A Predator’s View of Animal Color Patterns

  • John A. Endler
Part of the Evolutionary Biology book series (EBIO, volume 11)

Abstract

It has long been known that the general colors and tones of animals tend to match their backgrounds (E. Darwin, 1794; Poulton, 1890). The adaptive significance of this has been borne out in numerous experimental studies (DiCesnola, 1904; Sumner, 1934, 1935; Isley, 1938; Popham, 1942; Dice, 1947; Turner, 1961; Kettlewell, 1956, 1973; Kaufman, 1974; Wiklund, 1975; Curio, 1976). There is also a good understanding of warning coloration (Cott, 1940; Wickler, 1968; Edmunds, 1974; Rothschild, 1975). However, the determinants of color pattern are poorly known, although it is known in a general way that the patterns and forms of animals are similar to their backgrounds (Poulton, 1890; Thayer, 1909; Cott, 1940; Wickler, 1968; Robinson, 1969; Edmunds, 1974; Fogden and Fogden, 1974). It is the purpose of this paper to explore the factors that determine color patterns under various specific conditions. The basic assumption is that a color pattern must resemble a random sample of the background seen by predators in order to be cryptic, and must deviate from the background in one or more ways in order to be conspicuous. As a result, the actual pattern evolved in a particular place represents a compromise between factors which favor crypsis and those which favor conspicuous color patterns.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala, F. J., and Campbell, C. A., 1974, Frequency-dependent selection, Annu. Rev. Ecol. Syst. 5: 115–138.Google Scholar
  2. Baburina, E. A., Nogatyrev, and Protosov, V. R., 1968, A study of age related changes in the visual acuity of some fish, Zool. Zh. 47: 1364–1369.Google Scholar
  3. Baerends, G. P., Brower, R., and Waterbolk, H. T., 1955, Ethological studies on Lebistes reticulatus (Peters). I. An analysis of the male courtship patterns, Behaviour 8: 249–334.Google Scholar
  4. Barlow, G. W., 1976, The midas cichlid in Nicaragua, in: Investigations of the Ichthyofauna of Nicaraguan Lakes, ( T. B. Thorson, ed.), pp. 332–358, University of Nebraska Press, Lincoln.Google Scholar
  5. Barlow, G. W., and Ballin, P., 1976, Predicting and assessing dominance for size and coloration in the polychromatic midas cichlid, Anim. Behay. 24: 793–813.Google Scholar
  6. Blaxter, J. H. S., 1970, Light-fishes, in: Marine Ecology ( O. Kinne, ed.), pp. 213–285, London: Wiley-Interscience.Google Scholar
  7. Brown, J. L., 1975, The Evolution of Behavior, New York: W. W. Norton.Google Scholar
  8. Cain, A. J., 1953, Visual selection by tone of Cepaea nemoralis, J. Conchol. 23: 333–336.Google Scholar
  9. Cain, A. J., and Currey, J. D., 1963, Area effects in Cepaea, Philos. Trans. R. Soc. London Ser. B 246: 1–81.Google Scholar
  10. Cain, A. J., and Currey, J. D., 1968, Studies on Cepaea. III. Ecogenetics of a population of Cepaea nemoralis (L.) subject to strong area effects, Philos. Trans. R. Soc. London Ser. B. 253: 447–482.Google Scholar
  11. Cain, A. J., and Sheppard, P. M., 1950, Selection in the polymorphic land snail Cepaea nemoralis, Heredity 4: 275–294.PubMedGoogle Scholar
  12. Cain, A. J., and Sheppard, P. M. 1952, The effects of natural selection on body color in the land snail Cepaea nemoralis, Heredity 6: 217–223.Google Scholar
  13. Cain, A. J., and Sheppard, P. M., 1954, Natural selection of Cepaea, Genetics 39: 89–116.PubMedGoogle Scholar
  14. Carter, M. A., 1969, Studies on Cepaea. II. Area effects and visual selection in Cepaea nemoralis (L.) and Cepaea hortensis, Philos. Trans. R. Soc. London Ser. B. 253: 397–446.Google Scholar
  15. Chace, F. A., Jr., and Hobbs, H. H., Jr., 1969, The freshwater and terrestrial decapod Crustaceans of the West Indies with special reference to Dominica, US Nat. Mus. Bull. No. 292, pp. 1–258.Google Scholar
  16. Clark, J. A., 1974, Energy transfer and surface temperature over plants and animals, in: Light as an Ecological Factor, II. Symp. Brit. Ecol. 16, ( G. C. Evans, R. Bainbridge, and O. Rackham, eds.), pp. 451–463, Blackwell, Oxford.Google Scholar
  17. Clarke, B. C., 1960, Divergent effects of natural selection on two closely related polymorphic snails, Heredity 14: 423–443.Google Scholar
  18. Clarke, B. C., 1964, Frequency-dependent selection for the dominance of rare polymorphic genes, Evolution 18: 364–369.Google Scholar
  19. Clarke, B. C., 1969, The evidence for apostatic selection, Heredity 24: 347–352.PubMedGoogle Scholar
  20. Clarke, B. C., 1975, Frequency-dependent and density-dependent natural selection, in: The Role of Natural Selection in Human Evolution ( F. M. Salzano, ed.), pp. 187–200, North-Holland, New York.Google Scholar
  21. Clarke, B. C., and O’Donald, P., 1964, Frequency-dependent selection, Heredity 19: 201–206.Google Scholar
  22. Clarke, C. A., Dickson, C. C. C., and Sheppard, P. M., 1963, Larval color patterns in Papilio demodocus, Evolution 17: 130–137.Google Scholar
  23. Cochran, D., 1966, Living Amphibians of the World, Doubleday, New York.Google Scholar
  24. Cott, H. B., 1940, Adaptive Coloration in Animals, Methuen, London.Google Scholar
  25. Curio, E., 1976, The Ethology of Predation, Springer-Verlag, New York.Google Scholar
  26. Currey, J. D., Arnold, R. W., and Carter, M. A., 1964, Further examples of variation of populations of Cepaea nemoralis with habitat, Evolution 18: 111–117.Google Scholar
  27. Darwin, E., 1794, The colors of many animals seem to be adapted to their purposes of concealing themselves, either to avoid danger or to spring upon their prey, Zoonomia 1:509. Quoted in Poulton (1890).Google Scholar
  28. Dawkins, M., 1971a, Perceptual changes in chicks: Another look at the “search image” concept, Anim. Behay. 19: 566–574.Google Scholar
  29. Dawkins, M., 1971b, Shifts of “attention” in chicks during feeding, Anim. Behay. 19: 575–582.Google Scholar
  30. Deakin, M. A. B., 1968, Genetic polymorphism in a subdivided population, Aust. J. Biol. Sci. 21: 165–168.PubMedGoogle Scholar
  31. Dice, L. R., 1947, Effectiveness of selection by owls of deer-mice (Peromyscus maniculatus) which contrast in color with their background, Contrib. Lab. Vertebr. Biol. Univ. Mich. No. 34, pp. 1–20.Google Scholar
  32. DiCesnola, A. P., 1904, Preliminary notes on the protective value of color in Mantis religiosa, Biometrika 3: 58–59.Google Scholar
  33. Diener, H. C., Wist, E. R., Dichgans, J., and Brant, T., 1976, The spatial frequency effect on perceived velocity, Vis. Res. 16: 169–176.PubMedGoogle Scholar
  34. Diver, C., 1940, The problem of closely related species living in the same area, in: The New Systematics ( J. Huxley, ed.), pp. 303–328, Oxford University Press, Oxford.Google Scholar
  35. Edmunds, M., 1974, Defense in Animals: A Survey of Anti-Predator Defenses, Longmans, London.Google Scholar
  36. Ehrlich, P., Talbot, F. H., Russel, B. C., and Anderson, G. R. V., 1977, The behaviour of chaetodontid fishes with special reference to Lorenz’s “poster coloration” hypothesis, J. Zool. 183: 213–228.Google Scholar
  37. Endler, J. A., 1977, Geographic Variation, Speciation, and Clines, Monographs in Population Biology 10, Princeton University Press, Princeton, N.J.Google Scholar
  38. Endler, J. A., 1978a, Fish community structure in tropical montane streams, (to be submitted to Copeia).Google Scholar
  39. Endler, J. A., 1978b, The physical basis of Matthiessen’s ratio for fish eye lenses and visual acuity of predator and prey. In preparation.Google Scholar
  40. Farr, J. A., 1975, The role of predation in the evolution of social behavior of natural populations of the Guppy, Poecilia reticulata (Pisces: Poeciliidae), Evolution 29: 151–158.Google Scholar
  41. Farr, J. A., 1976, Social facilitation of male sexual behavior, intrasexual competition, and sexual selection in the guppy, Poecilia reticulata (Pisces: Poeciliidae), Evolution 30: 707–717.Google Scholar
  42. Farr, J. A., 1977, Male rarity or novelty, female choice behavior, and sexual selection of the guppy, Poecilia reticulata (Pisces: Poeciliidae), Evolution 31: 162–168.Google Scholar
  43. Farr, J. A., and Herrnkind, W. F., 1974, A quantitative analysis of social interaction of the guppy, Poecilia reticulata (Pisces: Poeciliidae), as a function of population density, Anim. Behay. 22: 582–591.Google Scholar
  44. French, R., 1973, A Guide to the Birds of Trinidad and Tobago, Livingstone, Wynnewood, Pa.Google Scholar
  45. Fisher, R. A., 1930, The evolution of dominance in certain. polymorphic species, Am. Nat. 64: 385–406.Google Scholar
  46. Fogden, M., and Fogden, P., 1974, Animals and Their Colors, Crown, New York.Google Scholar
  47. Ford, E. B., 1945, Polymorphism, Biol. Rev. 20: 73–88.Google Scholar
  48. Gandolfi, G., 1971, Sexual selection in relation to social status of males in Poecilia reticulata (Teleostei: Poeciliidae), Boll. Zool. 38: 35–48.Google Scholar
  49. Gorlick, D. L., 1976, Dominance hierarchies and factors influencing dominance in the guppy, Poecilia reticulata Peters, Anim. Behay. 24: 336–346.Google Scholar
  50. Greene, R. J., Jr., 1972, Female preferential selection for males in Lebistes reticulatus, Thesis, Biology Dept., University of Utah.Google Scholar
  51. Greenwood, J. J. D., 1974, Visual and other selection in Cepaea: A further example, Heredity 33: 17–31.Google Scholar
  52. Haas, R., 1976a, Sexual selection in Nothobranchius guntheri (Pisces: Cyprinodontidae), Evolution 20: 614–622.Google Scholar
  53. Haas, R., 1976b, Behavioral biology of the annual killifish, Nothobranchius guntheri, Copeia 1976: 80–91.Google Scholar
  54. Halkka, O., and Mikkola, E., 1977, The selection regime of Philaenus spumarius (L.) (Homoptera), in: Measuring Selection in Natural Populations, Lecture Notes in Bio-mathematics 19 ( F. B. Christiansen and T. M. Fenchel, eds.), pp. 445–463. Springer-Verlag, New York.Google Scholar
  55. Haskins, C. P., Haskins, E. F., McLaughlin, J. J. A., and Hewitt, R. E., 1961, Polymorphism and population structure in Lebistes reticulatus, a population study, in: Vertebrate Speciation ( W. F. Blair, ed.), pp. 320–395, University of Texas Press, Austin.Google Scholar
  56. Haskins, C. P., Young, P., Hewitt, R. E., and Haskins, E. F., 1970, Stabilized heterozygosis of supergenes mediating Y-linked color patterns in populations of Lebistes reticulatus, Heredity 25: 575–589.Google Scholar
  57. Hedrick, P. W., Ginevan, M. E., and Ewing, E. P., 1976, Genetic polymorphism in heterogeneous environments, Annu. Rev. Ecol. Syst. 7: 1–32.Google Scholar
  58. Hemmings, C. C., 1966, Factors influencing the visibility of objects underwater, in: Light as an Ecological Factor, Symp. Brit. Ecol. Soc. 6 ( R. Bainbridge, C. C. Evans, and O. Rackham, eds.), pp. 359–374, Blackwell, Oxford.Google Scholar
  59. Hemmings, C. C., 1974, The visibility of objects underwater, in: Light as an Ecological Factor II, Symp. Brit. Ecol. Soc. 16 ( C. C. Evans, R. Bainbridge, and O. Rackham, eds.), pp. 543–545, Blackwell, Oxford.Google Scholar
  60. Herklots, G. A. C., 1961, The Birds of Trinidad and Tobago, Collins, London.Google Scholar
  61. Hinton, H. E., 1976, Possible significance of the red patches of the female crab spider Misumena vatia, J. Zool. 180: 35–39.Google Scholar
  62. Hobson, E., 1968, Predatory behavior of some shore fishes in the Gulf of California, U.S. Dept. Interior. Bur. Spt. Fish. Wildl. Res. Rep. 73.Google Scholar
  63. Holland, W. J., 1908, The Moth Book, Vo. 7, The Nature Library, Doubleday, Page, and Co., New York.Google Scholar
  64. Horn, H. S., 1969, Polymorphism and evolution of the Hispaniolan snake genus Uromacer (Colubridae), Breviora, No. 324, pp. 1–23.Google Scholar
  65. Isely, F. B., 1938, Survival value of Acridian protective coloration, Ecology 19: 370–389.Google Scholar
  66. Jackson, J. F., Ingram III, W., and Campbell, H. W., 1976, The dorsal pigmentation of snakes as an anti-predator strategy: A multivariate approach, Am. Nat. 110: 1029–1053.Google Scholar
  67. Jones, J. S., 1973, Ecological genetics and natural selection in mollusks, Science 182: 546–552.PubMedGoogle Scholar
  68. Jones, J. S., Leith, B. H., and Rawlings, P., 1977, Polymorphism in Cepea: A problem with too many solutions? Annu. Rev. Ecol. Syst. 8: 109–143.Google Scholar
  69. Kaufman, D. W., 1974, Adaptive coloration in Peromyscus polionotus: Experimental selection by owls, J. Mammal. 55: 271–283.Google Scholar
  70. Kaufman, D. W., and Kaufman, G. A., 1976, Pelage coloration of the old-field mouse with comments on adaptive coloration, Acta Theriol. 21: 165–168.Google Scholar
  71. Keiper, R. R., 1969, Behavioral adaptations of Cryptic moths. IV. Preliminary studies on species resembling dead leaves, J. Lepidol. So. 23: 205–210.Google Scholar
  72. Kerfoot, W. C., 1975, The divergence of adjacent populations, Ecology 56: 1298–1313.Google Scholar
  73. Kettlewell, H. B. D., 1956, A resumé of the investigations of the evolution of melanism in the Lepidoptera, Proc. R. Soc. London Ser. B 145: 297–303.Google Scholar
  74. Kettlewell, H. B. D., 1973, The Evolution of Melanism: A Study of a Recurring Necessity, Oxford University Press, Oxford.Google Scholar
  75. King, R. C. (ed.), 1975, Handbook of Genetics, Vols. 3 and 4, Plenum Press, New York.Google Scholar
  76. Kortmulder, K., 1972, A comparative study in color patterns and behavior in seven Asiatic Barbus species (Cyprinidae, Ostariophysi, Osteichthys), a progress report, Behaviour, 19 (Suppl.): 1–331.Google Scholar
  77. Levene, H., 1953, Genetic equilibrium when more than one ecological niche is available, Am. Nat. 87: 331–333.Google Scholar
  78. Levins, R., and MacArthur, R., 1966, The maintenance of genetic polymorphism is a spatially heterogeneous environment: Variations on a theme by Howard Levene, Am. Nat. 100: 585–589.Google Scholar
  79. Lewis, T. H., 1949, Dark coloration in the reptiles of the Tularosa Malpais, New Mexico, Copeia 1949: 181–184.Google Scholar
  80. Lewontin, R. C., 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York.Google Scholar
  81. Liley, R. N., 1966, Ethological isolating mechanisms in four sympatric species of Poeciliid fishes, Behaviour 13(Suppl.):l-197.Google Scholar
  82. Liley, R. N., and Seghers, B. H., 1975, Factors affecting the morphology and behavior of guppies in Trinidad, in: Function and Evolution in Behavior ( G. P. Baerends, C. Beer, and A. Manning, eds.), pp. 92–118, Oxford University Press, Oxford.Google Scholar
  83. Lythgoe, J. N., 1966, Visual pigments and underwater vision, in: Light as an Ecological Factor, Symp. Brit. Ecol. Soc. 6 ( R. Bainbridge, C. C. Evans, and O. Rackham, (eds.), pp. 375–391, Blackwell, Oxford.Google Scholar
  84. Lythgoe, J. N., 1974, Problems of seeing color under water, in: Vision in Fishes ( M. Ali, ed.), pp. 619–634, Plenum Press, New York.Google Scholar
  85. Maynard-Smith, J., 1970, Genetic polymorphism in a varied environment, Am. Nat. 104: 487–490.Google Scholar
  86. McFarland, W. N., and Munz, F. W., 1974, The visible spectrum during twilight and its implications to vision, in: Light as an Ecological Factor, II. Symp. Brit. Ecol. Soc. 16 (G. C., Evans, R. Bainbridge, and O. Rackham, eds.), pp. 249–270, Blackwell, Oxford.Google Scholar
  87. McFarland, W. N., and Munz, F. W., 1975, The photic environment of clear tropical seas during the day, Vision Res. 15: 1063–1070.PubMedGoogle Scholar
  88. McKaye, K. R., and Barlow, G. W., 1976, Competition between color morphs of the midas cichlid, Cichlasoma citrinellum, in Lake Jiloa, Nicaragua, in: Investigations of the Ichthyofauna of Nicaraguan Lakes ( T. B. Thorson, ed.), pp. 465–475, University of Nebraska Press, Lincoln.Google Scholar
  89. Milinski, M., 1977, Do all members of a swarm suffer the same predation?, Z. Tierpsychol. 45: 373–388.Google Scholar
  90. Moodie, G. E. E., 1972, Predation, natural selection, and adaptation in an unusual threespine stickleback, Heredity 28: 155–167.Google Scholar
  91. Mottram, J. C., 1915, Some observations of pattern-blending with reference to obliterative shading and concealment of outline, Proc. Zool. Soc. London 1915, No. 49, pp. 679–692.Google Scholar
  92. Mottram, J. C., 1916, An experimental determination of the factors which cause patterns to appear conspicuous in nature, Proc. Zool. Soc. London 1916, No. 13, pp. 383–419.Google Scholar
  93. Munz, F. W., and McFarland, W. N., 1973, The significance of spectral position in the Rhodopsins of tropical marine fishes, Vision Res. 13: 1829–1874.PubMedGoogle Scholar
  94. Norris, K. S., 1967, Color adapations in desert reptiles and its thermal relationships, in: Lizard Ecology, A Symposium (W. W. Milstead, ed.), pp. 162–229, University of Missouri Press, Columbia.Google Scholar
  95. Norris, K. S., and Lowe, C. H., 1964, An analysis of background color-matching in amphibians and reptiles, Ecology 45: 565–580.Google Scholar
  96. O’Donald, P., 1968, Natural selection by glow-worms in a population of Cepaea nemoralis, Nature, 217: 194.Google Scholar
  97. Otte, D., 1974, Effects and functions in the evolution of signalling systems, Annu. Rev. Ecol. Syst. 5: 385–417.Google Scholar
  98. Otte, D., and Joern, A., 1977, On feeding patterns in desert grasshoppers and the evolution of specialized diets, Proc. Acad. Nat. Sci. Philadelphia 128: 89–126.Google Scholar
  99. Papageorgis, C., 1975, Mimicry in neotropical butterflies, Am. Sci. 63: 522–532.Google Scholar
  100. Parsons, P. A., 1963, Migration as a factor in natural selection, Genetica 33: 184–206.Google Scholar
  101. Pietrewicz, A. T., and Kamil, A. C., 1977, Visual detection of cryptic prey by blue jays (Cyanocitta cristata), Science 195: 580–582.PubMedGoogle Scholar
  102. Popham, E. J., Jr., 1942, The variation in the color of certain species of Corixidae and their significance, Proc. Zool. Soc. London Ser. A 111: 135–172.Google Scholar
  103. Pough, F. H., 1976, Multiple cryptic effects of crossbanded and ringed patterns of snakes, Copeia 1976: 834–836.Google Scholar
  104. Poulton, E. B., 1890. The Colors of Animals, Their Meaning and Use, Especially Considered in the Case of Insects, Kegan Paul, Trench, Trubner and Co., London.Google Scholar
  105. Prout, T., 1968, Sufficient conditions for multiple niche polymorphism, Am. Nat. 102: 493–496.Google Scholar
  106. Rand, A. S. 1967, Predator-prey interactions and the evolution of aspect diversity, Atas do Simposio sobra a Biota Amazonica 5 (Zoologia): 73–83.Google Scholar
  107. Randall, J. E., 1961, Observations on the spawning of Surgeonfishes (Acanthuridae) in the Society Islands, Copeia 1961: 237–238.Google Scholar
  108. Richardson, A. M. M., 1975, Winter predation by thrushes: Turdus ericetorum (Turton) on a sand dune population of Cepaea nemoralis (L.), Proc. Malacol. Soc. London, 41: 481–488.Google Scholar
  109. Ricklefs, R. E., and O’Rourke, K. E., 1975, Aspect diversity in moths: A temperate-tropical comparison, Evolution 29: 313–324.Google Scholar
  110. Robertson, D. R., and Hoffman, S. G., 1977, The roles of female mate choice and predation in the mating systems of some tropical Labroid fishes, Z. Tierpsychol. 45: 298–320.Google Scholar
  111. Robinson, M. H., 1969, Defenses against visually hunting predators, Evol. Biol. 3: 225–259.Google Scholar
  112. Rosen, D. E., and Bailey, R. M., 1963, The Poeciliid fishes (Cyprinodontiformes), their structure, zoogeography, and systematics, Bull. Am. Mus. Nat. Hist. 126: 1–176.Google Scholar
  113. Rothschild, M., 1975, Remarks on carotenoids in the evolution of signals, in: Coevolution of Animals and Plants ( L. E. Gilbert and P. H. Raven, eds.), pp. 20–47, University of Texas Press, Austin.Google Scholar
  114. Rowell, C. H. F., 1971, The variable coloration of the Acridoid grasshoppers, Adv. Insect Physiol. 8: 145–198.Google Scholar
  115. Royama, T., 1970, Factors governing the hunting behavior and selection of food by the great tit (Parus major L.), J. Anim. Ecol. 39: 619–668.Google Scholar
  116. Sargent, T. D., 1969a, Behavioral adaptations of cryptic moths. II. Experimental studies on bark-like species, J. N.Y. Entomol. Soc. 77: 75–79.Google Scholar
  117. Sargent, T. D., 1969b, Behavioral adaptations of cryptic moths. III. Resting attitudes of two bark-like species, Melanolophia canadaria and Catocala ultronia, Anim. Behay. 17: 670–672.Google Scholar
  118. Sargent, T. D.. 1976, Legion of Night, University of Massachusetts Press, Amherst.Google Scholar
  119. Sargent, T. D., and Keiper, R. R., 1969, Behavioral adaptations of cryptic moths, I. Preliminary studies on bark-like species, J. Lepid. Soc. 23: 1–9.Google Scholar
  120. Seghers, B. H., 1973, Analysis of geographic variation in the antipredator adaptations of the guppy, Poecilia reticulata, Ph.D. thesis, Zoology Dept., University of British Columbia.Google Scholar
  121. Seghers, B. H., 1974a, Schooling behavior in the guppy (Poecilia reticulata): An evolutionary response to predation, Evolution 28: 486–489.Google Scholar
  122. Seghers, B. H., 1974b, Geographic variation in the response of guppies (Poecilia reticulata) to aerial predators, Oecologica, 14: 94–98.Google Scholar
  123. Semler, D. E., 1971, Some aspects of adaptation in a polymorphism for breeding color in the threespine stickleback (Gasterosteus aculeatus), J. Zool. 165: 291–302.Google Scholar
  124. Shapiro, A., 1976, Seasonal polyphenism, Evol. Biol. 9: 259–333.Google Scholar
  125. Sheppard, P. M., 1951, Fluctuations in the selective value of certain phenotypes in the polymorphic land snail Cepaea nemoralis (L.), Heredity 5: 125–134.PubMedGoogle Scholar
  126. Spence, D. H. N., 1974, Light and plant response in fresh water, in: Light as an Ecological Factor, II, Symp. Brit. Ecol. Soc. 16 ( G. C. Evans, R. Bainbridge, and O. Rackham, eds.), pp. 93–133, Blackwell, Oxford.Google Scholar
  127. Stewart, M. M., 1974, Parallel pattern polymorphism in the genus Phrynobatrachus (Amphibia: Ranidae), Copeia 1974: 823–832.Google Scholar
  128. Sumner, F. B., 1934, Does protective coloration protect? Results from some experiments with fishes and birds, Proc. Nat. Acad. Sci. USA, 20: 559–564.PubMedGoogle Scholar
  129. Sumner, F. B., 1935, Studies on protective color change. III. Experiments with fishes, both as predators and as prey, Proc. Nat. Acad. Sci. USA 21: 345–353.PubMedGoogle Scholar
  130. Thayer, G. H., 1909, Concealing-Coloration in the Animal Kingdom: An Exposition of the Laws of Disguise through Color and Pattern: Being a Summary of Abbott H. Thayer’s Discoveries, MacMillan Co., New York.Google Scholar
  131. Thresher, R. E., 1977, Eye ornamentation of Caribbean reef fishes, Z. Tierpsychol. 43: 152–158.Google Scholar
  132. Turner, E. R. A., 1961, Survival values of different methods of camouflage as shown in a model population, Proc. Zool. Soc. London 136: 273–284.Google Scholar
  133. Vine, I., 1971, Risk of visual detection and pursuit by a predator and the selective advantage of flocking behavior, J. Theor. Biol. 30: 405–422.PubMedGoogle Scholar
  134. Vine, I., 1973, Detection of prey flocks by predators, J. Theor. Biol. 40: 207–210.PubMedGoogle Scholar
  135. Von Frisch, O., 1973, Animal Camouflage, Collins, London.Google Scholar
  136. Walls, G. L., 1942, The Vertebrate Eye and Its Adaptive Radiation, Cranbrook Institute of Science, Bloomfield Hills, Mich.Google Scholar
  137. Waterman, T. H., 1961, Light sensitivity and vision, in: The Physiology of the Crustacea, vol. 2, Sense Organs, Integration, and Behavior ( T. H. Waterman, ed.), pp. 1–64, Academic Press, New York.Google Scholar
  138. Watt, W. B., 1968, Adaptive significance of pigment polymorphisms in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation, Evolution 22: 437–458.Google Scholar
  139. Westlake, D. F., 1966, The light climate for plants in rivers, in: Light as an Ecological Factor, Symp. Brit. Ecol. Soc. 6 ( R. Bainbridge, C. C. Evans, and O. Rackham, eds.), pp. 99–119, Blackwell, Oxford.Google Scholar
  140. Weismann, A., 1882, Studies on the Theory of Descent, with notes and additions by the author, translated with notes by R. Meldola, with a prefatory note by C. Darwin, 2 vols. Sampson, Low, Searles, and Rivington, London.Google Scholar
  141. Wickler, W., 1968, Mimicry in Plants and Animals, Weidenfield and Nicholson, World University Library, London.Google Scholar
  142. Wicklund, C., 1975, Pupal color polymorphism in Papilio machaon L. and the survival in the field of cryptic versus non-cryptic pupae, Trans. R. Entomol. Soc. London 127: 73–84.Google Scholar
  143. Wolda, H., 1963, Natural populations of the polymorphic land snail Cepaea nemoralis (L.), Arch. Neerl. Zool. 15: 381–471.Google Scholar
  144. Wolken, J. J., 1971, Invertebrate Photoreceptors: A Comparative Study, Academic Press, New York.Google Scholar
  145. Yamamoto, T., 1975, The medaka, Oryzias latipes, and the guppy, Lebistes reticulatus, Handbook of Genetics, vol. 4, Vertebrates of Genetic Interest (R. C. King, ed), pp. 133–149, Plenum, New York.Google Scholar
  146. Yamanouchi, T., 1956, The visual acuity of the coral fish, Microcanthus strigatus (Cuvier and Valenciennes), Publ. Seto Mar. Biol. Lab. 5: 133–156.Google Scholar
  147. Young, A. M., 1971, Wing coloration and reflectance in Morpho butterflies as related to reproductive behavior and escape from avian predators, Oecologica, 7: 209–222.Google Scholar
  148. Zaret, T., 1972, Predators, invisible prey, and the nature of polymorphism in the Cladocera (class Crustacea), Limnol. Oceanogr. 17: 171–184.Google Scholar
  149. Zaret, T., and Kerfoot, W. C., 1975, Fish predation on Bosmina longirostris: Body size selection versus visibility selection, Ecology 56: 232–237.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • John A. Endler
    • 1
  1. 1.Department of BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations