Food Webs pp 81-95 | Cite as

Nutrient Transport and Recycling by Consumers in Lake Food Webs: Implications for Algal Communities

  • Michael J. Vanni


Ecologists have recently focused much attention on quantifying the strengths and relative importance of resource-based (bottom-up) and predator-based (top-down) forces in food webs (e.g., Hunter and Price (1992), Power (1992), and Strong (1992)). Resource abundance and quality can have strong effects on the composition and dynamics of food webs, particularly primary producer assemblages (Tilman, 1982). Predators also have strong influences on lower trophic levels. Top predators in food webs may regulate the abundance of species at lower trophic levels; when the effects of top predators extend through the food web all the way to the primary producers the result is called a trophic cascade effect (Paine, 1980; Carpenter et al., 1985, 1987; McQueen et al., 1986; Power, 1990; Vanni et al., 1990).


Fish Assemblage Phytoplankton Community Nutrient Transport Lower Trophic Level American Fishery Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, T. and D. O. Hessen. 1991. Carbon, nitrogen and phosphorus content of freshwater zooplankton. Limnology and Oceanography 36: 807–813.CrossRefGoogle Scholar
  2. Andersson, G., W. Granéli, and J. Stenson. 1988. The influence of animals on phosphorus cycling in lake ecosystems. Hydrobiologia 170: 267284.Google Scholar
  3. Barko, J W. and R. M. Smart. 1980. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwater Biology 10:229238.Google Scholar
  4. Bartell, S. M. 1981. Potential impact of size-selective planktivory on P release by zooplankton. Hydrobiologia 80: 139–146.CrossRefGoogle Scholar
  5. Brabrand, A., B. A. Faafeng, and J. P. M. Nils-sen. 1990. Relative importance of phosphorus supply to phytoplankton production: Fish excretion versus external loading. Can. J. Fish Aquatic Science 47: 364–372.CrossRefGoogle Scholar
  6. Brezinski, M. A. and D. M. Nelson. 1988. Interactions between pulsed nutrient supplies and a photocycle affect phytoplankton competition for limiting nutrients in long-term culture. Journal of Phycology 24: 346–356.Google Scholar
  7. Caraco, N. F. 1993. Disturbance of the phosphorus cycle: A case of indirect effects of human activity. Trends in Ecology and Evolution 8: 5154.CrossRefGoogle Scholar
  8. Caraco, N. F., J. J. Cole, and G. E. Likens. 1990. A cross-system study of phosphorus release from lake sediments. In Comparative Analyses of Ecosystems: Patterns, Mechanisms, and Theories, eds. J. Cole, G. Lovett, and S. Findlay, pp. 241–258. Springer-Verlag, New York.Google Scholar
  9. Caraco, N. F., J. J. Cole, and G. E. Likens. 1992. New and recycled primary production in an oliogotrophic lake: Insights for summer phosphorus dynamics Limnology and Oceanography 37: 590–602.CrossRefGoogle Scholar
  10. Caraco, N. F., J. J. Cole, G. E. Likens, M. D. Mattson, and S. Nolan. 1988. A very imbalanced nutrient budget for Mirror Lake, New Hampshire, USA, Internationale Vereinigung für theoretische and angewandte Limnologie, Verhandlungen 23: 170–175.Google Scholar
  11. Caron, D. A., J. C. Goldman, and M. R. Dennett. 1988. Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles. Hydrobiologia 159: 27–40.CrossRefGoogle Scholar
  12. Carpenter, S. R. 1992. Destabilization of planktonic ecosystems and blooms of blue-green algae. In Food Web Management: A Case Study of Lake Mendota, ed. J. F. Kitchell, pp. 461482. Springer-Verlag, New York.Google Scholar
  13. Carpenter, S. R., K. L. Cottingham and D. E. Schindler. 1992a. Biotic feedbacks in lake phosphorus cycles. Trends in Ecology and Evolution 7: 332–336.PubMedCrossRefGoogle Scholar
  14. Carpenter, S. R. and J. F. Kitchell. 1988. Consumer control of lake productivity. BioScience 38: 764–769.CrossRefGoogle Scholar
  15. Carpenter, S. R. and J. F. Kitchell. 1992. Trophic cascade and biomanipulation: Interface of research and management-A reply to the comment of DeMelo et al. Limnology and Oceanography 37: 208–213.CrossRefGoogle Scholar
  16. Carpenter, S. R., J. F. Kitchell, and J. R. Hodgson. 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.CrossRefGoogle Scholar
  17. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elses, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He, and C. N. von Ende. 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 18631876.Google Scholar
  18. Carpenter, S. R., C. E. Kraft, R. Wright, X. He, P. A. Soranno, and J. R. Hodgson. 1992b. Resilience and resistance of a lake phosphorus cycle before and after food web manipulation. American Naturalist 140: 781–798.PubMedCrossRefGoogle Scholar
  19. Davis, J. A. and C. E. Boyd. 1978. Concentration of selected elements and ash in bluegill (Lep-omis macrochirus) and certain other freshwater fish. Trans. American Fisheries Society 107: 862–867.CrossRefGoogle Scholar
  20. DeAngelis, D. L. 1992. Dynamics of Nutrient Cycling and Food Webs. Chapman & Hall, London.CrossRefGoogle Scholar
  21. DeAngelis, D. L., S. M. Bartell, and A. L. Brenkert. 1989. Effects of nutrient recycling and food-chain length on resilience. American Naturalist 134: 778–805.CrossRefGoogle Scholar
  22. DeMelo, R., R. France, and D. J. McQueen. 1992. Biomanipulation: Hit or myth? Limnology and Oceanography 37: 192–207.CrossRefGoogle Scholar
  23. DeVries, D. R. and R. A. Stein. 1992. Complex interactions between fish and zooplankton: Quantifying the role of an open-water planktiyore. Canadian Journal of Fisheries and Aquatic Sciences 49: 1216–1227.CrossRefGoogle Scholar
  24. Dini, M. L., J. O’Donnell, S. R. Carpenter, M. M. Elser, J. J. Elser, and A. M. Bergquist. 1987. Daphnia size structure, vertical migration, and phosphorus redistribution. Hydrobiologia 150: 185–191.Google Scholar
  25. Durbin, A. G., S. W. Nixon, and C. A. Oviatt. 1979. Effects of the spawning migration of the alewife, ALosa pseudoharengus, on freshwater ecosystems. Ecology 60: 8–17.CrossRefGoogle Scholar
  26. Elser, J. J. 1992. Phytoplankton dynamics and the role of grazers in Castle Lake, California. Ecology 73: 887–902.CrossRefGoogle Scholar
  27. Elser, J. J., M. M. Elser, N. A. MacKay, and S. R. Carpenter. 1988. Zooplankton-mediated transitions between N- and P-limited algal growth. Limnology and Oceanography 33: 114.CrossRefGoogle Scholar
  28. Elser, J. J. and C. R. Goldman. 1991. Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnology and Oceanography 36: 64–90.CrossRefGoogle Scholar
  29. Fretwell, S. D. 1977. The regulation of plant communities by the food chains exploiting them. Perspectives in Biology and Medicine 20: 169185.Google Scholar
  30. Goldman, J. C., J. J. McCarthy, and D. G. Peavey. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215.CrossRefGoogle Scholar
  31. Hairston, N. G., F. E. Smith, and L. B. Slobodkin. 1960. Community structure, population control, and competition. American Naturalist 94: 421–425.CrossRefGoogle Scholar
  32. Heinrichs, S. M. 1982. Ontogenetic changes in the digestive tract of the larval gizzard shad, Dorosoma cepedianum. Transactions of the American Microscopical Society 101: 262–275.CrossRefGoogle Scholar
  33. Hunter, M. D. and P. W. Price. 1992. Playing chutes and ladders: Heterogeneity and the rela-tive roles of bottom-up and top-down forces in natural communities. Ecology 73: 724–732.Google Scholar
  34. Huntly, N. and R. Inouye. 1988. Pocket gophers in ecosystems: patterns and mechanisms. Bio-Science 38: 786–793.Google Scholar
  35. James, W. F. and J. W. Barko. 1991. Littoral-pelagic phosphorus dynamics during nighttime convective circulation. Limnology and Oceanography 36: 949–960.CrossRefGoogle Scholar
  36. James, W. F. and J. W. Barko. 1993. Analysis of summer phosphorus fluxes within the pelagic zone of Eau Galle Reservoir, Wisconsin. Lake and Reservoir Management 8: 61–66.CrossRefGoogle Scholar
  37. Kraft, C. E. 1992. Estimates of phosphorus cycling by fishes using a bioenergetics model. Canadian Journal of Fisheries and Aquatic Sciences.Google Scholar
  38. Krohkin, E. M. 1975. Transport of nutrients by salmon migrating from the sea into lakes. In The Coupling of Land and Water Systems, ed.A. D. Hasler, pp. 153–156. Springer-Verlag, New York.Google Scholar
  39. Lehman, J. T. 1980. Release and cycling of nutrients between planktonic algae and herbivores. Limnology and Oceanography 25: 620–632.CrossRefGoogle Scholar
  40. Lehman, J. T. and C. D. Sandgren. 1985. Species-specific rates of growth and grazing loss among freshwater algae. Limnology and Oceanography 30: 34–46.CrossRefGoogle Scholar
  41. Leibold, M. A. 1989. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. American Naturalist 134: 922–949.CrossRefGoogle Scholar
  42. Lodge, D. M., J. W. Barko, D. Strayer, J. M. Melack, G. G. Mittelbach, R. W. Howarth,B. Menge, and J. E. Titus. 1988. Spatial heterogeneity and habitat interactions in lake communities. In Complex Interactions in Lake Communities, ed. S. R. Carpenter, pp. 181–208. Springer, New York.CrossRefGoogle Scholar
  43. Mather, M.E., M.J. Vanni, T.E. Wissing, S.A. Davis and M.H. Schaus. Regeneration of nitrogen and phosphorus by bluegill and gizzard shad: Role of feeding history. Canadian Journal of Fisheries and Aquatic Sciences. In PressGoogle Scholar
  44. McQueen, D. J., J. R. Post, and E. L. Mills. 1986. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43: 1571–1581.CrossRefGoogle Scholar
  45. Menge, B. A. and J. P. Sutherland. 1987. Community regulation: Variation in disturbance, competition, and predation in relation to environmental stress and recruitment. American Naturalist 130: 730–757.CrossRefGoogle Scholar
  46. haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnology and Oceanography 30:146–156.Google Scholar
  47. Meyer, J. L. and E. T. Schultz. 1985b. Tissue condition and growth rate of corals associated with schooling fish. Limnology and Oceanography 30: 147–166.Google Scholar
  48. Meyer, J. L., E. T. Schultz, and G. S. Helfman. 1983. Fish schools: An asset to corals. Science 220: 1047–1049.PubMedCrossRefGoogle Scholar
  49. Miranda, L. E. 1983. Average ichthyomass in Texas large impoundments. Proceedings of the Texas Chapter of the American Fisheries Society 6: 58–67.Google Scholar
  50. Mittelbach, G. G. 1986. Predator-mediated habitat use: Some consequences for species interactions. Environmental Biology of Fishes 16: 159169.Google Scholar
  51. Mittelbach, G. G., C. W. Osenberg, and M. A. Leibold. 1988. Trophic relations and ontogenetic niche shifts in aquatic ecosystems. In Size-Structured Populations, eds. B. Ebenman and L. Persson, pp. 219–235. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  52. Moore, J C., P. C. de Ruiter, and H. W. Hunt. 1993. Influence of productivity on the stability or real and model ecosystems. Science 261:906–908.Google Scholar
  53. Mundahl, N. D. 1991. Sediment processing by gizzard shad, Dorosoma cepedianum, in Acton Lake, Ohio. Journal of Fish Biology 38: 565572.Google Scholar
  54. Mundahl, N. D. and T. E. Wissing. 1987. Nutritional importance of detritivory in the growth and condition of gizzard shad in an Ohio reservoir. Environmental Biology of Fishes 20: 129142.Google Scholar
  55. Mundahl, N. D. and T. E. Wissing. 1988. Selection and digestive efficiencies of gizzard shad feeding on natural detritus and two laboratory diets. Transactions of the American Fisheries Society 117:480–487.Google Scholar
  56. Naiman, R. J., C. A. Johnston, and J. C. Kelley. 1988. Alteration of North American streams by beaver. BioScience 38: 753–762.CrossRefGoogle Scholar
  57. Naud, M. and P. Magnan, 1988. Diel onshore-offshore migration in northern redbelly dance, Phoxinus eos (Cope), in relation to prey distribution in a small oligotrophic lake. Canadian Journal of Zoology 66: 1249–1253.CrossRefGoogle Scholar
  58. Oksanen, L., S. D. Fretwell, J. Arruda, and P. Niemala. 1981. Exploitation ecosystems in gradients of primary productivity. American Naturalist 131: 424–444.Google Scholar
  59. Oksanen, L., S. D. Fretwell, J. Arruda, and P. Niemala. 1981 strength, and community infrastructure. Journal of American Ecology 49: 667–685.Google Scholar
  60. Persson, L., G. Andersson, S. F. Hamrin, and L. Johansson. 1988. Predator regulation and primary production along the productivity gradient of temperate lake ecosystems. In Complex Interactions in Lake Communities, ed. S. R. Carpenter, pp. 45–68. Springer, New York.CrossRefGoogle Scholar
  61. Pierce, R. J., T. E. Wissing, and B. A. Megrey. 1981. Aspects of the feeding ecology of gizzard shad in Acton Lake, Ohio. Transactions of the American Fisheries Society 110: 391–395.CrossRefGoogle Scholar
  62. Pimm, S. L. and J. H. Lawton. 1980. Are food webs divided into compartments? Journal of Animal Ecology 49: 879–898.CrossRefGoogle Scholar
  63. Power, M. E. 1990. Effects of fish in river food webs. Science 250: 811–814.PubMedCrossRefGoogle Scholar
  64. Power, M. E. 1992. Top-down and bottom-up forces in food webs: Do plants have primacy? Ecology 73: 733–746.CrossRefGoogle Scholar
  65. Reinertsen, H., A. Jensen, A. Langeland and Y. Olson. 1986. Algal competition for phosphorus: The influence of zooplankton and fish. Canadian Journal of Fisheries and Aquatic Sciences 43: 1135–1141.CrossRefGoogle Scholar
  66. Salvatore, S. R., N. D. Mundahl, and T. E. Wissing. 1987. Effect of water temperature on food evacuation rate and feeding activity of age-0 gizzard shad. Transactions of the American Fisheries Society 116: 67–70.CrossRefGoogle Scholar
  67. Sarnelle, O. 1992. Contrasting effects of Daphnia on ratios of nitrogen to phosphorus in a eutrophic, hard-water lake, Limnology and Oceanography 37: 1527–1542.CrossRefGoogle Scholar
  68. Scavia, D., G. L. Fahnenstiel, J. A. Davis, and R. G. Kreis, Jr. 1984. Small-scale nutrient patchiness: Some consequences and a new encounter mechanism. Limnology and Oceanography 29: 785–793.CrossRefGoogle Scholar
  69. Schindler, D. E. 1992. Nutrient regeneration by sockeye salmon (Oncorhynchus nerka) fry and subsequent effects on zooplankton and phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 49: 2498–2506.CrossRefGoogle Scholar
  70. Schindler, D. E., J. F. Kitchell, X. He, S. R. Carpenter, J. R. Hodgson and K. L. Cottingham. 1993. Food web structure and phosphorus cycling in lakes. Transactions of the American Fisheries Society 122: 756–772.CrossRefGoogle Scholar
  71. Shapiro, J. and R. E. Carlson. 1982. Comment on the role of fishes in the regulation of phosphorus availability in lakes. Canadian Journal of Fisheries and Aquatic Sciences 39: 364.CrossRefGoogle Scholar
  72. Smith, V. H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671.PubMedCrossRefGoogle Scholar
  73. Sommer, U. 1989. The role of competition for resources in phytoplankton succession. In Plankton Ecology: Succession in Plankton Communities, ed. U. Sommer, pp. 57–106. Springer, Berlin.CrossRefGoogle Scholar
  74. Sterner, R. W. 1986. Herbivores’ direct and indirect effects on algal populations. Science 231: 605–607.PubMedCrossRefGoogle Scholar
  75. Sterner, R. W. 1989. The role of grazers in phytoplankton succession. In Plankton Ecology: Succession in Plankton Communities, ed. U. Sommer, pp. 107–170. Springer, Berlin.CrossRefGoogle Scholar
  76. Sterner, R. W. 1990. The ratio of nitrogen to phosphorus resupplied by herbivores: Zooplankton and the algal competitive arena. American Naturalist 136: 209–229.CrossRefGoogle Scholar
  77. Sterner, R. W., J. J. Elser, and D. O. Hessen. 1992. Stoichiometric relationships among producers, consumers and nutrient cycling in pelagic ecosystems. Biogeochemistry 17: 49–67.CrossRefGoogle Scholar
  78. Strong, D. R. 1992. Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73: 747–754.CrossRefGoogle Scholar
  79. Tilman, D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, NJ.Google Scholar
  80. Trautman, M. B. 1981. The Fishes of Ohio. Ohio State University Press, Columbus, OH.Google Scholar
  81. Vanni, M. J. and D. L. Findlay. 1990. Trophic cascades and phytoplankton community structure. Ecology 71: 921–937.CrossRefGoogle Scholar
  82. Vanni, M. J. and C. D. Layne. 1992. Consumer-mediated nutrient cycling and its effects on primary producers in lakes. Supplement to Bulletin of the Ecological Society of America 73: 373 (Abstract).Google Scholar
  83. Vanni, M. J., C. D. Layne, and S. E. Arnott. “Top-down” effects of fish on phytoplankton communities: Herbivory and nutrient recycling as mechanisms. Ecology Google Scholar
  84. Vanni, M. J., C. Luecke, J. F. Kitchell, Y. Allen, J. Temte, and J. F. Kitchell. 1990. Effects on lower trophic levels of massive fish mortality. Nature 344: 333–335.CrossRefGoogle Scholar
  85. Vincent, W. F. 1992. The daily pattern of nitrogen uptake by phytoplankton in dynamic mixed layer environments. Hydrobiologia 238: 3752.CrossRefGoogle Scholar
  86. Wetzel, R. G. 1979. The role of the littoral zone and detritus in lake metabolism. Archiv far Hydrobiologie 13: 145–161.Google Scholar
  87. Wetzel, R. G. 1983. Limnology 2nd Ed. Saunders.Google Scholar
  88. Wetzel, R. G. 1990. Reservoir ecosystems: Conclusions and speculations. In Reservoir Limnology: Ecological Perspectives, ed. K. W. Thornton, B. L. Kimmel, and F. E. Payne, pp. 227238. Wiley and Sons, New York.Google Scholar
  89. Whicker, A. D. and J. K. Detling. 1988. Ecological consequences of prairie dog disturbances. BioScience 38: 778–785.CrossRefGoogle Scholar
  90. Winemiller, K. 0. 1990. Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs 60: 331–367.CrossRefGoogle Scholar
  91. Wright, D. I. and J. Shapiro. 1984. Nutrient reduction by biomanipulation: an unexpected phenomenon and its possible cause. Int. Ver. Thcor. Angew. Limnol. Verh. 22: 518–524.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Michael J. Vanni

There are no affiliations available

Personalised recommendations