Five-Kingdom Classification and the Origin and Evolution of Cells

  • Lynn Margulis


This chapter will argue that modern biologists, in spite of social pressures and historical precedents, need to replace the traditional two-kingdom animal-plant distinction, which has outlived its usefulness, with a multikingdom classification of living organisms. For reasons discussed below, based on recent discoveries from a variety of disciplines, it seems that Whittaker’s five-kingdom system (Whittaker, 1969) is the most logical and consistent yet devised. Whittaker’s system is expanded below the phylum level and slightly modified on the basis of cell evolutionary considerations; suggestions for its adoption by zoologists, botanists, and microbiologists are made.*


Fossil Record Green Plant Slime Mold Cellular Slime Mold Microbial Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexopoulos, C. J., 1962, Introductory Mycology, 2nd ed., Wiley, New York.Google Scholar
  2. Altman, P. L., and Dittmer, D. S. (eds.), 1972, Biology Data Book, Federation of American Societies for Experimental Biology, Bethesda, Md.Google Scholar
  3. Arnold, C. A., 1947, Introduction to Paleobotany, McGraw-Hill, New York.Google Scholar
  4. Banks, H. P., 1970a, Major evolutionary events and the geological record of plants, Biol. Rev. 45:451–454.CrossRefGoogle Scholar
  5. Banks, H. P., 1970b, Evolution and Plants of the Past, 170 pp., Wadsworth, Belmont, Calif.Google Scholar
  6. Banks, H. P., 1972, The stratigraphic occurrence of early land plants, Paleontology 15:365–397.Google Scholar
  7. Bold, H. C., 1967, Morphology of Plants, 2nd ed., Harper and Row, New York and Evanston.Google Scholar
  8. Breed, R. S., Murray, E. G. D., and Smith, N. R., 1957, Bergey’s Manual of DeterminativeBacteria, 7th ed., Balliere, Trudall and Cox, London.Google Scholar
  9. Brock, T. D., 1970, Biology of Microorganisms, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  10. Campbell, L. L., and Postgate, J. R., 1965, Classification of the spore forming sulfate reducing bacteria, Bacteriol. Rev. 29:359–363.PubMedGoogle Scholar
  11. Cohen, S. S., 1970, Are/were mitochondria and chloroplasts microorganisms? Am. Scientist 58:281–289.PubMedGoogle Scholar
  12. Copeland, H. F., 1956, Classification of the Lower Organisms, Pacific Books, Palo Alto, Calif.Google Scholar
  13. Cowan, S. T., 1962, The microbial species—A macromyth? in: Microbial Classification (12th Symposium of the Society for General Microbiology) (G. C. Ainsworth and P. H. A. Sneath, eds.), pp. 433–455, Cambridge University Press, London.Google Scholar
  14. Cronquist, A., 1968, Evolution and Classification of Flowering Plants, Houghton-Mifflin, Boston.Google Scholar
  15. Cronquist, A., 1971, Introductory Botany. 2nd ed., pp. 365–374. Harper & Row, Publ., New York.Google Scholar
  16. Curtis, H., 1968, Biology, Worth, New York.Google Scholar
  17. Dayhoff, M. O., 1972, Atlas of Protein Sequence and Structure, National Biomedical Research Organization, Bethesda, Md.Google Scholar
  18. Dibble, C. E., and Anderson, A. J. O., 1963, Florentine Codex, Earthly Things, 11th BookWhich Telleth of the Different Animals, the Birds, the Fishes: and the Trees and theHerbs; the Metals Resting in the Earth—Tin, Lead, and Still Others; and the DifferentStones, Published by School of American Research and the University of Utah, Santa Fe, N.M.Google Scholar
  19. Dodson, E. O., 1971, The kingdoms of organisms, Syst. Zool. 20:265–281.CrossRefGoogle Scholar
  20. DeLey, J., 1968, Molecular biology and bacterial phylogeny, Evol. Biol. 2:104–154.Google Scholar
  21. Echlin, P., and Morris, L, 1965, The relationship between blue-green algae and bacteria, Biol.Rev. 40:143.PubMedCrossRefGoogle Scholar
  22. Eglinton, G., and Murphy, M. T., 1969, Organic Geochemistry, Springer-Verlag, New York.Google Scholar
  23. Fritsch, F. E., 1935, The Structure and Reproduction of the Algae, Vol. 1, Cambridge University Press, London.Google Scholar
  24. Glaessner, M. F., 1968, Biological events and the Precambrian time scale, Canad. J. EarthSci. 5:585–590.CrossRefGoogle Scholar
  25. Golubic, S., 1973, The relationship between blue-green algae and carbonate deposition, in: TheBiology of Blue-Green Algae (N. G. Carr and B. A. Whitton, Eds.) University of California Press, p. 439–472.Google Scholar
  26. Grant, V., 1971, Plant Speciation, Columbia University Press, New York.Google Scholar
  27. Greenwood, P. H., Rosen, D. E., Weitzman, S. H., and Myers, G. S., 1966, Phyletic studies of teleostean fishes, with a provisional classification of living forms, Bull. Am. Mus. Nat.Hist. 131:339–456.Google Scholar
  28. Hale, M. E., Jr., 1967, The Biology of Lichens, Edward Arnold, London.Google Scholar
  29. Honigberg, B. M., Balamuth, W., Bovee, E. C., Corliss, J. O., Godjics, M., Hall, R. D., Kudo, R. R., Levine, N. D., Leoblich, A. R., Jr., Weiser, J., and Wenrich, D. H., 1964, A revised classification of the phylum Protozoa, J. Protozool. 11:7–20.PubMedGoogle Scholar
  30. Hutchinson, G. E., 1967, Treatise on Limnology, Vol. 2, Wiley, New York.Google Scholar
  31. Hutchinson, J., 1959, The Families oj Flowering Plants, 2nd ed., Vol’. 1: Dicotyledons, Clarendon Press, Oxford.Google Scholar
  32. Hutchinson, J., 1969, Evolution and Phytogeny of Flowering Plants. Dictoyledons: Facts andTheory, Academic Press, London and New York.Google Scholar
  33. International Code of Botanical Nomenclature (F. A. Stafleu, ed.), 1969, Eleventh International Botanical Congress, Seattle.Google Scholar
  34. International Code of Zoological Nomenclature, (N. R. Stoll, R. P. Dollfus, J. Forest, N. D. Riley, C. W. Sabrosky, C. W. Wright, and R. V. Melville, eds.), 1964, XV International Congress of Zoology, London.Google Scholar
  35. Leedale, G., 1974, How many are the kingdoms of organisms? Taxon 23:37–47.CrossRefGoogle Scholar
  36. Lerner, I. M., 1963, Heredity, Evolution and Society, Freeman, San Francisco.Google Scholar
  37. Luykx, P., 1970, Cellular Mechanisms of Chromosome Distribution, Academic Press, New York.Google Scholar
  38. Lwoff, A., and Tournier, M., 1966, Classification of viruses, Ann. Rev. Microbiol. 20:45–74.CrossRefGoogle Scholar
  39. Keeton, W., 1972, Biological Science, 2nd ed., 888 pp., Norton, New York.Google Scholar
  40. Klein, R. M., and Cronquist, A., 1967, A consideration of the evolutionary and taxonomic significance of some biochemical, micromorphological and physiological characters in the Thallophyta, Quart. Rev. Biol. 42:105–296.PubMedGoogle Scholar
  41. Mandel, M., 1969, New approaches of bacterial taxonomy: Perspective and prospects, Ann.Rev. Microbiol. 23:239–274.CrossRefGoogle Scholar
  42. Margulis, L., 1968, Evolutionary criteria in thallophytes: A radical alternative, Science 161:1020–1022.PubMedCrossRefGoogle Scholar
  43. Margulis, L., 1970, Origin of Eukaryotic Cells, Yale University Press, New Haven.Google Scholar
  44. Margulis, L., 1971a, Whittaker’s five kingdoms: Minor modifications based on considerations of the origins of mitosis, Evolution 25:242–245.CrossRefGoogle Scholar
  45. Margulis, L., 1971b, Early cell evolution, in: Exobiology (C. Ponnamperuma, ed.), pp. 342–368, North-Holland, Amsterdam.Google Scholar
  46. Margulis, L. 1974a, The classification of prokaryotes and eukaryotes, in: Handbook ofGenetics (R. C. King, ed.), Chap. 1, Plenum Press, New York.Google Scholar
  47. Margulis, L. 1974b, On the origin and possible mechanism of colchicine-sensitive mitotic movements, Bio Systems 6:16–36.PubMedCrossRefGoogle Scholar
  48. Margulis, L., 1974c, Origin and evolution of the eukaryotic cell, Taxon 23:225–226.Google Scholar
  49. Mayr, E., 1970, Populations, Species and Evolution, Harvard University Press, Cambridge, Mass.Google Scholar
  50. McLaughlin, P., and Dayhoff, M. O., 1973, Eukaryote evolution: A view based on cytochrome c sequence data, J. Mol. Evol. 2:99–116.PubMedCrossRefGoogle Scholar
  51. Morowitz, H. J., 1967, Biological self-replicating systems, Progr. Theoret. Biol. 1:35–58.Google Scholar
  52. Olive, L. S., 1970, The Mycetozoa: A revised classification, Bot. Rev. 36:59–89.CrossRefGoogle Scholar
  53. Pickett-Heaps, J., 1974, Evolution of mitosis and the eukaryote condition, BioSystems, 6:37–45.PubMedCrossRefGoogle Scholar
  54. Romer, A. S., 1968, The Procession of Life (1972 Anchor Books edition), 384 pp., World, Cleveland.Google Scholar
  55. Romer, A. S., 1970, The Vertebrate Body, 4th ed., 452 pp., Saunders, Philadelphia.Google Scholar
  56. Schopf, J. W., 1972, Precambrian Paleobiology, in: Exobiology (C. Ponnamperuma and R. Buvet, eds.), pp. 16–61, North-Holland, Amsterdam.Google Scholar
  57. Schopf, J. W., and Blacic, J. M., 1971, New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia, J. Paleontol. 45:925–961.Google Scholar
  58. Schulthorpe, C. D., 1967, The Biology of Aquatic Vascular Plants, Edward Arnold, London.Google Scholar
  59. Simpson, G. G., 1954, The Meaning of Evolution, Harper and Row, New York.Google Scholar
  60. Simpson, G. G., 1960, The history of life, in: Evolution After Darwin (S. Tax, ed.), pp. 117–180, University of Chicago Press, Chicago.Google Scholar
  61. Simpson, G. G., 1961, Principles of Animal Taxonomy, 247 pp., Columbia University Press, New York.Google Scholar
  62. Simpson, G. G., 1963, Major Features of Evolution, Columbia University Press, New York.Google Scholar
  63. Stafleu et al. (see International Code).Google Scholar
  64. Stanier, R., Douderoff, M., and Adelberg, E., 1970, The Microbial World, 3rd ed., Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  65. Starr, M. P., and Seidler, R. J., 1971, The Bdellovibrios, Ann. Rev. Microbiol. 25:649–678.CrossRefGoogle Scholar
  66. Stoll et al. (see International Code).Google Scholar
  67. Sylvester-Bradley, P., 1971, Carbonaceous chondrites and the prebiological origin of food, in: Molecular Evolution (L. Buvet and C. Ponnamperuma, eds.), pp. 499–504, North-Holland, Amsterdam.Google Scholar
  68. Taylor, F. J. R., 1974, Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes, Taxon 23:229–258.CrossRefGoogle Scholar
  69. Thomas, C. A., Jr., 1971, The genetic organization of chromosomes, Ann. Rev. Genet. 5:237–256.PubMedCrossRefGoogle Scholar
  70. Worcel, A., and Burgi, E., 1972, On the structure of the folded chromosome of E. coli, J. Mol. Biol. 71:127–138.Google Scholar
  71. Whitehouse, H. K. L., 1969, Towards an Understanding of the Mechanism of Heredity, 2nd ed., St. Martin’s Press, New York.Google Scholar
  72. Whittaker, E. H., 1969, New concepts of the kingdoms of organisms, Science 163:150–160.PubMedCrossRefGoogle Scholar
  73. Younger, K. B., Banerjee, S., Kelleher, J. K., Winston, M., and Margulis, L., 1972, Evidence that the synchronized production of new basal bodies is not associated with DNA synthesis in Stentor coeruleus, J. Cell Sci. 11:621–637.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Lynn Margulis
    • 1
  1. 1.Department of BiologyBoston UniversityBostonUSA

Personalised recommendations