Advertisement

Limits of Information Processing Systems

  • Robert W. Keyes
Part of the Frontiers of Computing Systems Research book series (FCSR, volume 2)

Abstract

The explosive increase in the power of computers through the past three decades is well-known and well-documented; see, for example, [1,2,3]. Computers are systems, in the sense that they are built from a large number of components that must all work together to attain a desired end.1 The design and performance of such a complex system of many components has not yet been brought under the rule of quantitative science. Indeed, there are many aspects of system design that are matters of subjective opinion, and upon which responsible designers differ. Here we propose to identify widely applicable features of computer systems that are related to the physical nature of the world, and then to inquire into the role of those physical characteristics in limiting the size, performance, and extendibility of computational systems.

Keywords

Heat Transfer Coefficient Information Processing System Main Memory Bipolar Transistor Memory Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.E. Jones, W.C. Holton and R. Stratton, IEEE Proceedings, 70, pp. 1380–1409 (1982).CrossRefGoogle Scholar
  2. [2]
    S. Augarten, State of the Art, Ticknor & Fields: New York, (1983).Google Scholar
  3. [3]
    C.J. Bashe, L.R. Johnson, J.H. Palmer and E.W. Pugh, IBM’s Early Computers, MIT Press: Cambridge Mass. (1986).Google Scholar
  4. [4]
    R.R. Tummala and E.J. Rymaszewski, Microelectronics Packaging Handbook, Van Nostrand-Reinhold: New York (1989).Google Scholar
  5. [5]
    R.W. Keyes, Science 168, pp. 796–801 (1970).CrossRefGoogle Scholar
  6. [6]
    R.W. Keyes, The evolution of digital electronics towards VLSI, IEEE Journal of Solid-state Circuits, 14, pp. 193–201 (1979).CrossRefGoogle Scholar
  7. [7]
    R.W. Hockney and C.R. Jesshope, Parallel Computers — Architecture, Programming, and Algorithms, Adam Hilger: Bristol, England (1981).zbMATHGoogle Scholar
  8. [8]
    U. Stauffer et al., J. Vac. Sci. Tech. A, 6, pp. 537–9 (1988).CrossRefGoogle Scholar
  9. [9]
    A.E. Bell, K. Rao and L.W. Swanson, J. Vac. Sci. Tech. B, 6, 306–10 (1988).CrossRefGoogle Scholar
  10. [10]
    S.M. Sze, Physics of Semiconductor Devices, 2nd Edition, John Wiley and Sons: New York (1981).Google Scholar
  11. [11]
    G.A. Sai-Halasz et al., IEEE Electron Dev. Letters, EDL-8, pp. 463–6 (1987).CrossRefGoogle Scholar
  12. [12]
    M. Heiblum, and L.F. Eastman, Scientific American, 256 (2), 64–73 (Feb. 1987).CrossRefGoogle Scholar
  13. [13]
    B. Hoeneisen and C.A. Mead, Solid-State Electr. 15, pp. 819–829 (1972).CrossRefGoogle Scholar
  14. [14]
    R.W. Keyes, in Advances in Electronics and Electron Physics, vol. 70, P. Hawkes (Ed.), Academic Press: New York, pp. 159–214 (1988).Google Scholar
  15. [15]
    J.A. del Alamo and R.M. Swanson, IEEE Electr. Dev. Letters, EDL-7, pp. 629–631 (1986).CrossRefGoogle Scholar
  16. [16]
    H. Kroemer, Proc. IEEE, 70, p. 13 (1982).CrossRefGoogle Scholar
  17. [17]
    B. Hoefflinger, in Large Scale Integrated Circuits Technology, Marti-nus Nijhoff: Hague, pp. 399–456 (1982).Google Scholar
  18. [18]
    S.P. Gentile, Theory and Application of Tunnel Diodes, van Nostrand: Princeton, NJ, Chapter 8.III (1962).Google Scholar
  19. [19]
    J. Matisoo, Proc. IEEE, 55, p. 172 (1967).CrossRefGoogle Scholar
  20. [20]
    R.W. Keyes, Science 230, pp. 138–144 (1985).CrossRefGoogle Scholar
  21. [21]
    R.W. Keyes, Reviews of Modern Physics, 61, pp. 279–287 (1989).CrossRefGoogle Scholar
  22. [22]
    S. Datta et al., Appl. Phys. Letters, 48, pp. 487–489 (1986).CrossRefGoogle Scholar
  23. [23]
    S. Datta et al., Phys. Rev. Letters 55, p. 2344 (1985).CrossRefGoogle Scholar
  24. [24]
    R.A. Webb et al., Phys. Rev. Letters 54, p. 2696 (1985).CrossRefGoogle Scholar
  25. [25]
    F.P. Milliken et al., Phys. Rev. Letters, 36, pp. 4465–8 (1987).Google Scholar
  26. [26]
    C.P. Umbach et al., Appl. Phys. Letters, 50, pp. 1289–91 (1987).CrossRefGoogle Scholar
  27. [27]
    D.V. Averin, and K. K. Likharev, SQUID’85, H. Luebbig and H.-D. Hahlbohm (Eds.), W. de Gruyter: Berlin, p. 197 (1985).Google Scholar
  28. [28]
    T.A. Fulton and G.J. Dolan, Phys. Rev. Letters, 59, pp. 109–112 (1987).CrossRefGoogle Scholar
  29. [29]
    R.W. Keyes, IEEE Spectrum, 6(5), pp. 36–45 (1969).CrossRefGoogle Scholar
  30. [30]
    E.L. Cohen, G.M. King and J.T. Brady, IBM Systems J., 28, pp. 62–76 (1989).CrossRefGoogle Scholar
  31. [31]
    R.W. Keyes, IEEE J. Solid-State Circuits, SC-17, pp. 1232–1233 (1982).CrossRefGoogle Scholar
  32. [32]
    A.J. Blodgett, Scientific American, 121 (1), pp. 86–96 (1983).CrossRefGoogle Scholar
  33. [33]
    D. Seraphin and I. Fineberg, IBM J. Res. Dev., 25, pp. 617–629 (1981).CrossRefGoogle Scholar
  34. [34]
    G.P. Harnwell, Principles of Electricity and Electromagnetism, McGraw-Hill: New York, Chapter XIV (1938).Google Scholar
  35. [35]
    R.W. Keyes, The Physics of VLSI Systems, Addison-Wesley: Wok ingham, England (1987).Google Scholar
  36. [36]
    P.C. Magnusson, Transmission Lines and Wave Propagation, Allyn and Bacon: Boston (1965).Google Scholar
  37. [37]
    W.R. Heller, C.G. Hsi and W.F. Mikhail, IEEE Design Test, pp. 43–51 (August 1984).Google Scholar
  38. [38]
    C.W. Ho et al., IBM J. Res. Dev. 26, pp. 286–296 (1982).CrossRefGoogle Scholar
  39. [39]
    T. Watari and H. Murano, IEEE Trans. Comp. Hybrids Manuf. Tech., CHMT-8, pp. 562–467 (1986).Google Scholar
  40. [40]
    C. Jesshope and W. Moore (Eds.), Wafer Scaie Integration, Adam Hilger: Bristol (1985).Google Scholar
  41. [41]
    J.F. McDonald et al., J. Vac. Sci. Tech. A4, pp. 327–38 (1986).Google Scholar
  42. [42]
    W.R. Heller, W.E. Donath and W.F. Mikhail, Proceedings of the 14th Design Automation Conference, New Orleans, pp. 32–43 (1977).Google Scholar
  43. [43]
    R.W. Keyes, Materials Research Society Symposium, Proceedings, Electronic Packaging Materials Science HI, vol. 108, pp. 3–12 (1988).Google Scholar
  44. [44]
    L.A. Hornak, S.K. Tewksbury and M. Hatamian, Proc. 38th Electr. Comp. Conf., pp. 152–158 (1988).Google Scholar
  45. [45]
    T. Vacca et al., VLSI Systems Design 10 (6), pp. 80–88 (1987).Google Scholar
  46. [46]
    D.M. Carlson et al., IEEE Trans. Electr. Dev., ED-36, pp. 1404–1413 (1989).CrossRefGoogle Scholar
  47. [47]
    R.J. Beall, Packaging for a supercomputer, INTERCON Technical Papers, IEEE: New York, paper 18/3 (1974).Google Scholar
  48. [48]
    H. Tamura, Y. Shinkai and F. Isobe, Fujitsu Sci. and Tech. J., 21, pp. 90–108 (1985).Google Scholar
  49. [49]
    S. Oktay, R.J. Hanneman and A. Bar-Cohen, Mechanical Engineering, 108 (3), pp. 36–42 (1986).Google Scholar
  50. [50]
    D.B. Tuckerman and R.F.W. Pease, IEEE Electron Device Letters EDL-2, pp. 126–129 (1981).CrossRefGoogle Scholar
  51. [51]
    W.M. Kays and M.E. Crawford, Convective Heat and Mass Transfer, McGraw-Hill: New York (1980).Google Scholar
  52. [52]
    R.W. Keyes, IEEE Trans. Electr. Dev. ED-31, pp. 1218–1221 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Robert W. Keyes
    • 1
  1. 1.IBM Research DivisionYorktown HeightsUSA

Personalised recommendations