Advertisement

Fine Structure and Function of the Ear

  • Christopher Platt
  • Arthur N. Popper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

One of the most striking features in the auditory system of fishes is the extensive structural diversity in the inner ear and its peripheral accessories. In this chapter we will summarize this diversity in the ear, from the gross structure to the ultrastructure of the sensory epithelia, and suggest some of the possible functional meanings for these structural differences. We hope that this discussion will stimulate interest in pursuing direct experimentation on the function of the fish ear in order to fill in the gaps in our understanding of peripheral auditory mechanisms. Two major points will be stressed throughout this chapter. First, we feel that dividing up of auditory and vestibular functions between the different otolithic organs of the ear may not be as absolute as has been often implied, so it may be necessary to reconsider some of the basic “classical” assumptions of auditory organ functions, at least with regard to the teleost ear. Second, we suggest that the notion of a functionally or structurally “typical teleost ear” is no longer tenable, since the breadth of interspecific structural variation in teleost ears may imply significant functional variation.

Keywords

Hair Cell Semicircular Canal Sound Production Sensory Epithelium Otolith Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, L. A.: Some characteristics of otoliths of American Ostariophysi. J. Morphol. 66, 497–523 (1940).CrossRefGoogle Scholar
  2. Baird, R.: Correspondences between structure and function in the bullfrog utricle and lagena. Soc. Neuroci. Abstr. 5, 15 (1979).Google Scholar
  3. Banner, A.: Propagation of sound in a shallow bay. J. Acoust. Soc. Am. 49, 373–376 (1971).CrossRefGoogle Scholar
  4. Barber, V. C., Emerson, C. J.: Scanning electron microscopic observations on the inner ear of the skate, Raja ocellata. Cell Tissue Res. 205, 199–215 (1980).PubMedCrossRefGoogle Scholar
  5. van Bergeijk, W. A.: Directional and nondirectional hearing in fish. In: Marine Bio-Acoustics. Tavolga, W. N. (ed.). Oxford: Pergamon Press, 1964, pp. 281–299.Google Scholar
  6. Best, A. C. G., Gray, J. A. B.: Morphology of the utricular recess in the sprat. J. Mar. Biol. Assoc. U.K. 60, 703–715 (1980).CrossRefGoogle Scholar
  7. Blaxter, J. H. S., Denton, E. J.: Function of the swimbladder-inner ear-lateral line system of herring in the young stages. J. Mar. Biol. Assoc. U.K. 56, 487–502 (1976).CrossRefGoogle Scholar
  8. Brawn, V. M.: Sound production by the cod (Gadus callarias L.). Behaviour 18, 239–255 (1961).CrossRefGoogle Scholar
  9. Budelli, R., Macadar, O.: Statoacoustic properties of utricular afferents. J. Neurophysiol. 42, 1479–1494 (1979).PubMedGoogle Scholar
  10. Carlström, D.: A crystallographic study of vertebrate otoliths. Biol. Bull. 125, 441–463 (1963).CrossRefGoogle Scholar
  11. Chapman, C. J., Hawkins, A. D.: A field study of hearing in the cod, Gadus morhua L. J. Comp. Physiol. 85, 147–167 (1973).CrossRefGoogle Scholar
  12. Chapman, C. J., Sand, O.: Field studies of hearing in two species of flatfish, Pleuronectes platessa (L.) and Limanda limanda (L.) (Family Pleuronectidae). Comp. Biochem. Physiol. 47A, 371–385 (1974).CrossRefGoogle Scholar
  13. Chardon, M.: Anatomie Comparée de l’Appareil de Weber et des Structures Connexes chez les Siluriformes. Musée Royal de l’Afrique Centrale, Annales Ser. 8 Sciences Zoologisches N° 169 (1968).Google Scholar
  14. Coombs, S., Popper, A. N.: Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. J. Comp. Physiol. 132A, 203–207 (1979).CrossRefGoogle Scholar
  15. Corey, D. P., Hudspeth, J.: Ionic basis of the receptor current in a vertebrate hair cell. Soc. Neurosci. Abstr. 5, 18 (1979).Google Scholar
  16. Corwin, J. T.: Ongoing hair cell production, maturation and degeneration in the shark ear. Soc. Neurosci. Abstr, 3, 4 (1977a).Google Scholar
  17. Corwin, J. T.: Morphology of the macula neglecta in sharks of the genus Carcharhinus. J. Morph. 152, 341–362 (1977b).CrossRefGoogle Scholar
  18. Corwin, J. T.: The relation of inner ear structure to the feeding behavior in sharks and rays. Scanning Electron Microscopy/1978, 1105–1112 (1978).Google Scholar
  19. Corwin, J. T.: Parallel channels for sound detection in the fish ear. Soc. Neurosci. Abstr. 5, 18 (1979).Google Scholar
  20. Dale, T.: The labyrinthine mechanoreceptor organs of the cod Gadus morhua L. (Teleostei: Gadidae). Norw. J. Zool. 24, 85–128 (1976).Google Scholar
  21. Demski, L. S., Gerald, J. W., Popper, A. N.: Central and peripheral mechanisms of teleost sound production. Am. Zool. 13, 1141–1167 (1973).Google Scholar
  22. Denton, E. J., Gray, J. A. B.: The analysis of sound by the sprat ear. Nature 282, 406–407 (1979).PubMedCrossRefGoogle Scholar
  23. Denton, E. J., Gray, J. A. B., Blaxter, J. H. S.: The mechanics of the clupeid acousticolateralis system: Frequency responses. J. Mar. Biol. Assoc. U.K. 59, 27–47 (1979).CrossRefGoogle Scholar
  24. de Vries, H.: The mechanics of the labyrinth otoliths. Acta Otolaryngol. 38, 262–273 (1950).CrossRefGoogle Scholar
  25. Dijkgraaf, S.: Hearing in bony fishes. Proc. R. Soc. London Ser. B 152, 51–54 (1960).CrossRefGoogle Scholar
  26. Dooling, R.: Psychophysical determinations of hearing capabilities in birds. In: Comparative Studies of Hearing in Vertebrates. Popper, A. N., Fay, R. R. (eds.). New York: Springer-Verlag 1980, pp. 261–288.CrossRefGoogle Scholar
  27. Eatock, R. A., Corey, D. P., Hudspeth, A. J.: Adaptations in a vertebrate hair cell: Stimulus-induced shift of the operating range. Soc. Neurosci. Abstr. 5, 19 (1979).Google Scholar
  28. Enger, P. S.: Single unit activity in the peripheral auditory system of a teleost fish. Acta Physiol. Scand. 59, Suppl. 210, 1–48 (1963).Google Scholar
  29. Enger, P. S.: On the orientation of haircells in the labyrinth of perch (Perca fluviatilis). In: Sound Reception in Fish. Schuijf, A. and Hawkins, A. D. (eds.). Amsterdam: Elsevier, 1976, pp. 49–62.Google Scholar
  30. Fänge, R., Larsson, Å., Lidman, V.: Fluids and jellies of the acousticolateralis system in relation to body fluids in Coryphaenoides rupestris and other fishes. Marine Biol. 17, 180–185 (1972).Google Scholar
  31. Fay, R. R.: Coding of information in single auditory nerve fibers of the goldfish. J. Acoust. Soc. Am. 63, 136–146 (1978a).CrossRefGoogle Scholar
  32. Fay, R.: Sound detection and sensory coding by the auditory systems of fishes. In: The Behavior of Fish and Other Aquatic Animals. Mostofsky, D. (ed.). New York: Academic Press, 1978b, pp. 197–236.Google Scholar
  33. Fay, R. R.: Phase-locking in goldfish saccular nerve fibers accounts for frequency discrimination capacities. Nature 275, 320–322 (1978c).CrossRefGoogle Scholar
  34. Fay, R. R., Olsho, L.: Discharge patterns of lagenar and saccular neurons of the goldfish eighth nerve: Displacement sensitivity and directional characteristics. Comp. Biochem. Physiol. 62A, 377–386 (1979).CrossRefGoogle Scholar
  35. Fay, R. R., Popper, A. N.: Acoustic stimulation of the ear of the goldfish (Carassius auratus). J. Exp. Biol. 61, 243–260 (1974).PubMedGoogle Scholar
  36. Fay, R. R., Popper, A. N.: Modes of stimulation of the teleost ear. J. Exp. Biol. 62, 379–387 (1975).PubMedGoogle Scholar
  37. Fay, R. R., Popper, A. N.: Structure and function in teleost auditory systems: In Comparative Studies of Hearing in Vertebrates. Popper, A. N., Fay, R. R. (eds.). New York: Springer-Verlag, 1980, pp. 1–42.Google Scholar
  38. Fine, M., Winn, H., Olla, B.: Communication in fishes. In: How Animals Communicate. Sebeok, T. (ed.). Bloomington: Indiana University Press, 1977, pp. 472–518.Google Scholar
  39. Fish, J. F., Offutt, G. C.: Hearing thresholds from toadfish, Opsanus tau, measured in the laboratory and field. J. Acoust. Soc. Am. 51, 1318–1321 (1972).PubMedCrossRefGoogle Scholar
  40. Flock, Å.: Structure of the macula utriculi with special reference to directional interplay of sensory responses as revealed by morphological polarization. J. Cell Biol. 22, 413–431 (1964).PubMedCrossRefGoogle Scholar
  41. Flock, Å.: Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta Otolargyngol. Suppl. 199, 1–90 (1965).Google Scholar
  42. Furukawa, T.: Sites of termination on the saccular macula of auditory nerve fibers in the goldfish as determined by intracellular injections of procion yellow. J. Comp. Neurol. 180, 807–814 (1978).PubMedCrossRefGoogle Scholar
  43. Furukawa, T., Ishii, Y.: Neurophysiological studies on hearing in goldfish. J. Neurophysiol. 30, 1377–1403 (1967a).Google Scholar
  44. Furukawa, T., Ishii, Y.: Effects of static bending of sensory hairs on sound reception in the goldfish. Jpn. J. Physiol. 17, 572–588 (1967b).CrossRefGoogle Scholar
  45. Gerald, J. W.: Sound production during courtship in six species of sunfish (Centrarchidae). Evolution 25, 75–87 (1971).CrossRefGoogle Scholar
  46. Greenwood, P. H.: Interrelationships of osteoglossomorphs. In: Interrelationships of Fishes. Greenwood, P. H., Miles, R. S., Patterson, C. (eds.). London: Academic Press, 1973, pp. 307–332.Google Scholar
  47. Greenwood, P. H., Rosen, D. E., Weitzman, S. T., Myers, G. S.: Phyletic studies of teleost fishes, with a provisional classification of living forms. Bull. Am. Mus. Nat. Hist. 131, 339–456 (1966).Google Scholar
  48. Hama, K.: A study on the fine structure of the saccular macula of the gold fish. Z. Zellforsch. 94, 155–171 (1969).PubMedCrossRefGoogle Scholar
  49. Hama, K., Saito, K.: Gap junctions between the supporting cells in acoustico-vestibular receptors. J. Neurocytol. 6, 1–12 (1977).PubMedCrossRefGoogle Scholar
  50. Hawkins, A. D., Johnstone, A. D. F.: The hearing of the Atlantic salmon, Salmo salar. J. Fish Biol. 13, 655–673 (1978).CrossRefGoogle Scholar
  51. Highstein, S. M., Politoff, A. L.: Relation of interspike baseline activity to the spontaneous discharges of primary afferent fibers from the labyrinth of the toadfish, Opsanus tau. Brain Res. 150, 182–187 (1978).PubMedCrossRefGoogle Scholar
  52. Hoshino, T.: An electron microscopic study of the otolithic maculae of the lamprey (Entosphenus japonicus). Acta Otolaryngol. 80, 43–53 (1975).PubMedCrossRefGoogle Scholar
  53. Hudspeth, A. J., Corey, D. P.: Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Nat. Acad. Sci. 74, 2407–2411 (1977).PubMedCrossRefGoogle Scholar
  54. Hudspeth, A. J., Jacobs, R.: Stereocilia mediate transduction in vertebrate hair cells. Proc. Nat. Acad. Sci. 76, 1506–1509 (1979).PubMedCrossRefGoogle Scholar
  55. Iversen, R. T. B.: Response of the yellowfin tuna (Thunnus albacares) to underwater sound. In: Marine Bio-Acoustics II. Tavolga, W. N. (ed.). Oxford: Pergamon Press, 1967, pp. 105–121.Google Scholar
  56. Jacobs, D. W., Tavolga, W. N.: Acoustic intensity limens in the goldfish. Anim. Behav. 15, 324–335 (1967).PubMedCrossRefGoogle Scholar
  57. Jenkins, D. B.: A light microscopic study of the saccule and lagena in certain catfishes. Am. J. Anat. 150, 605–629 (1977).PubMedCrossRefGoogle Scholar
  58. Jenkins, D. B.: A transmission and scanning electron microscopic study of the saccule in five species of catfishes. Am. J. Anat. 154, 81–101 (1979a).CrossRefGoogle Scholar
  59. Jenkins, D. B.: Anatomical investigation of the saccule in Clarius batrachus. Scanning Electron Microscopy/1979, 949–954 (1979b).Google Scholar
  60. JØrgensen, J. M.: Hair cell polarization in the flatfish inner ear. Acta Zool. 57, 37–39 (1976).CrossRefGoogle Scholar
  61. Lewis, E. R., Li, C. W.: Hair cell types and distributions in the otolithic and auditory organs of the bullfrog. Brain Res. 83, 35–50 (1975).CrossRefGoogle Scholar
  62. Lewis, E. R., Leverenz, E. L.: Direct evidence for an auditory place mechanism in the frog amphibian papilla. Soc. Neurosci. Abstr. 5, 25 (1979).Google Scholar
  63. Lindeman, H. H.: Regional differences in structure of the vestibular sensory regions. J. Laryngol. Otol. 83, 1–17 (1969).PubMedCrossRefGoogle Scholar
  64. Lowenstein, O.: The electrophysiological study of the responses of the isolated labyrinth of the lamprey (Lampetra fluviatilis) to angular acceleration, tilting and mechanical vibration. Proc. R. Soc. London Ser. B 174, 419–434 (1970).CrossRefGoogle Scholar
  65. Lowenstein, O.: The labyrinth. In: Fish Physiology, Vol. 5. Hoar, W. S., Randall, D. J. (eds.). New York: Academic Press, 1971, pp. 207–240.Google Scholar
  66. Lowenstein, O.: Comparative morphology and physiology. In: Handbook of Sensory Physiology, Vol. VI/1. Kornhumber, H. H. (ed.). New York: Springer, 1974, pp. 75–120.Google Scholar
  67. Lowenstein, O., Osborne, M. P., Thornhill, R. A.: The anatomy and ultrastructure of the labyrinth of the lamprey (Lampetra fluviatilis L.). Proc. R. Soc. London Ser.B 170, 113–134(1968).CrossRefGoogle Scholar
  68. Lowenstein, O., Osborne, M. P., Wersäll, J.: Structure and innervation of the sensory epithelia of the labyrinth in the thornback ray (Raja clavata). Proc. R. Soc. London Ser. B 160, 1–12 (1964).CrossRefGoogle Scholar
  69. Lowenstein, O., Roberts, T. D. M.: The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates. J. Physiol. (Lond.) 114, 471–489 (1951).Google Scholar
  70. Lowenstein, O., Wersäll, J.: A functional interpretation of the electron-microscopic structure of the sensory hairs in the cristae of the elasmobranch Raja clavata in terms of directional sensitivity. Nature 184, 1807–1808 (1959).CrossRefGoogle Scholar
  71. Marler, P.: Some characteristics of some animal cells. Nature 176, 6–7 (1955).CrossRefGoogle Scholar
  72. Marler, P.: Structure of animal communication sounds. In: Recognition of Complex Acoustic Signals. Bullock, T. (ed.). West Germany: Dahlem Konferenzen, 1977, pp. 17–35.Google Scholar
  73. Marshall, N. B.: Sound-producing mechanisms and the biology of deep-sea fishes. In: Marine Bio-Acoustics II. Tavolga, W. N. (ed.). Oxford: Pergamon Press, 1967, pp. 123–133.Google Scholar
  74. Michelsen, A.: Sound reception in different environments. In: Sensory Ecology. Ali, M. A. (ed.). New York: Plenum Press, 1978, pp. 345–373.CrossRefGoogle Scholar
  75. Miller, M. R.: The reptilian cochlear duct. In: Comparative Studies of Hearing in Vertebrates. Popper, A. N., Fay, R. R. (eds.). New York: Springer-Verlag, 1980, pp. 169–204.CrossRefGoogle Scholar
  76. Morton, E.: Ecological sources of selection on avian sound. Am. Nat. 109, 17–34 (1975).CrossRefGoogle Scholar
  77. Myrberg, A. A., Jr., Kramer, E., Heinecke, P.: Sound production by cichlid fishes. Science 149, 555–558 (1965).PubMedCrossRefGoogle Scholar
  78. Myrberg, A. A., Jr., Spanier, E., Ha, S. J.: Temporal patterning in acoustical communication. In: Contrasts in Behavior. Reese, E. S., Lighter, F. (eds.). New York: Wiley, 1978, pp. 137–180.Google Scholar
  79. Myrberg, A. A., Jr., Spires, J. Y.: Sound discrimination by the bicolor damselfish, Eupomacentrus partitus. J. Exp. Biol. 57, 727–735 (1972).Google Scholar
  80. Nakajima, Y., Wang, D. W.: Morphology of afferent and efferent synapses in the hearing organ of the goldfish. J. Comp. Neurol. 156, 403–416 (1974).PubMedCrossRefGoogle Scholar
  81. Oman, C. M., Frishkopf, L. S., Goldstein, M. H., Jr.: Cupula motion in the semicircular canal of the skate, Raja erinacea. Acta Otolaryngol. 87, 528–538 (1979).PubMedCrossRefGoogle Scholar
  82. Platt, C.: Central control of postural orientation in flatfish. I. Postural change dependence on central neural changes. J. Exp. Biol. 59, 491–521 (1973).PubMedGoogle Scholar
  83. Platt, C.: Asymmetry of semicircular canal-extraocular muscle function in flatfish. Soc. Neurosci. Abstr. 2, 1060 (1976).Google Scholar
  84. Platt, C.: Hair cell distribution and orientation in goldfish otolith organs. J. Comp. Neurol. 172, 283–298 (1977).PubMedCrossRefGoogle Scholar
  85. Platt, C.: The peripheral vestibular system in fishes. In: Fish Neurobiology and Behavior. Northcutt, R. G., Davis, R. E. (eds.). Ann Arbor: Univ. of Michigan Press, 1981 (in press).Google Scholar
  86. Platt, C., Popper, A. N.: Otolith organ receptor morphology in herring-like fishes. In: Vestibular Function and Morphology. Gualtierotti, T. (ed.). New York: SpringerVerlag, 1981 (in press).Google Scholar
  87. Poggendorf, D.: Die absoluten Hörschwellen des Zwergwelses (Ameiurus nebulosus) und Beiträge zur Physik des Weberschen Apparate der Ostariophysen. Z. Vergl. Physiol. 34, 222–257 (1952).CrossRefGoogle Scholar
  88. Popper, A. N.: Auditory threshold in the goldfish (Carassius auratus) as a function of signal duration. J. Acoust. Soc. Am. 52, 596–602 (1972).CrossRefGoogle Scholar
  89. Popper, A. N.: Ultrastructure of the auditory regions in the inner ear of the lake whitefish. Science 192, 1020–1023 (1976).PubMedCrossRefGoogle Scholar
  90. Popper, A. N.: A scanning electron microscopic study of the sacculus and lagena in the ears of fifteen species of teleost fishes. J. Morphol. 153, 397–417 (1977).CrossRefGoogle Scholar
  91. Popper, A. N.: Scanning electron microscopic study of the otolithic organs in the bichir (Polypterus bichir) and shovel-nose sturgeon (Scaphirhynchus platorynchus). J. Comp. Neurol. 181, 117–128 (1978a).CrossRefGoogle Scholar
  92. Popper, A. N.: A comparative study of the otolithic organs in fishes. Scanning Electron Microscopy, II, 405–416 (1978b).Google Scholar
  93. Popper, A. N.: The ultrastructure of the sacculus and lagena in a moray eel (Gymnothorax sp.). J. Morphol. 161, 241–256 (1979a).CrossRefGoogle Scholar
  94. Popper, A. N.: Inner ear auditory receptors in Osteoglossomorph fishes. Soc. Neurosci. Abstr. 5, 29 (1979b).Google Scholar
  95. Popper, A. N.: Scanning electron microscopic study of the sacculus and lagena in several deep sea fishes. Am. J. Anat. 157, 115–136 (1980).PubMedCrossRefGoogle Scholar
  96. Popper, A. N.: Organization of the inner ear and auditory processing. In: Fish Neurobiology and Behavior. Northcutt, R. G., Davis, R. E. (eds.). Ann Arbor: Univ. of Michigan Press, 1981, (in press).Google Scholar
  97. Popper, A. N., Coombs, S.: Auditory mechanisms in teleost fishes. Am. Sci. 68, 429–440 (1980a).Google Scholar
  98. Popper, A. N., Coombs, S.: Acoustic detection by fish. In: Environmental Physiology of Fish. Ali, M. A. (ed.). New York: Plenum Press, 1980b, pp. 403–430.Google Scholar
  99. Popper, A. N., Fay, R. R.: Sound detection and processing by teleost fishes: A critical review. J. Acoust. Soc. Am. 53, 1515–1529 (1973).PubMedCrossRefGoogle Scholar
  100. Popper, A. N., Platt, C.: The herring ear has a unique receptor pattern. Nature 280, 832–833 (1979).PubMedCrossRefGoogle Scholar
  101. Popper, A. N., Tavolga, W. N.: Structure and function of the ear in the marine catfish, Arius felis. J. Comp. Physiol. (in press).Google Scholar
  102. Retzius, G.: Das Gehörorgan der Wirbelthiere: morphologisch-histologische Studien, Vol. 1. Das Gehörorgan der Fische und Amphibien. Stockholm: Samson and Wallin, 1881, 221 pp.Google Scholar
  103. Saito, K.: Fine structure of macula of lagena in the teleost inner ear. Kaibogaku Zasshi. Acta Anatomica Nipponica 48, 1–18 (1973).PubMedGoogle Scholar
  104. Salmon, M.: Acoustical behavior of the menpachi, Myripristis berndti, in Hawaii. Pacific Sci. 21, 364–381 (1967).Google Scholar
  105. Sand, O.: Directional sensitivity of microphonic potentials from the perch ear. J. Exp. Biol. 60, 881–899 (1974).PubMedGoogle Scholar
  106. Sand, O., Enger, P. S.: Possible mechanisms for directional hearing and pitch discrimination in fish. Rheinisch-Westfal. Akad. Wiss. 53, 223–242 (1974).Google Scholar
  107. Sand, O., Michelsen, A.: Vibration measurements of the perch saccular otolith, J. Comp. Physiol. 123A, 85–89 (1978).CrossRefGoogle Scholar
  108. Schneider, H.: Die Bedeutung der Atemhöhle der Labyrinthfische für ihr Hörvermögen. Z. Vrgl. Physiol. 29, 172–194 (1941).CrossRefGoogle Scholar
  109. Schöne, H.: Über die Arbeitsweise der Statolithenapparate bei Plattfischen. Biol. Jahresh. 4, 135–156 (1964).Google Scholar
  110. Schuijf, A., Buwalda, R. J. A.: Underwater localization—A major problem in fish acoustics. In: Comparative Studies of Hearing in Vertebrates. Popper, A. N., Fay, R. R. (eds.). New York: Springer-Verlag, 1980, pp. 43–78.CrossRefGoogle Scholar
  111. Spoendlin, H.: Organization of the sensory hairs in the gravity receptors in the utricle and saccule of the squirrel monkey. Z. Zellforsch. 62, 701–716 (1964).PubMedCrossRefGoogle Scholar
  112. Spoendlin, H.: The innervation of the cochlear receptor. In: Basic Mechanisms in Hearing. Moller, A. M. (ed.). New York: Academic Press, 1973, pp. 185–230.Google Scholar
  113. Steinhausen, W.: Über die Beobachtung der Cupula in den Bogengangsampullen des Labyrinths des lebenden Hechts. Pfluegers Arch. Ges. Physiol. 232, 500–512(1933).CrossRefGoogle Scholar
  114. Stipetić, E.: Über das Gehörorgan der Mormyriden. Z. Vergl. Physiol. 26, 740–752 (1939).CrossRefGoogle Scholar
  115. Strelioff, D., Honrubia, V.: Neural transduction in Xenopus laevis lateral line system. J. Neurophysiol. 41, 432–444 (1978).PubMedGoogle Scholar
  116. Tavolga, W. N.: Sonic characteristics and mechanisms in marine fishes. In: Marine Bio-Acoustics. Tavolga, W. N. (ed.). Oxford: Pergamon Press, 1964, pp. 195–211.Google Scholar
  117. Tavolga, W. N.: Sound production and detection. In: Fish Physiology, Vol. 5. Hoar, W. S., Randall, D. J. (eds.). New York: Academic Press, 1971, pp. 135–205.Google Scholar
  118. Tavolga, W. N.: Signal/noise ratio and the critical band in fishes. J. Acoust. Soc. Am. 55(6), 1323–1333 (1974).PubMedCrossRefGoogle Scholar
  119. Tavolga, W. N.: Recent advances in the study of fish audition. In: Sound Reception in Fishes. Benchmark Papers in Animal Behavior, Vol. 7. Tavolga, W. N. (ed.). Stroudsburg, Pa.: Dowden, Hutchinson and Ross, 1976, pp. 37–49.Google Scholar
  120. Tavolga, W. N.: Recent advances in the study of sound production in fishes. In: Sound Production in Fishes. Benchmark Papers in Animal Behavior, Vol. 9. Tavolga, W. N. (ed.). Stroudsburg, Pa.: Dowden, Hutchinson and Ross, 1977a, pp. 45–53.Google Scholar
  121. Tavolga, W. N.: Mechanisms for directional hearing in the sea catfish (Arius felis). J. Exp. Biol. 67, 97–115 (1977b).Google Scholar
  122. Tavolga, W. N., Wodinsky, J.: Auditory capacities in fish. Pure tone thresholds in nine species of marine teleosts. Bull. Am. Mus. Nat. Hist. 126, 177–239 (1963).Google Scholar
  123. von Békésy, G.: Experiments in Hearing. New York: McGraw-Hill, 1960.Google Scholar
  124. von Frisch, K.: Über den Gehörsinn der Fische. Biol. Rev. 11, 210–246 (1936).CrossRefGoogle Scholar
  125. von Frisch, K.: Die Arbeitsweise des Statolithenapparates bei Fischen. Z. Vergl. Physiol. 32, 60–120 (1950).CrossRefGoogle Scholar
  126. Wegner, N. T.: The orientation of hair cells in the otolithic organs and papilla neglecta in the inner ear of the Anabantid fish Colisa labiosa (Day). Acta Zool. (Stockholm) 60, 205–216 (1979).Google Scholar
  127. Weiss, T. F., Mulroy, M. J., Turner, R. G., Pike, C. L.: Tuning of single fibers in the cochlear nerve of the alligator lizard: Relation to receptor morphology. Brain Res. 115, 71–90 (1976).PubMedCrossRefGoogle Scholar
  128. Werner, C. F.: Experimente über die Funktion der Otolithen bei Knochenfischen. Z. Vergl. Physiol. 10, 26–35 (1929).CrossRefGoogle Scholar
  129. Werner, C. F.: Das Gehörorgan der Wirbeltiere und des Menschen. Leipzig: G. Thieme, 1960.Google Scholar
  130. Wersäll, J.: Vestibular receptor cells in fish and mammals. Acta Otolaryngol. Suppl. 163, 25–29 (1961).Google Scholar
  131. Wersäll, J., Bagger-Sjöbäck, D.: Morphology of the vestibular apparatus. In: Handbook of Sensory Physiology, Vol. VI/1. Kornhuber, H. H. (ed.). New York: SpringerVerlag, 1974, pp. 123–170.Google Scholar
  132. Wersäu, J., Flock, Å., Lundquist, P.-G.: Structural basis for directional sensitivity in cochlear and vestibular sensory receptors. Cold Spring Harbor Symp. Quant. Biol. 30, 115–132 (1965).CrossRefGoogle Scholar
  133. Wersällu, J., Gleisner, L., Lundquist, P.-G.: Ultrastructure of the vestibular sense organs. In: Myotatic, Kinesthetic and Vestibular Mechanisms, de Reuck, A. V. S., Knight, J. (eds.). Boston: Little, Brown, 1967, pp. 105–120.Google Scholar
  134. Wever, E. G.: Cochlear stimulation and Lempert’s mobilization theory. Principles and methods. Arch. Otolaryngol. 90, 68–73 (1969).CrossRefGoogle Scholar
  135. Wever, E. G.: The Reptile Ear. Princeton: Princeton Univ. Press, 1978, 1024 pp.Google Scholar
  136. Winn, H. E.: Acoustic discrimination by the toadfish with comments on Signal systems. In: Behavior of Marine Animals, Vol. 2. Winn, H. E., Olla, B. L. (eds.). New York: Plenum Press, 1972, pp. 361–385.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Christopher Platt
    • 1
  • Arthur N. Popper
    • 2
  1. 1.Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Anatomy, Schools of Medicine and DentistryGeorgetown UniversityUSA

Personalised recommendations