., 1970, Synthesis of iodophilic polysaccharide by human oral streptococci, Arch. Oral Biol. 15: 263–266.PubMedGoogle Scholar
  478. van Houte, J., Aassenden, R., and Peeble, T. C., 1978, Oral colonization of Streptococcus mutans in human subjects with low caries experience given fluoride supplements from birth, Arch. Oral Biol. 23: 361–366.PubMedGoogle Scholar
  479. van Palenstein Helderman, W. H., 1975, Total viable count and differential count of Vibrio (Campylobacter) sputorum, Fusobacterium nucleatum, Selenomonas sputigena, Bac-teroides ochraceus and Veillonella in the inflamed and non-inflamed human gingival crevice, J. Periodontal Res. 10: 294–305.Google Scholar
  480. van Palenstein Helderman, W. H., and Rosman, I., 1976, Hydrogen-dependent organismsGoogle Scholar
  481. from the human gingival crevice resembling Vibrio succinogenes, Antonie van Leeu-wenhoek J. Microbiol. Serol. 42: 107–118.Google Scholar
  482. Waldman, R. H., and Gangully, R., 1975, Cell-mediated immunity and the local immune system, in: The Immune System and Infections Diseases (F. Milgram and E. Neter, eds.), pp. 334–346, Karger, Basel.Google Scholar
  483. Walker, G. J., 1972, Some properties of a dextranglucosidase isolated from oral streptococci and its use in studies on dextran synthesis, J. Dent. Res. 51: 409–414.PubMedGoogle Scholar
  484. Walker, G. J., and Pulkownik, A., 1973, Degradation of dextrans by an α-1,6,glucan glucanohydrolase from Streptotoccus mitis, Carbohydr. Res. 29: 1–14.PubMedGoogle Scholar
  485. Wasserman, B. H., Mandel, I. D., and Levy, B. M., 1958, In vitro calcification of dental calculus, J. Periodontol. 29: 144–147.Google Scholar
  486. Weerkamp, A., Vogels, G. D., and Skotnicki, M., 1977, Antagonistic substances produced by streptococci from human dental plaque and their significance in plaque ecology, Caries Res. 115: 245–256.Google Scholar
  487. Weiss, S., King, W. J., Kestenbaum, R. C., and Donohue, J. J., 1965, Influence of various factors on polysaccharide synthesis in S. mitis, Ann. N. Y. Acad. Sci. 131: 839–850.PubMedGoogle Scholar
  488. Whiteley, H. R., and Ordal, E. J., 1957, Fermentation of alpha keto acids by Micrococcus aerogenes and Micrococcus lactilyticus, J. Bacteriol. 74: 331–336.PubMedCentralPubMedGoogle Scholar
  489. Wicken, A. J., and Knox, K. W., 1975, Lipoteichoic acids, a new class of bacterial surface antigen, Science 187: 1161–1167.PubMedGoogle Scholar
  490. Williams, B. L., Pantalone, R. H., and Sherris, J. C., 1976, Subgingival microflora and periodontitis. J. Periodontal Res. 11: 1–18.PubMedGoogle Scholar
  491. Williams, J. L., 1897, A contribution to the study of pathology of enamel, Dent. Cosmos 39: 269–353.Google Scholar
  492. Williams, R. A. D., 1967, The growth of Lancefield group D streptococci in the presence of sodium fluoride, Arch. Oral Biol. 12: 109–117.PubMedGoogle Scholar
  493. Williams, R. A. D., and Shah, H. N., 1979, Enzyme patterns in bacterial classification and identification, in: Impact of Modern Methods on The Taxonomy of Bacteria, Soc. Appl. Bacteriol. Symp. Ser. (in press).Google Scholar
  494. Williams, R. A. D., Bowden, G. H., Hardie, J. M., and Shah, H. N., 1975, Biochemical properties of Bacteroides melaninogenicus subspecies Int. J. Syst. Bacteriol. 25: 298–300.Google Scholar
  495. Wilton, J. M. A., 1977, The function of complement in crevicular fluid, in: The Borderland between Caries and Periodontal Disease (T. Lehner, ed.), pp. 223–247, Academic Press, London.Google Scholar
  496. Wilton, J. M. A., Ivanyi, L., and Lehner, T., 1971, Cell-mediated immunity and humoral antibodies in acute ulcerative gingivitis, J. Periodontal Res. 6: 9–16.PubMedGoogle Scholar
  497. Wilton, M., 1969, A comparative study of circulating and cell-mediated immunity induced by the gingival and systemic administration of oral bacteria, J. Dent. Res. (Abstr. British Division IADR) 48: 1098.Google Scholar
  498. Wittenberger, C. L., and Angelo, N., 1970, Purification and properties of a fructose-1,6-diphosphate-activated lactate dehydrogenase from Streptococcus faecalis, J. Bacteriol. 101: 717–724.PubMedCentralPubMedGoogle Scholar
  499. Wittenberger, C. L., Palumbo, M. P., Bridges, R. B., and Brown, A. T., 1971, Mechanisms for regulating the activity of constitutive glucose degradative pathways in Streptococcus faecalis, J. Dent. Res. 50: 1094–1102.Google Scholar
  500. Wolin, M. J., 1964, Fructose-1,6 diphosphate requirement of streptococcal lactic degydro-genases, Science 146: 715–111.Google Scholar
  501. Wood, J. M., 1964, Polysaccharide synthesis and utilization by dental plaque, J. Dent. Res. 43: 955.Google Scholar
  502. Wood, J. M., 1967, The amount, distribution and metabolism of soluble polysaccharides in human dental plaque, Arch. Oral Biol. 12: 849–858.PubMedGoogle Scholar
  503. Wood, J. M., 1969, The state of hexose sugar in human dental plaque and its metabolism by the plaque bacteria, Arch. Oral Biol. 14: 161–168.PubMedGoogle Scholar
  504. Woolley, L. H., and Rickles, N. H., 1971, Inhibition of acidogenesis in human dental plaque in situ following the use of topical sodium fluoride, Arch. Oral Biol. 16: 1187–1194.PubMedGoogle Scholar
  505. Yamada, T., and Carlsson, J. C., 1975, Regulation of lactate dehydrogenase and change of fermentation products in streptococci, J. Bacterial. 124: 55–61.Google Scholar
  506. Yamada, T., and Carlsson, J. C., 1976, The role of pyruvate formate-lyase in glucose metabolism of Streptococcus mutans, in: Microbial Aspects of Dental Caries (H. M. Stiles, W. J. Loesche, and T. C. O’Brien, eds.), Microbiol. Abstr. Spec. Suppl. 3: 809–819.Google Scholar
  507. Yamada, T., Hojo, S., Kobayashi, K., Asano, Y., and Araya, S., 1970, Studies on the carbohydrate metabolism of cariogenic Streptococcus mutans strain PK-1, Arch. Oral Biol. 15: 1205–1217.PubMedGoogle Scholar
  508. Zander, H. A., Hazen, S. P., and Scott, D. B., 1960, Mineralization of dental calculus, Proc. Soc. Exp. Biol. Med. 103: 257–260.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • G. H. W. Bowden
    • 1
  • D. C. Ellwood
    • 3
  • I. R. Hamilton
    • 2
  1. 1.MRC Dental Epidemiology UnitLondon Hospital Dental SchoolLondonEngland
  2. 2.Department of Oral Biology, Faculty of DentistryUniversity of ManitobaWinnipegCanada
  3. 3.Microbiological Research EstablishmentPorton DownEngland

Personalised recommendations