Concepts of Organization the Leverage of Ciliate Protozoa

  • Jan Sapp
Part of the Developmental Biology book series (DEBO, volume 7)


Biologists have long disputed the question of whether or not one can exploit Protista as technologies to better understand the organization of multicellular organisms. Some have argued that Protozoa must be understood and studied solely in their own terms, not as cells, but as organisms possessing an organization fundamentally different from that of Metazoa. Protozoa represent a world unto themselves having evolved in directions altogether divergent from the typical text-book cell: They are “noncellular” or acellular organisms. Others have argued, to the contrary, that in all its essential details a Protozoon is homologous to a Metazoan cell. Although the term “noncellular” may be used when they were studied entirely on their own, without reference to other forms of life, the term “unicellular” was perfectly applicable to Protozoa when they were compared with multicellular organisms. Still others adopted a middle ground, arguing that though Protozoa show similarities to the basic structure of cells, they have many morphological and physiological characteristics of their own which are not found generally in the cells of Metazoa. In recent years, the question of the uniqueness of Protozoa has arisen anew and moved to the center of controversy in reference to general mechanisms of development and evolution.


Cellular Differentiation Multicellular Organism Positional Information Germ Plasm Ciliated Protozoan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. 1.
    Nanney, D. L., 1984, review of Goodwin, B.C.,Holder, N., and Wylie, C. C., eds., Development and Evolution. British Society for Developmental Biology, Symposium 6. Cambridge University Press, New York, 1983.J.Protozool.31: 365Google Scholar
  2. 2.
    Frankel, J., 1983, “What are the developmental underpinnings of evolutionary changes in protozoan morphology?” in: Development and Evolution ( B. C. Goodwin, N. Holder and C. C. Wylie, eds.), Cambridge University Press, Cambridge, pp. 279–314.Google Scholar
  3. 3.
    Smith, J. M., 1983, Evolution and development, in Development and Evolution ( B. C. Goodwin, N. Holder, and C. C. Wylie, eds.), Cambridge University Press, Cambridge, pp. 33–46.Google Scholar
  4. 4.
    Nanney, 1984.Google Scholar
  5. 5.
    See Nanney, D. L., 1983, The cytoplasm and the ciliates, J. Hered 74:163–170; Sapp, J., 1986, Inside the cell: Genetic methodology and the case of the cytoplasm, in: The Politics and Rhetoric of Scientific Method (J. A. Schuster and R. R. Yeo, eds.), Reidel, Dordrecht, pp. 167–202; Sapp, J., 1987, Beyond the Gene, Cytoplasmic Inheritance and the Struggle for Authority in Genetics, Oxford University Press, New York; Sapp, J., (in press), Cytoplasmic inheritance and the historiography of genetics, in: Histoire de la genetique (J-L. Fischer and W. Schneider, eds.), Vrin, Paris.Google Scholar
  6. 6.
    Morgan, T. H., 1926, Genetics and the physiology of development, Am. Nat. 60: 489–515.Google Scholar
  7. 7.
    See, for example, Beadle, G. W., 1948, Genes and biological enigmas, in: Science in Progress, 6th series (G. A. Baitsell, ed.), Yale University Press, New Haven, pp. 184–248; Muller, H. J., The development of the gene theory, in: Genetics in the Twentieth Century (L. C. Dunn ed.), Macmillan, New York, pp. 77–100; see also Sapp, 1987.Google Scholar
  8. 8.
    Weismann, A., 1983, The Germ Plasm: A Theory of Heredity, Walter Scott, London, p. xv.Google Scholar
  9. 9.
    Ibid., p. 11.Google Scholar
  10. 10.
  11. 11.
    Ibid., p. xiv.Google Scholar
  12. 12.
    Ibid., p. 38.Google Scholar
  13. 13.
    Ibid., p. xi.Google Scholar
  14. 14.
    Ibid., p. 22.Google Scholar
  15. 15.
    Ibid., p. 23.Google Scholar
  16. 16.
    Ibid., p. 27.Google Scholar
  17. 17.
    Ibid., p. 29.Google Scholar
  18. 18.
    Ibid., p. 26.Google Scholar
  19. 19.
    Ibid., p. 48.Google Scholar
  20. 20.
    Ibid., p. 49.Google Scholar
  21. 21.
    Ibid., p. 63.Google Scholar
  22. 22.
  23. 23.
    Weismann,A.,1885,Continuity of the germ-plasm as the foundation of a theory of heredity. Republished in Essays upon Heredity and Kindred Biological Problems, 1891–1892 (trans. by E. B. Poulton et al.), 2 Vols., 2nd ed., Clarendon Press, Oxford,Vol. 1, pp.163–255.Google Scholar
  24. 24.
    Child, C. M., 1915, Senesence and Rejuvenescence, University of Chicago Press, Chicago, pp. 11–12.Google Scholar
  25. 25.
    Driesch, H., 1891, Entwicklungsmechanische Studien. I. Der Werth der beiden ersten Furchungszelllen in der Echinodermentwicklung. Experimentelle Erzeugung von Theil-und Doppelbildungen. Zschr. Wissenschaft. Zool. 53: 160–178.Google Scholar
  26. 26.
    Weismann, 1983, pp. 137–138.Google Scholar
  27. 27.
    Quoted in Wilson, E. B., 1925, The Cell in Development and Heredity, 3rd ed., Macmillan, New York, p. 1056.Google Scholar
  28. 28.
    See Sapp, J., 1983, The struggle for authority in the field of heredity, 1900–1932: New perspectives on the rise of genetics, J. Hist. Biol. 16: 311–342.Google Scholar
  29. 29.
    Morgan, T. H., 1919, The Physical Basis of Heredity, Lippincott, Philadelphia, p. 241.CrossRefGoogle Scholar
  30. 30.
    Sapp, 1983.Google Scholar
  31. 31.
    See Churchill, E, 1969, From machine-theory to entelechy: Two studies in developmental teleology, J. Hist. Biol. 2: 165–185.Google Scholar
  32. 32.
    Loeb, J., 1916, The Organism as a Whole, Putnam’s Sons, New York, p. vi.CrossRefGoogle Scholar
  33. 33.
    Conklin, E. G., 1915, Heredity and Environment in the Development of Men, Princeton University Press, Princeton, NJ, p. 176.Google Scholar
  34. 34.
    Ibid., p. 241.Google Scholar
  35. 35.
    Harrison, R., 1937, Embryology and its relations, Science 85: 369–374.PubMedCrossRefGoogle Scholar
  36. 36.
    See Sapp (1986, 1987).Google Scholar
  37. 37.
    Ephrussi, B., 1953, Nucleo-cytoplasmic Relations in Microorganisms, Clarendon Press, Oxford, U.K., p. 100.Google Scholar
  38. 38.
    Sonneborn, T. M., 1951, The role of genes in cytoplasmic inheritance, in: Genetics in the Twentieth Century ( L. C. Dunn, ed.), Macmillan, New York, pp. 291–314.Google Scholar
  39. 39.
    Ephrussi, 1953, p. 104.Google Scholar
  40. 40.
    Lwoff, A., 1950, Problems of Morphogenesis in Ciliates: The Kinetosomes in Development, Reproduction and Evolution, Wiley, New York, p. 15.Google Scholar
  41. 41.
    Ibid., p. 2.Google Scholar
  42. 42.
    Chatton, E., Lwoff, A., and Lwoff, M., 1929, Les infraciliatures et la continuité génétiques des systèmes ciliaires récessifs, C. R. Acad. Sci. 188: 1190–1192.Google Scholar
  43. 43.
    Lwoff, 1950, pp. 7, 29.Google Scholar
  44. 44.
    Ibid., p. 32.Google Scholar
  45. 45.
    Tartar, V., 1941, Intracellular patterns: Facts and principles concerning patterns exhibited in the morphogenesis and regeneration of ciliate protozoa, Growth 3: 23–48.Google Scholar
  46. 46.
    Fauré-Frémiet, E., 1948, Les mécanismes de la morphogenèse chez les ciliés, Fol. Biotheor. 111: 25–58.Google Scholar
  47. 47.
    Lwoff, 1950, pp. 28, 62, 78.Google Scholar
  48. 48.
    Quoted in Lwoff, 1950, p. 29.Google Scholar
  49. 49.
    Weiss, P., 1947, The problem of specificity in growth and development, Yale J. Biol. Med. 19: 235–278.Google Scholar
  50. 50.
    Lwoff, 1950, p. 28.Google Scholar
  51. 51.
  52. 52.
  53. 53.
    Ibid., p. 84.Google Scholar
  54. 54.
    Ibid., p. 33.Google Scholar
  55. 55.
    Ibid., p. 84.Google Scholar
  56. 56.
    Ibid., p. 86.Google Scholar
  57. 57.
    Ephrussi, 1953, p. 4.Google Scholar
  58. 58.
    See Nanney, D. L., 1958, Epigenetic control systems, Proc. Natl. Acad. Sci. USA 44:327–335; Ephrussi, B., 1958, The cytoplasm and somatic cell variation, J. Cell. Comp. Physiol. 52: 35–53.Google Scholar
  59. 59.
    Nanney, D. L., 1957, The role of the cytoplasm in heredity, in: The Chemical Basis of Heredity ( W. D. McElroy and H. B. Glass, eds.), Johns Hopkins Press, Baltimore, pp. 134–164.Google Scholar
  60. 60.
    Ephrussi, 1953, p. 49.Google Scholar
  61. 61.
    Sonneborn, T. M., 1964, The differentiation of cells, Proc. Natl. Acad. Sci. USA 51: 915–929.Google Scholar
  62. 62.
    Jacob, E, and Monod, J., 1963, Elements of regulatory circuits in bacteria, in: Biological Organization at the Cellular and Subcellular Level ( R. J. C. Harris, ed.), Academic Press, London, pp. 1–24.Google Scholar
  63. 63.
    Buttin, G., Jacob, F., and Monod, J., 1967, The operon: A unit of coordinated gene action, in: Heritage from Mendel ( R. A. Brink, ed.), University of Wisconsin Press, Madison, pp. 155–178.Google Scholar
  64. 64.
    Sonneborn, 1964, p. 918.Google Scholar
  65. 65.
    Jacob and Monod, 1963, p. 1.Google Scholar
  66. 66.
    Jacob, F., 1976, The Logic of Life. A History of Heredity, translated by B. E. Spillman, Vintage Books, New York, p. 247.Google Scholar
  67. 67.
    Jacob, E, and Monod, J., 1961, Telenomic mechanisms in cellular metabolism, growth and differentiation, Cold Spring Harbor Symp. Quant. Biol. 21: 389–401.Google Scholar
  68. 68.
    The history of the research and theories pertaining to symbiosis and evolutionary theory is being investigated by the author. See Sapp, J., 1990, Symbiosis in evolution: an origin story, EndocytobiosisCellRes.7:5–36; Sapp, J., 1991, Living Together: Symbiosis and cytoplasmic inheritance, in: Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis ( Margulis and Fester, eds.), MIT Press,Boston.Google Scholar
  69. 69.
    Ephrussi, B., 1972, Hybridization of Somatic Cells, Princeton University Press, Princeton, NJ, p. 113.Google Scholar
  70. 70.
    Sonneborn, T. M., 1960, The gene and cell differentiation, Proc. Natl. Acad. Sci. USA 46: 149–165.Google Scholar
  71. 71.
    See, for example, Sonneborn, T. M., 1963, Does preformed cell structure play an essential role in cell heredity? in: The Nature of Biological Diversity U. M. Allen, ed.), McGraw—Hill, New York, pp. 165–221; Monod, J., 1972, Chance and Necessity, translated by A. Wainhouse, Vintage Books, New York; Jacob, 1976.Google Scholar
  72. 72.
    See Sonneborn, T. M., 1964, The differentiation of cells, Proc. Natl. Acad. Sci. USA 51: 915–929.Google Scholar
  73. 73.
    Luria, S., 1966, Discussion following Lengyel, P., Problems in protein biosynthesis, J. Gen. Physiol. 49: 305–330.Google Scholar
  74. 74.
    Tartar, V., 1961, The Biology of Stentor, Paramon Press, Oxford, pp. 1–2.Google Scholar
  75. 75.
    See Sonneborn, 1963, p. 213.Google Scholar
  76. 76.
  77. 77.
    Beisson, J., and Sonneborn, T. M., 1965, Cytoplasmic inheritance of the organization of the cell cortex in Paramecium aurelia, Proc. Nat. Acad. Sci. 53: 275–282.Google Scholar
  78. 78.
    See Nanney, D. L., 1980, Experimental Ciliatology, Wiley, New York.Google Scholar
  79. 79.
    Sonneborn, T. M., 1963, Bearing of protozoan studies on current theory of genic and cytoplasmic actions, in: The Nature of Biological Diversity ( J. M. Allen ed.), McGraw-Hill, New York, pp. 165–221.Google Scholar
  80. 80.
    Nanney, D. L., 1968, Cortical patterns in cellular morphogenesis, Science 160: 496–502.PubMedCrossRefGoogle Scholar
  81. 81.
    See Nanney, 1980, p. 162; Frankel, J., 1984, Pattern formation in ciliated protozoa, in: Pattern Formation: A Primer in Developmental Biology ( G. M. Malacinski and S. V. Bryant, eds.), Macmillan, New York, pp. 163–196.Google Scholar
  82. 82.
    Hershey, A. D., 1970, Genes and hereditary characteristics, Nature 226: 697–700.PubMedCrossRefGoogle Scholar
  83. 83.
    Ephrussi, 1972, p. 112.Google Scholar
  84. 84.
    Sonneborn, T. M., 1974, Ciliate morphogenesis and its bearing on general cellular morpho-genesis, Actual. Protozool. 1: 327–355.Google Scholar
  85. 85.
    Hershey, 1970, p. 700.Google Scholar
  86. 86.
    See Sonneborn, 1963, p. 217.Google Scholar
  87. 87.
    Nanney, 1980, p. 173.Google Scholar
  88. 88.
    Frankel, J., 1974, Positional information in unicellular organisms, J. Theoret. Biol. 47: 439–481.Google Scholar
  89. 89.
  90. 90.
    See Nanney, 1980, p. 167.Google Scholar
  91. 91.
    Nanney, 1983; Sapp, 1987.Google Scholar
  92. 92.
    See, for example, Wolpert, L., 1982, Pattern formation and change, in: Evolution and Development U. T. Bonner, ed.), Springer-Verlag, Berlin, pp. 43–55.Google Scholar
  93. 93.
    Goodwin, B. C., 1983, Pattern formation and change, in: Evolution and Change ( J. T. Bonner, ed.), Springer-Verlag, Berlin, pp. 169–188.Google Scholar
  94. 94.
    Frankel, J., letter to the author, June 5–9, 1985, p. 8.Google Scholar
  95. 95.
    Goodwin, B., 1984, A relational or field theory of reproduction and its evolutionary implications, in: Beyond Neo-Darwinism. An Introduction to the New Evolutionary Paradigm ( M.-W. Ho and P. Saunders, eds.), Academic Press, London, pp. 219–241.Google Scholar
  96. 96.
    Ibid., p. 226.Google Scholar
  97. 97.
    Ibid., p. 226.Google Scholar
  98. 98.
    For a more detailed discussion of these issues, see Sapp, 1986, 1987.Google Scholar
  99. 99.
    Lwoff, A., 1990, L’organisation du cortex chez les ciliés: un exemple d’hérédité de caratère acquis, C. R. Acad. Sci. Paris 310: 109–111.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Jan Sapp
    • 1
  1. 1.Department of the History and Philosophy of ScienceUniversity of MelbourneParkville, VictoriaAustralia

Personalised recommendations