Advertisement

Photomovement

  • Pill-Soon Song
  • Kenneth L. Poff

Abstract

Organisms are subjected to a variety of environmental stimuli to which they respond and adapt. A schematic relationship between the stimulus and the response is illustrated in Fig. 11–1. Each stimulus (e.g., light, chemical) in some way interacts (e.g., absorption) with a discrete receptor in a step referred to as perception. The perceived stimulus signal is then processed through a chain of reactions, leading to an outcome such as a change in motility. This entire process from the perception of a stimulus to the response is referred to as sensory transduction.

Keywords

Action Spectrum Fluence Rate Proton Motive Force Chloroplast Movement Negative Phototaxis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Macnab and S. -I. Aizawa, Bacterial motility and the bacterial flageller motor, Annu. Rev. Biophys. Bioeng. 13, 51–84 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    K. L. Poff, in: Sensory Perception and Transduction in Aneural Organisms (G. Colombetti, F. Lenci, and P. -S. Song, eds.), pp. 299–307, Plenum Press, New York (1985).CrossRefGoogle Scholar
  3. 3.
    W. Haupt, in: Sensory Perception and Transduction in Aneural Organisms (G. Colombetti, F. Lenci, and P. -S. Song, eds.), pp. 1–18, Plenum Press, New York (1985).CrossRefGoogle Scholar
  4. 4.
    H. Machemer, in: Sensory Perception and Transduction in Aneural Organisms (G. Colombetti, F. Lenci, and P. -S. Song, eds.), pp. 179–209, Plenum Press, New York (1985).CrossRefGoogle Scholar
  5. 5.
    R. P. Blakemore and R. B. Frankel, Magnetic navigation in bacteria, Sci. Am. 245, 58–65 (1981).CrossRefGoogle Scholar
  6. 6.
    W. Nultsch, Phototaxis and photokinesis, in: Primitive Sensory and Communication Systems (M. J. Carlile, ed.), pp. 29–90, Academic Press, New York (1975).Google Scholar
  7. 7.
    K. V. Thimann and G. M. Curry, Phototropism and phototaxis, in: Light and Life. (W. McElroy and B. Glass, eds.), pp. 647–670, The Johns Hopkins Press, Baltimore (1961).Google Scholar
  8. 8.
    W. R. Briggs, The phototropic responses of higher plants, Annu. Rev. Plant Physiol. 14, 311–352 (1963).CrossRefGoogle Scholar
  9. 9.
    D. S. Dennison, Phototropism, in: Physiology of Movements. Encyclopedia of Plant Physiology, New Ser., Vol. 7 (W. Haupt and M. E. Feinleib, eds.), pp. 506–566, Springer-Verlag, Berlin (1979).Google Scholar
  10. 10.
    R. D. Firn and J. Digby, The establishment of tropic curvatures in plants, Ann. Rev. Plant Physiol. 31, 131–148 (1980).CrossRefGoogle Scholar
  11. 11.
    H. Senger and W. R. Briggs, The blue light receptor(s): Primary reactions and subsequent metabolic changes, Photochem. Photobiol. Rev. 6, 1–38 (1981).Google Scholar
  12. 12.
    K. L. Poff and C. B. Hong, Photomovement and photosensory transduction (yearly review), Photochem. Photobiol. 36, 749–752 (1982).CrossRefGoogle Scholar
  13. 13.
    W. Haupt, Light-mediated movement of chloroplasts, Annu. Rev. Plant Physiol. 33, 205–233 (1982).CrossRefGoogle Scholar
  14. 14.
    P. Galland and E. D. Lipson, Photophysiology of Phycomyces blakesleeanus (yearly review), Photochem. Photobiol. 40, 795–800 (1984).CrossRefGoogle Scholar
  15. 15.
    U. Pohl and V. E. A. Russo, Phototropism, in: Membranes and Sensory Transduction (G. Colombetti and F. Lenci, eds.), pp. 231–329, Plenum Press, New York (1984).CrossRefGoogle Scholar
  16. 16.
    H. Senger (ed.), Blue Light Effects in Biological Systems. Springer-Verlag, Berlin (1984).Google Scholar
  17. 17.
    B. Diehn, M. E. Feinleib, W. Haupt, E. Hildebrand, F. Lenci, and W. Nultsch, Terminology of behavioral responses of motile microorganisms, Photochem. Photobiol. 26, 559–560 (1977).CrossRefGoogle Scholar
  18. 18.
    D. -P. Häder, in: Physiology of Movements. Encyclopedia of Plant Physiology, New Ser., Vol. 7 (W. Haupt and M. E. Feinleib, eds.), pp. 268–309, Springer-Verlag, Berlin (1979).Google Scholar
  19. 19.
    C. Darwin, The Power of Movements in Plants, John Murray, London (1880).Google Scholar
  20. 20.
    D. S. Dennison, in: Advanced Plant Physiology (M. B. Wilkins, ed.), pp. 149–162, Pitman, London (1984).Google Scholar
  21. 21.
    W. Haupt and M. E. Feinleib (eds.), in: Physiology of Movements. Encyclopedia of Plant Physiology, New Ser., Vol. 7, Springer-Verlag, Berlin (1979).Google Scholar
  22. 22.
    M. E. Feinleib, in: Sensory Perception and Transduction in Aneural Organisms (G. Colombetti, F. Lenci, and P. -S. Song, eds.), pp. 119–146, Plenum Press, New York (1985).CrossRefGoogle Scholar
  23. 23.
    N. M. L. Morel-Laurens and M. E. Feinleib, Photomovement in an “eyeless” mutant of Chlamydomonas, Photochem. Photobiol. 37, 189–194 (1983).CrossRefGoogle Scholar
  24. 24.
    E. Batschelet, Statistical Methods for Analysis of Problems in Animal Orientation and Navigation. AIBS, Washington, D.C. (1965).Google Scholar
  25. 25.
    E. Batschelet, Statistical methods in the analysis of problems in animal orientation and certain biological rhythm, in: NASA Symposium on Animal Orientation and Navigation (S. R. Galles, K. Schmidt-Koenig, G. J. Jacob, and R. F. Belleville, eds.), pp. 61–91, NASA, Washington, D. C. (1972).Google Scholar
  26. 26.
    P. -S. Song, D. -P. Häder, and K. L. Poff, Step-up Photophobic responses in the ciliate, Stentor coeruleus, Arch. Microbiol. 126, 181–186 (1980).CrossRefGoogle Scholar
  27. 27.
    P. -S. Song, D. -P. Häder, and K. L. Poff, Phototactic orientation by the ciliate, Stentor coeruleus, Photochem. 32, 781–786 (1980).CrossRefGoogle Scholar
  28. 28.
    P. Halldal, Factors affecting light response in phototactic algae, Physiol. Plant. 12, 742–752 (1959).CrossRefGoogle Scholar
  29. 29.
    Th. W. Engelmann, Bacterium photometricum. Ein Betrage zur vergleichenden Physiologie des Licht- und Farbensinnes, Pflugers Arch. Ges. Physiol. 30, 95–124 (1883).CrossRefGoogle Scholar
  30. 30.
    B. Diehn, Phototactic responses of Euglena to single and repetitive pulses of actinic light: Orientation time and mechanism, Exp. Cell Res. 56, 375–381 (1969).PubMedCrossRefGoogle Scholar
  31. 31.
    T. -H. Chang, E. B. Walker, and P. -S. Song, Effects of ionophores and ruthenium red on the phototaxis of Stentor coeruleus as measured by simple devices, Photochem. Photobiol. 33, 933–936 (1981).CrossRefGoogle Scholar
  32. 32.
    E. B. Walker, M. Yoon, and P. -S. Song, The pH dependence of photosensory responses in Stentor Coeruleus and model system, Biochim. Biophys. Acta 634, 298–308 (1981).Google Scholar
  33. 33.
    K. Bergman, P. B. Burke, E. Cerda-Olmedo, C. N. David, M. Delbruck, K. W. Foster, E. W. Goodell, M. Heisenberg, G. Meissner, M. Zalokar, D. S. Dennison, and W. Shropshire, Jr., Phycomyces, Bacteriol. Rev. 33, 99–157 (1969).Google Scholar
  34. 34.
    W. Hand, in: The Science of Photobiology (K. C. Smith, ed.), 1st ed., pp. 313–328, Plenum Press, New York (1977).Google Scholar
  35. 35.
    W. G. Hand and D. Davenport, in: Photobiology of Microorganisms (P. Halldal, ed.), pp. 253–282, Wiley-Interscience, New York (1970).Google Scholar
  36. 36.
    P. -S. Song, The electronic spectroscopy of photoreceptors (other than rhodopsin), in: Photochem. Photobiol. Rev., Vol. 7 (K. C. Smith, ed.), pp. 77–140, Plenum Press, New York (1983).Google Scholar
  37. 37.
    P. -S. Song, in: Sensory Perception and Transduction in Aneural Organisms (G. Colombetti, F. Lenci, and P. -S. Song, eds.), pp. 47–59, Plenum Press, New York (1985).CrossRefGoogle Scholar
  38. 38.
    W. Nultsch and D. -P. Häder, Photomovement of motile microorganisms, Photochem. Photobiol. 29, 423–438 (1979).CrossRefGoogle Scholar
  39. 39.
    W. Nultsch, Der Einfluss des Lichtes auf die Bewegung der Cyanophyceen. I. Mitt. Phototopotaxis von Phormidium autumnale, Planta 56, 632–647 (1961).Google Scholar
  40. 40.
    W. Nultsch, Der Einfluss des Lichtes auf die Bewegung der Cyanophyceen. II. Photokinesis bei Phormidium autumnale, Planta 57, 613–632 (1962).Google Scholar
  41. 41.
    W. Nultsch, Der Einfluss des Lichtes auf die Bewegung der Cyanophyceen. III. Photophobotaxis von Phormidium uncinatum, Planta 58, 647–663 (1962).Google Scholar
  42. 42.
    W. Nultsch, H. Schuchart, and M. Hohl, Investigation on the phototactic orientation of Anabaena variabilis, Arch. Microbiol. 122, 85–91 (1979).CrossRefGoogle Scholar
  43. 43.
    W. Nultsch, Effects of sodium azide on phototaxis of the blue-green alga Anabaena variabilis and consequences to the two-photoreceptor systems-hypothesis, Arch. Microbiol. 134, 33–37 (1983).PubMedCrossRefGoogle Scholar
  44. 44.
    W. Nultsch, in: Topics in Photobiology (H. O. Kim and P. -S. Song, eds.), pp. 95–107, Jeju National University, Jeju (1983).Google Scholar
  45. 45.
    F. Lenci, D. -P. Häder, and G. Colombetti, in: Membranes and Sensory Transduction (G. Colombetti and F. Lenci, eds;), pp. 199–229, Plenum Press, New York (1984).CrossRefGoogle Scholar
  46. 46.
    W. Nultsch, in: Sensory Perception and Transduction in Aneural Organisms (G. Colombetti, F. Lenci, and P. -S. Song, eds.), pp. 147–164, Plenum Press, New York (1985).CrossRefGoogle Scholar
  47. 47.
    D. -P. Häder, Electrical and proton gradients in the sensory transduction of Photophobic responses in blue-green alga, Phormidium uncinatum, Arch. Microbiol. 130, 83–86 (1981).CrossRefGoogle Scholar
  48. 48.
    D. -P. Häder, Extracellular and intracellular determination of light-induced potential changes during Photophobic reactions in blue-green algae, Arch. Microbiol. 119, 75–79 (1978).CrossRefGoogle Scholar
  49. 49.
    D. -P. Häder, Effects of inhibitors and uncouplers on light-induced potential changes triggering Photophobic responses, Arch. Microbiol. 120, 57–60 (1979).CrossRefGoogle Scholar
  50. 50.
    D. -P. Häder and K. L. Poff, Dependence of the Photophobic response of the blue-green alga, Phormidium uncinatum, on cations, Arch. Microbiol. 132, 345–348 (1982).CrossRefGoogle Scholar
  51. 51.
    J. Spudich, in: Sensory Perception and Transduction in Aneural Organisms (G. Colombetti, F. Lenci, and P. -S. Song, eds.), pp. 113–118, Plenum Press, New York (1985).CrossRefGoogle Scholar
  52. 52.
    E. Hildebrand and A. Schimz, in: Sensory Perception and Transduction in Aneural Organisms (G. Colombetti, F. Lenci, and P. -S. Song, eds.), pp. 93–111, Plenum Press, New York (1985).CrossRefGoogle Scholar
  53. 53.
    E. Hildebrand and N. Dencher, Two photosystems controlling behavioral responses of Halobacterium halobium, Nature 257, 46–48 (1975).PubMedCrossRefGoogle Scholar
  54. 54.
    R. A. Bogomolni and J. L. Spudich, Identification of third rhodopsin-like pigment in phototactic Halobacterium halobium, Proc. Natl. Acad. Sci. USA 79, 6250–6254 (1982).PubMedCrossRefGoogle Scholar
  55. 55.
    H. C. Berg, Chemotaxis in bacteria, Annu. Rev. Biophys. Bioeng. 4, 119–136 (1975).PubMedCrossRefGoogle Scholar
  56. 56.
    A. Schimz and E. Hildebrand, Response regulation and sensory control in Halobacterium halobium based on an oscillator, Nature 317, 641–642 (1985).CrossRefGoogle Scholar
  57. 57.
    P. -S. Song, Protozoan and related photoreceptors: Molecular aspects, Annu. Rev. Biophys. Bioeng. 12, 35–68 (1983).PubMedCrossRefGoogle Scholar
  58. 58.
    V. Massey, in: Photoreception and Sensory Transduction in Aneural Organisms (F. Lenci and G. Colombetti, eds.), pp. 253–270, Plenum Press, New York (1980).Google Scholar
  59. 59.
    M. F. Land, The physics and biology of animal reflectors, Progr. Biophys. 24, 77–105 (1972).CrossRefGoogle Scholar
  60. 60.
    S. O. Mast, Light and the Behavior of Organisms, Wiley, New York (1911).CrossRefGoogle Scholar
  61. 61.
    M. Melkonian and H. Robenek, Eye spot membranes of Chlamydomonas reinhardii: A freeze-fracture study, J. Ultrastr. Res. 72, 90–102 (1980).CrossRefGoogle Scholar
  62. 62.
    W. H. Miller, Ocular optical filtering, in: Invertebrate Photoreceptors Handbook of Sensory Physiology, Vol. VII/6A (H. Autrum, ed.), pp. 69–143, Springer-Verlag, Berlin (1979).Google Scholar
  63. 63.
    A. Lui, Photoresponse of Paramecium provoked by photosensitizing dyes, Biol. Glasn. Jugosl. 8, 11–32 (1956).Google Scholar
  64. 64.
    L. K. Lozina-Lozinsky, Adaptive behavior of Paramecium caudatum to action of photodynamic dyes, Acta Protozool. 18, 609–628 (1979).Google Scholar
  65. 65.
    C. J. Brokaw and P. Verdugo (eds.), Progress in Clinical and Biological Research, Vol. 80, Mechanism and Control of Ciliary movement, A. L. Liss, New York (1982).Google Scholar
  66. 66.
    I. -H. Kim, R. K. Prusti, P. -S. Song, D. -P. Häder, and M. Häder, Phototaxis and Photophobic responses in Stentor coeruleus: Action spectrum and role of Ca2+ fluxes, Biochim. Biophys. Acta 799, 298–304 (1984).PubMedCrossRefGoogle Scholar
  67. 67.
    P. -S. Song, D. -P. Häder, and K. L. Poff, Phototactic orientation by the ciliate, Stentor coeruleus, Photochem. Photobiol. 32, 781–786 (1980).CrossRefGoogle Scholar
  68. 68.
    P. -S. Song, K. J. Tapley, Jr., and J. D. Berlin, in: The Biology of Photoreception (D. Cosens and D. Vince-Prue, eds.), pp. 503–520, Cambridge University Press, Cambridge (1983).Google Scholar
  69. 69.
    P. -S. Song, E. B. Walker, R. A. Auerbach, and G. W. Robinson, Proton release from Stentor photoreceptors in the excited states, Biophys. J. 35, 551–555 (1981).PubMedCrossRefGoogle Scholar
  70. 70.
    K. Iwatsuki and P. -S. Song, Deuterium oxide (D2O) enhances the photosensitivity of Stentor coeruleus, Biophys. J. 48, 1045–1048 (1985).CrossRefGoogle Scholar
  71. 71.
    R. K. Prusti, P. -S. Song, D. -P. Häder, and M. Häder, Caffeine-enhanced photomovement in the ciliate, Stentor coeruleus, Photochem. Photobiol. 40, 369–375 (1984).CrossRefGoogle Scholar
  72. 72.
    S. J. Britz, Chloroplast and nuclear migration, in: Physiology of Movements. Encyclopedia of Plant Physiology, New Ser., Vol. 7 (W. Haupt and M. E. Feinleib, eds.), pp. 170–205, Springer-Verlag, Berlin (1979).Google Scholar
  73. 73.
    G. Fischer-Arnold, Untersuchungen über die Chloroplastenbewegung bei Voucheria sessilis, Protoplasma 56, 495–520 (1963).CrossRefGoogle Scholar
  74. 74.
    E. Schonbohm, Untersuchungen über die Starklichtbewegung des Mougeoria-Chloroplasten, Z. Bot. 51, 233–276 (1963).Google Scholar
  75. 75.
    W. Haupt and R. Gartner. Die Chloroplasten-Orientierung von Mesotaenium in starkem Lict, Naturwiss. 53, 411 (1966).Google Scholar
  76. 76.
    F. Mayer, Lichtorientierte Chloroplasten-Verlagerung bei Selaginella martensii, Z. Bot. 52, 346–381 (1964).Google Scholar
  77. 77.
    J. Zurzycki, The action spectrum for the light dependent movements of the chloroplasts in Lemna trisulca L., Acta Soc. Bot. Polon. 31, 489–538 (1962).Google Scholar
  78. 78.
    K. Seitz, Zur Frage der Jodid-Wirkung auf die Starklichtbewegungen der Chloropiaten von Vallisneria spiralis ssp. torta, Z. Pflanzenphysiol. 62, 63–69 (1970).Google Scholar
  79. 79.
    W. Haupt, Die Chloroplastendrehung bei Mougeotia. I. Mitteilung: über den quantitativen und qualitativen Lichtbedarf der Schwachlicht bewegung, Planta 53, 484–501 (1959).CrossRefGoogle Scholar
  80. 80.
    W. Haupt and G. Wagner, in: Membranes and Sensory Transduction (G. Colombetti and F. Lenci, eds.), pp. 331–375, Plenum Press, New York (1984).CrossRefGoogle Scholar
  81. 81.
    E. Schonbohm, in: Blue Light Syndrome (H. Senger, ed.), pp. 69–96, Springer-Verlag, Berlin (1980).CrossRefGoogle Scholar
  82. 82.
    W. Haupt, in: Handbook of Phycological Methods: Development and Cytological Methods (E. Gantt, ed.), pp. 196–204, Cambridge University Press, Cambridge (1980).Google Scholar
  83. 83.
    P. -S. Song, Q. Chae, and J. G. Gardner, Spectroscopic properties and chromophore conformations of the photomorphogenic receptor: Phytochrome, Biochim. Biophys. Acta 476, 479–495 (1979).Google Scholar
  84. 84.
    W. Rudiger, F. Thummler, E. Cmiel, and S. Schneider, Chromophore structure of the physiologically active form (Pfr) of phytochrome, Proc. Natl. Acad. Sci. USA 80, 6244–6248 (1983).PubMedCrossRefGoogle Scholar
  85. 85.
    N. G. A. Ekelund, C. Sundqvist, P. H. Quail, and R. D. Vierstra, Chromophore rotation in 124-kilodalton Avena phytochrome as measured by light-induced changes in linear dichroism, Photochem. Photobiol. 41, 221–223 (1985).CrossRefGoogle Scholar
  86. 86.
    T. R. Hahn, P. -S. Song, P. J. Quail, and R. D. Vierstra, Tetranitromethane oxidation of phytochrome chromophore as a function of spectral form and molecular weight, Plant Physiol. 74, 755–758 (1984).PubMedCrossRefGoogle Scholar
  87. 87.
    I. -S. Kim, E. S. Kim, and P. -S. Song, Interactions of phytochrome with detergents and liposomes, Biochim. Biophys. Acta 747, 55–64 (1983).CrossRefGoogle Scholar
  88. 88.
    M. Furuya, J. H. Freer, A. Ellis, and K. T. Yamomoto, Electrostatic binding of proteins and phytochrome to differently charged liposomes, Plant Cell Physiol. 22, 135–144 (1981).Google Scholar
  89. 89.
    I. -S. Kim and P. -S. Song, Binding of phytochrome to liposomes and oat protoplasts, Biochemistry 20, 5482–5489 (1981).PubMedCrossRefGoogle Scholar
  90. 90.
    G. Hermann, A. Hattenbach, and E. Müller, Further characterization of the interaction between phytochrome and liposomes, Biochem. Physiol. Pflanzen 181, 61–67 (1986).Google Scholar
  91. 91.
    G. Wagner and K. Klein, Differential effect of calcium on chloroplast movement in Mougeotia, Photochem. Photobiol. 27, 137–140 (1978).CrossRefGoogle Scholar
  92. 92.
    E. M. Dreyer and M. H. Weisenseel, Phytochrome-mediated uptake of calcium in Mougeotia cells, Planta 146, 31–39 (1979).CrossRefGoogle Scholar
  93. 93.
    G. M. Curry and H. E. Gruen, Action spectra for the positive and negative phototropism of Phycomyces sporangiophore, Proc. Natl. Acad. Sci. USA 45, 797–804 (1959).PubMedCrossRefGoogle Scholar
  94. 94.
    G. V. Thimann and G. M. Curry, Phototropism and phototaxis, in: Comparative Biochemistry: A Comprehensive Treatise, Vol. 1 (M. Florkin and H. S. Mason, eds.), pp. 243–309, Academic Press, New York (1960).Google Scholar
  95. 95.
    M. Delbruck and W. Shropshire, Jr., Action and transmission spectra of Phycomyces, Plant Physiol. 35, 194–204 (1960).CrossRefGoogle Scholar
  96. 96.
    G. M. Curry, K. V. Thimann, and P. M. Ray, The base curvature of Avena seedlings to the ultraviolet. Physiol. Plant. 9, 429–440 (1956).CrossRefGoogle Scholar
  97. 97.
    W. Shropshire, Jr., and R. B. Withrow, Action spectrum of phototropic tip-curvature of Avena. Physiol. Plant. 33, 360–365 (1958).CrossRefGoogle Scholar
  98. 98.
    B. H. Davies, Carotenoids, in: Chemistry and Biochemistry of Plant Pigments, Vol. 2 (T. W. Goodwin, ed.), pp. 38–165, Academic Press, New York (1976).Google Scholar
  99. 99.
    P. -S. Song and T. A. Moore, On the photoreceptor pigment for phototropism and phototaxis: Is a carotenoid the most likely candidate?, Photochem. Photobiol. 19, 435–441 (1974).PubMedCrossRefGoogle Scholar
  100. 100.
    H. Beinert, Flavin coenzymes, in: The Enzymes, Vol. 2 (P. D. Boyer, H. Lardy, and K. Myrback, eds.), pp. 339–416, Academic Press, New York (1960).Google Scholar
  101. 101.
    R. Matthews and V. Massey, Forms of old yellow enzyme, in: Flavins and Flavoproteins (H. Kamin, ed.), pp. 329–348, University Park Press, Baltimore, and Butterworths, London (1971).Google Scholar
  102. 102.
    M. Sun, T. A. Moore, and P. -S. Song, Molecular luminescence studies of flavins. I. The excited states of flavins, J. Am. Chem. Soc. 94, 1730–1740 (1972).PubMedCrossRefGoogle Scholar
  103. 103.
    R. D. Vierstra and K. L. Poff, Mechanism of specific inhibition of phototropism by phenylacetic acid in corn seedling, Plant Physiol. 67, 1011–1015 (1981).PubMedCrossRefGoogle Scholar
  104. 104.
    Y. N. Jan, Properties and cellular localization of chitin synthetase in Phycomyces blakesleeanus. J. Biol. Chem. 249, 1973–1979 (1974).Google Scholar
  105. 105.
    M. Iino and W. R. Briggs, Growth distribution during first positive phototropic curvature of maize coleoptiles, Plant Cell Environ. 7, 97–104 (1984).CrossRefGoogle Scholar
  106. 106.
    W. Shropshire, Jr., The lens effect and phototropism of Phycomyces. J. Gen. Physiol. 45, 949–958 (1962).PubMedCrossRefGoogle Scholar
  107. 107.
    R. D. Vierstra and K. L. Poff, Role of carotenoids in the phototropic response of corn seedlings. Plant Physiol. 68, 798–801 (1981).PubMedCrossRefGoogle Scholar
  108. 108.
    K. C. Yang, R. K. Prusti, P. S. Song, M. Watanabe, and M. Furuya, Photodynamic action in Stentor coeruleus sensitized by endogenous pigment stentorin, Photochem. Photobiol. 43, 305–310 (1986).PubMedCrossRefGoogle Scholar
  109. 109.
    R. B. Forward, Jr., Light and diurnal vertical migration: Photobehavior and photophysiology of plankton, in: Photochem. Photobiol. Rev. Vol. 1 (K. C. Smith, ed.), pp. 157–209, Plenum Press, New York (1976).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Pill-Soon Song
    • 1
  • Kenneth L. Poff
    • 2
  1. 1.Department of Chemistry and Section of Molecular Plant Biology, School of Biological SciencesUniversity of NebraskaLincolnUSA
  2. 2.MSU/DOE Plant Research LaboratoryMichigan State UniversityEast LansingUSA

Personalised recommendations