Advertisement

Deuterostome Monophyly and Phylogeny

  • Bobb Schaeffer

Abstract

The abundant data of developmental biology, both descriptive and experimental, are scattered through many serial publications and symposium volumes. However, the diversity that has been investigated by classical and modern techniques is relatively small. This is related to the reductionist aspect of much developmental research, to a minimal interest in a comparative approach, and to the availability and suitability of laboratory animals. Most symposium reports that I have examined offer little actual synthesis, although they cover key topics such as differential gene action, embryonic induction, and pattern formation.

Keywords

Neural Crest Nerve Cord Neural Plate Neural Induction Lateral Plate Mesoderm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. T., 1973, Embryology and Phylogeny in Annelids and Arthropods, Pergamon Press, New York.Google Scholar
  2. Anderson, D. T., 1982, Origins and relationships among the animal phyla, Proc. Linn. Soc. New South Wales 106: 151–166.Google Scholar
  3. Angerer, R. C., and Davidson, E. H., 1984, Molecular indices of cell lineage specification in sea urchin embryos, Science 226: 1153–1160.PubMedGoogle Scholar
  4. Azariah, J., 1973, Studies on the cephalochordates of the Madras coast. No. 15. The nature of the structural polysaccharide in Amphioxus, Acta Histochem. 46:10–17.Google Scholar
  5. Ballard, W. W., 1964, Comparative Anatomy and Embryology,Ronald Press, New York.Google Scholar
  6. Ballard, W. W., 1973a, Normal embryonic stages for salmonid fishes, based on Salmo gairdneri Richardson and Salvelinus fontinalis (Mitchill), J. Exp. Zool 184:7–26.Google Scholar
  7. Ballard, W. W., 1973b, Morphogenetic movements in Salmo gairdneri Richardson, J. Exp. Zool 184:27–48.Google Scholar
  8. Ballard, W. W., 1973c, A new fate map for Salmo gairdneri, J. Exp. Zool. 184:49–74.Google Scholar
  9. Ballard, W. W., 1981, Morphogenetic movements and fate maps of vertebrates, Am. Zool. 21: 391–399.Google Scholar
  10. Ballard, W. W., 1976, Problems of gastrulation, real and verbal, Biosci. 26:36–39.Google Scholar
  11. Ballard, W. W., 1982, Morphogenetic movements and fate map of the cypriniform teleost, Catostomus commersoni (Lacépède), J. Exp. Zool 219: 301–321.Google Scholar
  12. Balinsky, B. E., 1974, Supernumerary limb induction in the Anura, J. Exp. Zool. 188:195–202.Google Scholar
  13. Balinsky, B. I., 1975, An Introduction to Embryology, W. B. Saunders, Philadelphia.Google Scholar
  14. Barrington, E. J. W., 1958, The localization of organically bound iodine in the endostyle of Amphioxus, J. Mar. Biol. Assoc. U. K 37: 117–126.Google Scholar
  15. Barrington, E. J. W., 1965, The Biology of Hemichordata and Protochordata, W. H. Freeman, San Francisco.Google Scholar
  16. Barrington, E. J. W., 1975, Problems of iodine binding in ascidians, in: Protochordates, Symp. Zool. Soc. Lond. 36: 129–158.Google Scholar
  17. Bateson, W., 1884, The early stages in the development of Balanoglossus, Q. J. Microsc. Sci. N. S 24: 208–236.Google Scholar
  18. Berrill, N. J., 1955, The Origin of Vertebrates, Oxford University Press, London.Google Scholar
  19. Betchaku, T., and Trinkaus, J. P., 1978, Contact relations, surface activity, and cortical microfilaments of marginal cells of the enveloping layer and of the yolk syncytial and the yolk cytoplasmic layers of Fundulus before and during epiboly, J. Exp. Zool. 206:381–426.Google Scholar
  20. Bone, Q., 1960, The origin of the chordates, J. Linn. Soc. Lond 44: 252–269.Google Scholar
  21. Britten, R. J., and Davidson, E. R., 1971, Repetitive and non-repetitive gene sequences and a speculation on the origins of evolutionary novelty, Q. Rev. Biol. 46:111–138. Bullock, T. H., 1945, Anatomical organization of the nervous system of Enteropneusta, Q. J. Microsc. Sci 86: 55–111.Google Scholar
  22. Burfield, S. T., 1927, Sagitta, Proc. Trans. Liverpool Biol. Soc 41: 1–104.Google Scholar
  23. Burgess, A. M. C., 1983, On the role of the notochord in somite formation and the possible evolutionary significance of the concomitant cell re-orientation, J. Anat 136:829–835.Google Scholar
  24. Bushman, F. D., and Crain, W. R., 1983, Conserved pattern of embryonic actin gene expres-sion in several sea urchins and a sand dollar, Dev. Biol 98:429–436.Google Scholar
  25. Cavey, M. J., 1982, Myogenic events in compound ascidian larvae, Am. Zool. 22:807–815. Clark, R. B., 1964, Dynamics in Metazoan Evolution. The Origin of the Coelom and Segments, Oxford University Press, London.Google Scholar
  26. Cloney, R. A., 1982, Ascidian larvae and the events of metamorphosis, Am. Zool. 22: 817826.Google Scholar
  27. Colwin, A. L., and Colwin, L. H., 1950, The developmental capacities of separated early blastomeres of an enteropneust, Saccoglossus kowalevskii, J. Exp. Zool. 115:263–286.Google Scholar
  28. Colwin, A. L., and Colwin, L. H., 1953, The normal embryology of Saccoglossus kowa-levskii (Enteropneusta), J. Morphol 92: 401–436.Google Scholar
  29. Conklin, E. G., 1905, Mosaic development in ascidian eggs, J. Exp. Zool 2: 145–223.Google Scholar
  30. Conklin, E. G., 1932, The embryology of Amphioxus, J. Morphol 54: 69–118.Google Scholar
  31. Cooke, J., 1982, The relation between scale and completeness of pattern in vertebrate em-bryogenesis: Models and experiments, Am. Zool. 22: 91–104.Google Scholar
  32. Cooke, J., 1984, Morphallaxis and early vertebrate development, in: Pattern Formation. A Primer in Developmental Biology ( G. M. Malacinski, ed.), pp. 481–506, Macmillan, New York.Google Scholar
  33. Czihak, G., 1975, The Sea Urchin Embryo. Biochemistry and Morphogenesis, Springer-Verlag, Berlin.Google Scholar
  34. Davenport, R., 1979, An Outline of Animal Development, Addison-Wesley, Reading, Massachusetts.Google Scholar
  35. Davidson, E. H., Hough-Evans, B. R., and Britten, R. J., 1982, Molcular biology of the sea urchin embryo, Science 217: 17–26.PubMedGoogle Scholar
  36. Davis, B. 1908, The early life history of Dolichoglossus pusillus, Univ. Calif. Pub. Zool 4:187–226.Google Scholar
  37. Dean, B., 1899, On the embryology of Bdellostoma stouti, in: Festschrift zurn 70 Geburtstag von Carl von Kupffer, pp. 221–276, Jena.Google Scholar
  38. De Beer, G. R., 1932, Vertebrate Zoology, Macmillan, New York.Google Scholar
  39. De Beer, G. R., 1937, The Development of the Vertebrate skull, Oxford University Press, London.Google Scholar
  40. De Beer, G. R., 1958, Embryos and Ancestors, 3rd ed., Clarendon Press, Oxford. Denison, R., 1979, Acanthodii, in: Handbook of Paleoichthyology, Vol. 5 ( H.-P. Schultze, ed.), Gustav Fischer, Stuttgart.Google Scholar
  41. Deno, T., Nishida, H., and Satoh, N., 1984, Autonomous muscle cell differentiation in partial ascidian embryos according to the newly verified cell lineages, Dev. Biol. 104:322–328.Google Scholar
  42. De Queiroz, K., 1985, The ontogenetic method for determining character polarity and its relevance to phylogenetic systematics, Syst. Zool 34:280–299.Google Scholar
  43. Dovarin, N., 1982, The Neural Crest, Cambridge University Press, London.Google Scholar
  44. Fell, H. B., 1948, Echinoderm embryology and the origin of chordates, Biol. Prey 23: 81–107.Google Scholar
  45. Fisher, S. E., Shaklee, J. B., Ferris, S. D., and Witt, G. S., 1980, Evolution of five multilocus isozyme systems in the chordates, Genetica 52 /53: 73–85.Google Scholar
  46. Flood, P.R., 1966, A peculiar mode of muscular innervation inAmphioxus, J. Comp. Neurol 126: 181–218.PubMedGoogle Scholar
  47. Flood, P. R., 1975, Fine structure of the notochord of Amphioxus, Symp. Zool. Soc. Lond 36: 81–104.Google Scholar
  48. Forman, D., and Slack, J. M. W., 1980, Determination and cellular commitment in the embryonic amphibian mesoderm, Nature 286: 492–494.PubMedGoogle Scholar
  49. Galileo, D. S., and Morrill, J. B., 1985, Patterns of cells and extracellular material of the sea urchin Lytechinus variegatus (Echinodermata; Echinoidea) embryo, from hatched blastula to late gastrula, J. Morphol 185: 387–402.Google Scholar
  50. Garstang, W., 1894, Preliminary note on a new theory of the phylogeny of the chordata, Zool. Ant 17: 122–125.Google Scholar
  51. Garstang, W., 1922, The theory of recapitulation. A critical restatement of the biogenetic law, Zool. J. Linn. Soc 35: 81–101.Google Scholar
  52. Garstang, W., 1928, The morphology of the Tunicata and its bearing on the phylogeny of the chordata, Q. J. Microsc. Sci 72: 51–187.Google Scholar
  53. Geraudie, J., 1978, The fine structure of the early pelvic fin bud of the trout, Salmo gairdneri and S. trutta farlo, Acta Zool. 59: 85–96.Google Scholar
  54. Goodrich, E. S., 1918, Development of head segments in Scyllium, Q. J. Microsc. Sci 63: 1–30.Google Scholar
  55. Goodrich, E. S., 1930, Studies on the Structure and Development of Vertebrates, Macmillan, New York.Google Scholar
  56. Gustafson, T., and Toneby, M. I., 1971, How genes control morphogenesis, Am. Sci 59: 45 2462.Google Scholar
  57. Hall, B. K., 1978, Developmental and Cellular Skeletal Biology, Academic Press, New York. Hamburger, U., 1947, A Manual of Experimental Embryology, University of Chicago Press, Chicago, Illinois.Google Scholar
  58. Hardisty, M. W., 1982, Lampreys and hagfishes: Analysis of cyclostome relationships, in: The Biology of Lampreys, Vol. 4B (M. W. Hardisty and I. C. Potter, eds.), pp. 165260, Academic Press, New York.Google Scholar
  59. Harrison, R. G., 1895, Die Entwicklung der unpaaren und paarigen Flossen Tertteleostier, Arch. Mikrosk. Anat. Entwicklungsmech 46: 560–578.Google Scholar
  60. Harrison, R. G., 1969, Organization and Development of the embryo (S. Wilens, ed.), Yale University Press, New Haven, Connecticut.Google Scholar
  61. Hinchliffe, J. R., and Johnson, D. R., 1980, The Development of the Vertebrate Limb, Oxford University Press, Oxford.Google Scholar
  62. Holtfreter, J., 1934, Der Einfluss thermischer, mechanischer und chemischer Eingriffe aufGoogle Scholar
  63. die Induktionsfähigkeiten von Triton-Keimteile, Wilhem Roux’s Arch 132:225–306.Google Scholar
  64. Holtfreter, J., 1938, Differenzierungspotenzen isolierter Teile der Urodelengastrula, Wilhem Roux’s Arch. Entwicklungsmech 138: 522–656.Google Scholar
  65. Hörstadius, 1939, The mechanics of sea urchin development as studied by operative methods, Biol. Rev 14: 132–179.Google Scholar
  66. Hörstadius, 1973, Experimental Embryology of Echinoderms, Clarendon Press, Oxford. Hyman, L. H., 1955, The Invertebrates: Echinodermata. The Coelomate Bilateria, Vol. 4, McGraw-Hill, New York.Google Scholar
  67. Hyman, L. H., 1959, The Invertebrates: Smaller Coelomate Groups, Vol. 5, McGraw-Hill, New York.Google Scholar
  68. Jacobson, A. G., and Meier, S., 1984, Morphogenesis of the head of a newt: Mesodermal segments, neuromeres, and distribution of neural crest, 106:181–193.Google Scholar
  69. Jefferies, R. P. S., 1979, The origin of chordates—A methodological essay, in: The Origin of Major Invertebrate Groups ( M. R. House, ed.), pp. 443–477, Academic Press, London.Google Scholar
  70. Jeffery, W. R., Tomlinson, C. R., and Brodeur, R. D., 1983, Localization of actin messenger RNA during early ascidian development, Dev. Biol 99: 408–417.PubMedGoogle Scholar
  71. Jollie, M., 1982, What are the `Calcichordata’? and the larger question of the origin of Chordates, Zool. J. Linn. Soc 75: 167–188.Google Scholar
  72. Katz, M. J., 1983, Comparative anatomy of the tunicate tadpole, Ciona intestinalis, Biol. Bull. 164:1–27.Google Scholar
  73. Kemp, A., 1982, The embryological development of the Queensland lungfish Neoceratodus forsteri, (Krefft), Mem. Queensland Mus 20: 553–597.Google Scholar
  74. Kerr, J. G., 1907, The development of Polypterus senegalus, in: Budgett Memorial Volume (J. G. Kerr, ed.), pp. 195–284, Cambridge University Press, Cambridge.Google Scholar
  75. Koltzoff, N. K., 1901, Entwicklungsgeschichte des Kopfes von Petromyzon planen, Bull.Soc. Imp. Nat. Moscou 15:259–589.Google Scholar
  76. Krejsa, R. J., 1979, The comparative anatomy of the integumental skeleton, in: Hyman’s Comparative Vertebrate Anatomy, 3rd ed. ( M. H. Wake, ed.), pp. 112–191, University of Chicago Press, Chicago, Illinois.Google Scholar
  77. L¢vtrup, S., 1977, The Phylogeny of Vertebrata, Wiley, New York.Google Scholar
  78. Mallatt, J., 1984, Early vertebrate evolution: Pharyngeal structure and the origin of gnathostomes, J. Zool. Soc. Lond. 204:169–183.Google Scholar
  79. Mangold, O., 1923, Transplantationversuche zur Frage der Spezifität und der Bildung derGoogle Scholar
  80. Keimblätter bei Triton, Arch. Microsk. Anat. Entwicklungsmech 100:198–301.Google Scholar
  81. Manwell, C., 1975, Enzyme variability in the protochordate Amphioxus, Nature 258:606–608.Google Scholar
  82. Medawar, P. B., 1954, The significance of inductive relationships in the development of vertebrates, J. Embryo!. Exp. Morphol 2: 172–174.Google Scholar
  83. Meier, S., 1979, Development of the chick embryo mesoblast: Formation of the embryonic axis and the establishment of metameric pattern, Dev. Biol 73: 25–45.Google Scholar
  84. Meier, S., 1981, Development of the chick embryo mesoblast: Morphogenesis of the pre-chordal plate and cranial segments, Dev. Biol 82: 49–61.Google Scholar
  85. Meier, S., 1984, Somite formation and its relationship to metameric patterning of the mesoderm, Cell Differentiation 14: 235–243.PubMedGoogle Scholar
  86. Meier, S., and Packard, D. S., 1984, Morphogenesis of the cranial segments and distribution of neural crest in the embryos of the snapping turtle, Chelydra serpentina, Dev. Biol 102: 309–323.PubMedGoogle Scholar
  87. Meier, S., and Tam, P. P. L., 1982, Metameric pattern development in the embryonic axis of the mouse. I. Differentiation of the cranial segments, Differentiation 21:95–108. Morgan, T., 1894, Development of Balanoglossus, J. Morphol. 9:1–86.Google Scholar
  88. Nakamura, O., and Takasaki, H., 1970, Further studies on the differentiation capacity of the marginal zone in the morula and blastula of Triturus pyrrhogaster, Embryologia 9: 223–237.Google Scholar
  89. Nelsen, O. E., 1953, Comparative Embryology of the Vertebrates,Blakiston, New York. Nielsen, C., 1985, Animal phylogeny in the light of the trochaea theory, Biol. J. Linn. Soc 25:243–229.Google Scholar
  90. Nieuwenhuys, R 1964, Comparative anatomy of the spinal cord, in: Progress in Brain Google Scholar
  91. Research,Vol. 11, Organization of the Spinal Cord,pp. 1–57, Elsevier, Amsterdam. Nieuwkoop, P. D., and Sutasurya, L. A., 1979, Primordial Germ Cells in the Chordates, Cambridge University Press, London.Google Scholar
  92. Nishida, H., and Satoh, N., 1983, Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. I. Up to the eight cell state, Dev. Biol 99: 382–394.PubMedGoogle Scholar
  93. Nishida, H. and Satoh, N., 1985, Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. II. The 16 and 32 cell stages, Dev. Biol 110:440–454.Google Scholar
  94. Noden, D. M., 1982, Patterns and organization of craniofacial skeletogenic and myogenic mesenchyme: A perspective, in: Factors and Mechanisms Influencing Bone Growth (A. D. Dixon and B. Sarnat, eds.), pp. 167–203, A. R. Liss, New York.Google Scholar
  95. Noden, D. M., 1983a, The role of the neural crest in patterning of avian cranial skeletal, connective and muscle tissues, Dev. Biol. 96:144–165.Google Scholar
  96. Noden, D. M., 1983b, The embryonic origins of avian cephalic and cervical muscles and associated connective tissues, Am. J. Anat 168: 257–276.PubMedGoogle Scholar
  97. Noden, D. M., 1984, Craniofacial development: New views on old problems, Anat. Rec 208: 1–13.PubMedGoogle Scholar
  98. Northcutt, R. G., and Gans, C., 1983, The genesis of neural crest and epidermal placodes: A reinterpretation of vertebrate origins, Q. Rev. Biol 58: 1–28.PubMedGoogle Scholar
  99. Ortolani, G., 1955, The presumptive territory of the mesoderm in the ascidian germ, Experimentia 11: 445–446.Google Scholar
  100. Pucci-Minafra, I., and Ortolani, G., 1968, Differentiation and tissue interaction during muscle development of ascidian tadpoles. An electron microscope study, Dev. Biol 17: 69 2712.Google Scholar
  101. Patterson, C., 1983, How does phylogeny differ from ontogeny?, in: Development and Evolution ( B. C. Goodwin, N. Holder, and C. C. Wylie, eds.), pp. 1–31, Cambridge University Press, London.Google Scholar
  102. Raff, R. A., and Kaufman, T. C., 1983, Embryos, Genes and Evolution, Macmillan, New York.Google Scholar
  103. Rähr, H., 1981, The ultrastructure of the blood vessels of Branchiostoma lanceolatum (Pallas) (Cephalochordata), Zoomorphology 97: 53–74.Google Scholar
  104. Rao, K. P., 1953, The development of Glandiceps, J. Morphol 93: 1–14.Google Scholar
  105. Reverberi, G., 197la, Ascidians, in Experimental Embryology of Marine and Freshwater Google Scholar
  106. Invertebrates (G. Reverberi, ed.), pp. 507–550, Elsevier, North-Holland.Google Scholar
  107. Reverberi, G., 1971b, Amphioxus,in: Experimental embryology of Marine and Freshwater Invertebrates (G. Reverberi, ed.), pp. 551–572, Elsevier/North-Holland, Amsterdam.Google Scholar
  108. Reverberi, G., and Minganti, A., 1946, Evocator phenomena in the development of the ascidian egg (in Italian), Publ. Stax. Zool. Napoli 20:199–252.Google Scholar
  109. Reverberi, G., Ortolani, G., and Farinella-Ferruzza, N., 1960, The causal formation of the brain in the ascidian larva, Acta Embryo!. Morphol. Exp 3: 296–336.Google Scholar
  110. Rhodes, C. P., Ratcliffe, N. A., and Rowley, A. F., 1982, Presence of coelomocytes in the primitive chordate Amphioxus (Branchiostoma lanceolatum), Science 217:263–265.Google Scholar
  111. Rudnick, D., 1952, Development of the digestive tube and its derivatives, Ann. N. Y. Acad. Sci. 55:109–116.Google Scholar
  112. Russell, G. J., and Subak-Sharpe, J. H., 1977, Similarity of the general designs of proto-chordates and invertebrates, Nature 266: 533–536.PubMedGoogle Scholar
  113. Saxén, L., and Toivonen, S., 1962, Primary Embryonic Induction,Logos Press, London. Schaeffer, B., 1977, The dermal skeleton in fishes, in: Problems in Vertebrate Evolution (S. M. Andrews, R. S. Miles, and A. D. Walker, eds.), pp. 25–52, Linnean Society Sym-posium Series 4.Google Scholar
  114. Schaeffer, B and Thomson, K. S., 1980, Reflections on agnathan–gnathostome relationships, in: Aspects of Vertebrate History (L. L. Jacobs, ed.) pp. 19–33, Museum Northern Arizona Press, Flagstaff.Google Scholar
  115. Schmidtke, J., Weiler, C., Kunz, B., and Engel, W., 1977, Isozymes of a tunicate and a cephalochordate as a test of polyploidisation in chordate evolution, Nature 266: 25 2253.Google Scholar
  116. Slack, J. M. W., 1983, From Egg to Embryo. Determinative Events in Early Development, Cambridge University Press, London.Google Scholar
  117. Slack, J. M. W., 1984, The early amphibian embryo—A hierarchy of developmental decisions, in: Pattern Formation. A Primer in Developmental Biology, pp. 457–480, Macmillan, New York.Google Scholar
  118. Slack, J. M. W., and Forman, D., 1980, An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos, J. Embryo!. Exp. Morphol 56: 283–299.Google Scholar
  119. Slack, J. M. W., Dale, L., and Smith, J. C., 1984, Analysis of embryonic induction by using cell lineage markers Phil. Trans. R. Soc. Lond. B 307:331–336.Google Scholar
  120. Smith, J. C., 1983, Disorganized embryos?, Nature 302: 658–659.PubMedGoogle Scholar
  121. Smith, J. C., Dale, L., and Slack, J. M. W., 1985, Cell lineage labels and region-specific markers in the analysis of inductive interactions, in: Early amphibian development (J. Slack, ed.), J. Embryo!. Exp. Morphol. 89(Suppl.): 317–331.Google Scholar
  122. Spemann, H., and Mangold, H., 1924, Uber Induktion von Embryonenanlagen durch Implantation artfremder Organisatoren, Arch. Mikrosk. Anat. Entwicklungsmech 100: 599–638.Google Scholar
  123. Stent, G. S., Weisblat, D. A., Blair, S. S., and Zackson, S. L., 1982, Cell lineage in the development of the leech nervous system, in: Neuronal Development ( N. C. Spitzer, ed.), pp. 1–44, Plenum Press, New York.Google Scholar
  124. Terentiev, I. B.,1941, On the role played by the neural crest in the development of the dorsal fin in Urodela C. R. Acad. Sci. USSR 31:91–94.Google Scholar
  125. Thorpe, A., and Thorndyke, M. C., 1975The endostyle in relation to iodine binding Symp. Zool. Soc. Lond 36:159–177.Google Scholar
  126. Timourian, H., and Watchmaker, G., 1975, The sea urchin blastula: Extent of cellular de-termination, in: Developmental biology of the echinoderms, Am. Zool. 15:607–627.Google Scholar
  127. Toivonen, S., 1978, Regionalisation of the embryo, in: The Organizer (O. Nakamura and S. Toivonen, eds.), pp. 119–156, Elsevier/North-Holland, Amsterdam.Google Scholar
  128. Tung, T. C., Wu, S. C., and Tung, Y. Y. F., 1958, The development of isolated blastomeres of Amphioxus, Sci. Sin 7: 1280–1320.PubMedGoogle Scholar
  129. Tung, T. C., Wu, S. C., Tung, Y. Y. F., 1960a, The developmental potencies of the blas-tomere layers in Amphioxus egg at the 32 cell stage, Sci. Sin 9:119–141.Google Scholar
  130. Tung, T. C., Wu, S. C., and Tung, Y. Y. F., 1960b, Rotation of the animal blastomeres in Amphioxus at the 8 cell stage, Sci. Rec 4: 389–394.Google Scholar
  131. Tung, T. C., Wu, S. C., and Tung, Y. Y. F., 1962a, The presumptive areas of the egg of Amphioxus, Sci. Sin. 11(5):629–644.Google Scholar
  132. Tung, T. C., Wu, S. C., and Tung, Y. Y. F., 1962b, Experimental studies on the neural induction in Amphioxus, Sci. Sin. 11:805–820.Google Scholar
  133. Tung, T. C., Wu, S. C., and Tung, Y. Y. F., 1965, Differentiation of the prospective ectodermal and endodermal cells after transportation to new surroundings in Amphioxus, Sci. Sin. 14:1785–1794.Google Scholar
  134. Vankerckhove, J., and Weber, K., 1984, Chordate muscle actins differ distinctly from invertebrate muscle actins J. Mol. Biol. 179:391–413.Google Scholar
  135. Waddington, C. H., 1940, Organizers and Genes, Cambridge University Press, Cambridge. addington, C. H., 1956, Principles of Embryology, Allen and Unwin, London.Google Scholar
  136. Watts, D. C., 1975, Evolution of phosphagen kinases in the chordate line, in: Protochordates, Symp. Zool. Soc. Lond. 36: 105–127.Google Scholar
  137. Welsch, U., 1975, The fine structure of the pharynx, cyrtopodocytes and digestive caecum of Amphioxus (Branchiostoma lanceolatum), in: Protochordates, Symp. Zool. Soc. Lond. 36: 17–41.Google Scholar
  138. Wessels, N. K., 1977, Tissue Interactions and Development, Benjamin/Cummings, Menlo Park, California.Google Scholar
  139. Weston, J. A., 1970, The migration and differentiation of neural crest cells, in: Advances in Morphogenesis, Vol. 8 ( M. Abercrombie, ed.), pp. 41–114, Academic Press, New York.Google Scholar
  140. Whitear, M., 1957, Some remarks on the ascidian affinities of vertebrates Ann. Mag. Nat. Hist. (12) 10:338–347.Google Scholar
  141. Whittaker, J. R., 1982, Muscle lineage cytoplasm can change the developmental expression in epidermal lineage cells of ascidian embryos, Dev. Biol 93: 463–470.PubMedGoogle Scholar
  142. Whittaker, J. R., 1983, Quantitative regulation of acetylcholinesterase development in the muscle lineage cells of cleavage-arrested ascidian embryos, J. Embryo!. Exp. Morpho! 76: 235–250.Google Scholar
  143. Whittaker, J. R., Ortolani, G., and Farinella-Ferruzza, N., 1977, Autonomy of acetylcholinesterase differentiation in muscle lineage cells of ascidian embryos, Dey. Biol 55: 196200.Google Scholar
  144. Willey, A., 1894, Amphioxus and the Ancestry of Vertebrates (Columbia University Biology Series No. 11 ) Macmillan, New York.Google Scholar
  145. Wood, A., 1982, Early pectoral fin development and morphogenesis of the apical ectodermal ridge in the killifish, Amphiosemion scheeli, Anat. Rec 204: 349–356.Google Scholar
  146. Yamada, T., 1950, Dorsalization of the ventral marginal zone of the Triturus gastrula. 1. Ammonia treatment of the medio-ventral marginal zone, Biol. Bull. Mar. Biol. Lab 98: 98–121.Google Scholar
  147. Yamada, T., 1962, The inductive mechanism as a tool for understanding the basic mechanism of differentiation, J. Cell. Comp. Physiol 60: 49–64.Google Scholar
  148. Young, J. Z., 1962, The Life of Vertebrates, 2nd ed., Oxford University Press, London.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Bobb Schaeffer
    • 1
  1. 1.Department of Vertebrate PaleontologyAmerican Museum of Natural HistoryNew YorkUSA

Personalised recommendations