Advertisement

The Determination of Clutch Size in Precocial Birds

  • David W. Winkler
  • Jeffrey R. Walters
Part of the Current Ornithology book series (CUOR, volume 1)

Abstract

The evolution and regulation of clutch size has long been a central issue in ornithology. Early ornithologists realized that females of each species of bird lay a characteristic number of eggs, and we have been trying to determine ever since why this is so. In pursuit of the answer to this seemingly simple question, ornithologists have not only accumulated a wealth of egg data, but also have made important contributions to such diverse topics as life-history strategies, population regulation and group selection. Yet how clutch size is determined remains a controversial issue. The consensus that was once sought in the form of a central theory (Lack, 1968; Cody, 1966; Klomp, 1970; von Haartman, 1971) has disappeared in a sea of specific hypotheses. In this review we attempt to organize and summarize clutch size theories as they emerge in modified form from recent research and evaluate their ability to explain observed patterns in clutch size variation. We concentrate on the literature and concepts published since the review of Klomp (1970), but we incorporate earlier work when necessary.

Keywords

Parental Behavior Clutch Size Reproductive Effort Brood Size Breeding Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, M., 1976, Clutch size in Long-tailed Skua Stercorarius Jongicaudus—some field experiments, Ibis 118:586–588.CrossRefGoogle Scholar
  2. Andersson, M., 1978, Optimal egg shape in waders, Ornis Fennica 55:105–109.Google Scholar
  3. Andersson, M., and Eriksson, M. O. G., 1982, Nest parasitism in goldeneyes (Bucephala clanguJa): Some evolutionary aspects, Am. Natural. 120:1–16.CrossRefGoogle Scholar
  4. Ankney, C. D., and Maclnnes, C. D., 1978, Nutrient reserves and reproductive performance of female Lesser Snow Geese, Auk 95:459–471.Google Scholar
  5. Ashkenazie, S., and Safriel, U. N., 1979, Time-energy budget of the Semipalmated Sandpiper (Calidris pusilJa) at Barrow, Alaska, Ecology 60:783–799.CrossRefGoogle Scholar
  6. Ashmole, N. P., 1963, The regulation of numbers of tropical oceanic birds, Ibis 103:458–473.Google Scholar
  7. Baerends, G. P., Drent, R. H., Glas, P., and Groenewold, H., 1970, An ethological analysis of incubation behaviour in the Herring Gull, Behaviour Suppl. 17:134–235.Google Scholar
  8. Baker, J. R., 1938, The evolution of breeding seasons, in: Evolution: Essays in Aspects of Evolutionary Biology (G. R. DeBeer, ed.), Clarendon Press, Oxford, pp. 161–177.Google Scholar
  9. Barry, W. T., 1962, Effect of late seasons on Atlantic Brant reproduction, J. Wild J. Mgmt. 26:19–26.CrossRefGoogle Scholar
  10. Bateson, P. P. G., and Plowright, R. C., 1959, The breeding biology of the Ivory Gull in Spitzbergen, Br. Birds 1959:105–114.Google Scholar
  11. Batt, B. D. J., and Prince, H. H., 1979, Laying dates, clutch size and egg weight of captive Mallards, Condor 81:35–41.CrossRefGoogle Scholar
  12. Beer, C. G., 1961, Incubation and nest-building behaviour of Black-headed Gulls. I. Incubation behaviour in the incubation period, Behaviour 18:62–106.CrossRefGoogle Scholar
  13. Beer, C. G., 1965, Clutch size and incubation behavior in Black-billed Gulls (Larus bulled), Auk 82:1–18.CrossRefGoogle Scholar
  14. Bengtson, S. A., 1971, Variations in clutch-size in ducks in relation to the food supply, Ibis 113:523–526.CrossRefGoogle Scholar
  15. Bertram, B. C. R., 1979, Ostriches recognize their own eggs and discard others, Nature 279:233–234.PubMedCrossRefGoogle Scholar
  16. Blem, C. R., 1978, The energetics of young Japanese Quail, Coturnix coturnix japonica, Comp. Biochem. Physiol. 59 (2A):219–223.Google Scholar
  17. Brockelman, W. K., 1975, Competition, the fitness of offspring, and optimal clutch size, Am. Natural. 109:677–699.CrossRefGoogle Scholar
  18. Bruning, D. F., 1974, Social structure and reproductive behavior in the Greater Rhea, Living Bird 13:251–294.Google Scholar
  19. Call, A. B., 1891, Notes at random, Oologist 8:198.Google Scholar
  20. Charnov, E. L., and Krebs, J. R., 1974, On clutch-size and fitness, Ibis 116:217–219.CrossRefGoogle Scholar
  21. Clark, G. A., Jr., 1964, Life histories and the evolution of megapodes, Living Bird 3:149–168.Google Scholar
  22. Cody, M. L., 1966, A general theory of clutch size, Evolution 20:174–184.CrossRefGoogle Scholar
  23. Conover, M., Miller, D. E., and Hunt, G. L., 1979, Female-female pairs and other unusual reproductive associations in Ring-billed Gulls and California Gulls, Auk 96:6–9.Google Scholar
  24. Coulson, J. C., 1963, Egg size and shape in the Kittiwake (Rissa tridactyla) and their use in estimating the age composition of populations, Proc. Zool. Soc. Lond. 140:211–227.CrossRefGoogle Scholar
  25. Coulson, J. C., and Horobin, J., 1976, The influence of age on the breeding biology and survival of the Arctic Tern Sterna paradisaea, J. of Zool., Lond. 178:247–260.CrossRefGoogle Scholar
  26. Coulson, J. C., and White, E., 1958, The effect of age on the breeding biology of the Kittiwake, Rissa tridactyla, Ibis 100:40–51.CrossRefGoogle Scholar
  27. Coulson, J. C., and White, E., 1961, An analysis of the factors influencing the clutch size of the Kittiwake, Proc. Zool. Soc. Lond. B6:207–217.Google Scholar
  28. Cracraft, J., 1974, Phylogeny and evolution of the ratite birds, Ibis 116:494–521.CrossRefGoogle Scholar
  29. Cramp, S., ed., 1977, Handbook of the Birds of Europe the Middle East and North Africa: The Birds of the Western Palearctic, Volume 1, Ostrich to Ducks, Oxford University Press, Oxford.Google Scholar
  30. Crossner, K. A., 1977, Natural selection and clutch size in the European Starling, Ecology 58:885–892.CrossRefGoogle Scholar
  31. Davies, S. J. F., 1976, The natural history of the Emu in comparison with that of other ratities, Proc. XVI Int. Ornithol. Cong. 109–120.Google Scholar
  32. Davis, D. E., 1942, Number of eggs laid by Herring Gulls, Auk 59:549–554.CrossRefGoogle Scholar
  33. Davis, D. E., 1944, The occurrence of burst atretic follicles in birds, Anat. Rec. 90:307–309.CrossRefGoogle Scholar
  34. Davis, J. W. F., 1975, Age, egg-size, and breeding success in the Herring Gull Larus argentatus, Ibis 117:460–473.CrossRefGoogle Scholar
  35. Dawkins, R., and Carlisle, T. R., 1976, Parental investment and mate desertion: A fallacy, Nature 262:131–133.CrossRefGoogle Scholar
  36. Drent, R. H., and Daan, S., 1980, The prudent parent: Energetic adjustments in avian breeding, Ardea 68:225–252.Google Scholar
  37. Drobney, R. D., 1980, Reproductive bioenergetics of wood ducks, Auk 97:480–490.Google Scholar
  38. Dunn, E. H., 1976, Development of endothermy and existence energy expenditure of nestling Double-crested Cormorants, Condor 78:350–356.CrossRefGoogle Scholar
  39. Emlen, S. T., and Oring, L. W., 1977, Ecology, sexual selection, and the evolution of mating systems, Science 197:215–233.PubMedCrossRefGoogle Scholar
  40. Fiala, V., 1978, Beitrag zur Populationsdynamik und Brutbiologie des Blasshuhns (Fulica atra), Folia Zool. 27:349–369.Google Scholar
  41. Foster, M. S., 1974a, A model to explain molt-breeding overlap and clutch size in some tropical birds, Evolution 28:182–190.CrossRefGoogle Scholar
  42. Foster, M. S., 1974b, Rain, feeding behavior, and clutch size in tropical birds, Auk 91:722–726.CrossRefGoogle Scholar
  43. Fredrickson, L. H., 1969, An experimental study of clutch size of the American Coot, Auk 86:541–550.CrossRefGoogle Scholar
  44. Frith, H. J., 1956, Breeding habits in the family Megapodiidae, Ibis 98:620–640.CrossRefGoogle Scholar
  45. Frith, H. J., 1962, The Mallee-Fowl, Angus and Robertson, Sydney.Google Scholar
  46. Fugle, G. N., and Rothstein, S. I., 1977, Clutch size determination, egg size, and eggshell thickness in the Pie-billed Grebe, Auk 94:371–373.Google Scholar
  47. Gibson, F., 1971, The breeding biology of the American Avocet (Recurvirostra americana) in central Oregon, Condor 73:444–454.CrossRefGoogle Scholar
  48. Gibson, F., 1978, Ecological aspects of the time budget of the American Avocet, Am. Midl. Natural. 99:65–82.CrossRefGoogle Scholar
  49. Glutz von Blotzheim, U. N., 1964, Die Brutvogel der Schweiz, Verlag Aargauer Tagblatt A C., Aarau.Google Scholar
  50. Glutz von Blotzheim, U. N., ed., 1973, Handbuch der Vögel Mitteleuropas, Band 5, Galliformes and Gruiformes, Akademische Verlagsgesellschaft, Wiesbaden.Google Scholar
  51. Glutz von Blotzheim, U. N., ed., 1975, Handbuch der Vögel Mitteleuropas, Band 6, Charadriijormes (1. Teil), Akademische Verlagsgesellschaft, Wiesbaden.Google Scholar
  52. Glutz von Blotzheim, U. N., ed., 1977, Handbuch der Vögel Mitteleuropas, Band 7, Charadriiformes (2. Teil), Akademische Verlagsgesellschaft, Wiesbaden.Google Scholar
  53. Goodman, D., 1974, Natural selection and a cost ceiling on reproductive effort, Am. Natural. 108:247–268.CrossRefGoogle Scholar
  54. von Haartman, L., 1971, Population dynamics, in: Avian Biology, Volume I (D. S. Farner and J. R. King, eds.), Academic Press, New York, pp. 392–461.Google Scholar
  55. Harmon, S. J., Lennart, G. S., and Zwickel, F. C., 1982, Spring movements of female Blue Grouse: Evidence for socially induced delayed breeding in yearlings, Auk 99:687–694.Google Scholar
  56. Harris, M. P., 1966, Breeding biology of the Manx Shearwater Puffinus puffinus, Ibis 108:17–33.CrossRefGoogle Scholar
  57. Harris, M. P., 1970, Breeding ecology of the Swallow-tailed Gull, Creagrus furcatus, Auk 87:215–243.CrossRefGoogle Scholar
  58. Harris, M. P., and Plumb, W. J., 1965, Experiments on the ability of Herring Gulls and Lesser Black-backed Gulls to raise larger than normal broods, Ibis 107:256–257.CrossRefGoogle Scholar
  59. Haymes, G. T., and Morris, R. D., 1977, Brood size manipulations in Herring Gulls, Can. J. Zool. 55:1762–1766.CrossRefGoogle Scholar
  60. Heinroth, O., 1922, Die Beziehungen zwischen Vogelgewicht, Eigewicht, Gelegegewicht nd Brutdauer, J. Ornithol 70:172–285.CrossRefGoogle Scholar
  61. Hesse, R., 1923, Die Bedeutung der Tagesdauer für die Vogel, Sizungsber. Naturh. Ver. reuss. Rheinlande Westfalens 1922A:13–17.Google Scholar
  62. Heusmann, H. W., 1972, Survival of Wood Duck broods from dump nests, J. Wildk. Mgmt. 36:620–624.CrossRefGoogle Scholar
  63. Hilborn, R., and Stearns, S. C., 1982, On inference in ecology and evolutionary biology: the problem of multiple causes, Acta Biotheor. 31:145–164.PubMedCrossRefGoogle Scholar
  64. Hilden, O., 1964, Ecology of duck populations in the island group of Valassaaret, Gulf of Bothnia, Ann. Zool. Fenn. 1:153–279.Google Scholar
  65. Hills, S., 1980, Incubation capacity as a limiting factor of shorebird clutch size, Am. Zool. 20:774 (abst).Google Scholar
  66. Högstedt, G., 1974, Length of the prelaying period in the lapwing Vanellus vaneilus L., in relation to its food resources, Ornis. Scand. 5:1–4.CrossRefGoogle Scholar
  67. Högstedt, G., 1980, Evolution of clutch size in birds—adaptive variation in relation to territory quality, Science 210:1148–1150.PubMedCrossRefGoogle Scholar
  68. Howe, H. F., 1978, Initial investment, clutch size, and brood reduction in the Common Grackle (Quiscalus quiscula L.) Ecology 59:1109–1122.Google Scholar
  69. Howell, T. R., Araya, B., and Millie, W. R., 1974, Breeding biology of the Gray Gull, Larus modestus, Univ. Calif. Publ. Zool. 104:1–57.Google Scholar
  70. Hunt, G. L., Jr., 1980, Mate selection and mating systems in seabirds, in: Behavior of Marine Animals, Volume 4, Marine Birds (J. Burger, B. L. Olla, and H. E. Winn, eds.), Plenum Press, New York, pp. 113–151.Google Scholar
  71. Hunt, G. L., and Hunt, M. W., 1977, Female-female pairing in Western Gulls (Larus occidentalis) in southern California, Science 196:1466–1467.PubMedCrossRefGoogle Scholar
  72. Inglis, I. R., 1977, The breeding behavior of the Pink-footed Goose: Behavioural correlates of nesting success, Anim. Behav. 25:747–764.CrossRefGoogle Scholar
  73. Jenni, D. A., 1974, Evolution of polyandry in birds, Am. Zool. 14:129–144.Google Scholar
  74. lohnsgard, P. A., 1973, Proximate and ultimate determinants of clutch size in Anatidae, Wildfowl 24:144–149.Google Scholar
  75. Johnsgard, P. A., 1978, Ducks, Geese, and Swans of the World, University of Nebraska Press, Lincoln.Google Scholar
  76. Johnsgard, P. A., 1981, The Plovers, Sandpipers, and Snipes of the World, University of Nebraska Press, Lincoln.Google Scholar
  77. Johnson, A. W., 1965, The Birds of Chile and Adjacent Regions of Argentina, Bolivia, and Peru, Volume 1, Platt establicimientos graficos S.A., Buenos Aires.Google Scholar
  78. Johnston, D. W., 1956, The annual reproductive cycle of the California Gull, II. Histology and female reproductive system, Condor 58:206–221.CrossRefGoogle Scholar
  79. Jones, P. J., 1976, The utilization of calcareous grit by laying QueJea quelea, Ibis 118:575–576.CrossRefGoogle Scholar
  80. Jones, P. J., and Ward, P., 1976, The level of reserve protein as the proximate factor controlling the timing of breeding and clutch size in the Red-billed Quelea, Quelea quelea, Ibis 118:547–573.CrossRefGoogle Scholar
  81. Jones, R. E., ed., 1978, The Vertebrate Ovary: Comparative Biology and Evolution, Plenum Press, New York.Google Scholar
  82. Kendeigh, S. C., 1952, Parental care and its evolution in birds, Illinois Biol. Monogr. 22:1–356.Google Scholar
  83. Klomp, H., 1951, Over de achteruitgang van de Kievit, Vanellus vanellus (L.), in Nederland en gegevens over het legmechanisme en het eiproductivermogen, Ardea 39:143–182.Google Scholar
  84. Klomp, H., 1970, The determination of clutch-size in birds, a review, Ardea 58:1–124.Google Scholar
  85. Korschgen, C. E., 1977, Breeding stress of female eiders in Maine, J. Wildl. Mgmt. 41:360–373.CrossRefGoogle Scholar
  86. Krapu, G. L., 1981, The role of nutrient reserves in mallard reproduction, Auk 98:29–38.Google Scholar
  87. Lack, D., 1947a, The significance of clutch-size, Ibis 89:302–352.CrossRefGoogle Scholar
  88. Lack, D., 1947b, The significance of clutch-size in the Partridge (Perdix perdix), J. Anim. Ecol. 16:19–25.CrossRefGoogle Scholar
  89. Lack, D., 1948, The significance of clutch-size, III., Ibis 90:25–45.CrossRefGoogle Scholar
  90. Lack, D., 1954, The Natural Regulation of Animal Numbers, Clarendon Press, Oxford.Google Scholar
  91. Lack, D., 1966, Population Studies of Birds, Clarendon Press, Oxford.Google Scholar
  92. Lack, D., 1968, Ecological Adaptations for Breeding in Birds, Methuen, London.Google Scholar
  93. Lack, D., and Lack, E., 1951, The breeding biology of the swift Apus apus, Ibis 93:501–546.Google Scholar
  94. Langham, N. P. E., 1974, Comparative breeding biology of the Sandwich Tern, Auk 91:255–277.Google Scholar
  95. Lazarus, J., and Inglis, I. R., 1978, The breeding behaviour of the Pink-footed Goose: Parental care and vigilant behaviour during the fledgling period, Behaviour 65:62–88.Google Scholar
  96. Lemmetyinen, R., 1973, Clutch size and timing of breeding in the Arctic Tern in the Finnish archipelago, Ornis Fenn. 50:19–28.Google Scholar
  97. Leopold, F., 1951, A study of nesting Wood Ducks in Iowa, Condor 53:209–220.CrossRefGoogle Scholar
  98. Low, B. S., 1978, Environmental uncertainty and the parental strategies of marsupials and placentals, Am. Natural. 112:197–213.CrossRefGoogle Scholar
  99. MacArthur, R. H., and Wilson, E. O., 1967, The theory of island biogeography, Princeton Monogr. Pop. Biol. No. 1.Google Scholar
  100. McFarlane, R. W., 1975, Notes on the Giant Coot (Fulica gigantea), Condor 77:324–327.CrossRefGoogle Scholar
  101. Mackworth-Praed, C. W., and Grant, C. H. B., 1957, Birds of Eastern and Northeastern Africa, Volumes 1–2, Longmans, London.Google Scholar
  102. Maclean, G. L., 1972, Clutch size and evolution in Charadrii, Auk 89:299–324.CrossRefGoogle Scholar
  103. MacLean, S. F., Jr., 1975, Lemming bones as a source of calcium for Arctic sandpipers (Calidris spp.), Ibis 116:552–557.CrossRefGoogle Scholar
  104. Maxson, S. J., and Oring, L. W., 1980, Breeding season time and energy budgets of the polyandrous Spotted Sandpiper, Behaviour 74:200–263.CrossRefGoogle Scholar
  105. Miller, E. H., 1979, Egg size in the Least Sandpiper Calidris minutilla on Sable Island, Nova Scotia, Canada, Ornis. Scand. 10:10–16.CrossRefGoogle Scholar
  106. Miller, R. S., 1973, The brood size of cranes, Wilson Bull. 85:436–441.Google Scholar
  107. Mills, J. A., 1973, The influence of age and pair-bond on the breeding biology of the Red-billed Gull Larus novaehollandiae scopuJinus, J. Anim. Ecol. 42:147–162.Google Scholar
  108. Mills, J. A., and Shaw, P. W., 1980, The influence of age on laying date, clutch size, and egg size of the White-fronted Tern, Sterna striata, N. Z. J. Zool. 7:147–153.CrossRefGoogle Scholar
  109. Moreau, R. E., 1944, Clutch-size: A comparative study, with special reference to African birds, Ibis 86:286–347.CrossRefGoogle Scholar
  110. Moss, R., Watson, A., Rothery, P., and Glennie, W. W., 1981, Clutch size, egg size, hatch weight and laying date in relation to early mortality in Red Grouse Lagopus lagopus scoticus chicks, Ibis 123:450–462.CrossRefGoogle Scholar
  111. Murphy, G. I., 1968, Patterns in life history, Am. Natural. 102:391–403.CrossRefGoogle Scholar
  112. Nice, M. M., 1962, Development of behavior in precocial birds, Trans. Linn. Soc. N. Y. 8:1–211.Google Scholar
  113. Niethammer, G., ed., 1966, Handbuch der Vögel Mitteleuropas, Band I, Gaviiformes-Phoenicopteriformes, Akademische Verlagsgesellschaft, Frankfurt.Google Scholar
  114. Nisbet, I. C. T., 1973, Courtship-feeding, egg-size and breeding success in Common Terns, Nature 241:141–142.CrossRefGoogle Scholar
  115. Nisbet, I. C. T., 1977, Courtship-feeding and clutch size in Common Terns, Sterna hirundo, in: Evolutionary EcoJogy (B. M. Stonehouse and C. M. Perrins, eds.), University Park Press, Baltimore, pp. 101–109.Google Scholar
  116. Nisbet, I. C. T., 1978, Dependence of fledging success on egg-size, parental performance and egg-composition among Common and Roseate terns, Sterna hirundo and S. dougallii, Ibis 120:207–215.CrossRefGoogle Scholar
  117. O’Connor, R. J., 1977, Growth strategies in nestling passerines, Living Bird 16:209–238.Google Scholar
  118. Owen, D. F., 1977, Latitudinal gradients in clutch size: an extension of David Lack’s theory, in: Evolutionary Ecology (B. M. Stonehouse and C. M. Perrins, eds.), MacMillan, London, pp. 171–180.Google Scholar
  119. Palmer, R. S., 1962, Handbook of North American Birds, Volume I, Loons through Flamingos, Yale University Press, New Haven.Google Scholar
  120. Palmer, R. S., 1976a, Handbook of North American Birds, Volume II, Waterfowl Part 1, Yale University Press, New Haven.Google Scholar
  121. Palmer, R. S., 1976b, Handbook of North American Birds, Volume III, Waterfowl Part 2, Yale University Press, New Haven.Google Scholar
  122. Paludan, K., 1952, Contributions to the breeding biology of Larus argentatus and Larus fuscus, Vidensk. Medd. Dansk Natur. For. 114:1–128.Google Scholar
  123. Parmelee, D. F., and Payne, R. B., 1973, On multiple broods and the breeding strategy of arctic Sanderlings, Ibis 115:218–226.CrossRefGoogle Scholar
  124. Parsons, J., 1976, Factors determining the number and size of eggs laid by the Herring Gull, Condor 78:481–492.CrossRefGoogle Scholar
  125. Payne, R. B., 1974, The evolution of clutch size and reproductive rates in parasitic cuckoos, Evolution 28:169–181.CrossRefGoogle Scholar
  126. Pearson, T. H., 1968, The feeding biology of sea-bird species breeding on the Fame Islands, Northumberland, J. Anim. Ecol. 37:521–553.CrossRefGoogle Scholar
  127. Pellis, S. M., and Pellis, V. C., 1982, Do post-hatching factors limit clutch size in the Cape Barren Goose, Cereopsis novaehollandiae Latham? Austral. Wildl. Res. 9:145–149.CrossRefGoogle Scholar
  128. Perrins, C. M., 1970, The timing of birds’ breeding seasons, Ibis 112:242–255.CrossRefGoogle Scholar
  129. Perrins, C. M., 1977, The role of prrdation in the evolution of clutch size, in: Evolutionary Ecology (B. M. Stonehouse and C. M. Perrins, eds.), University Park Press, Baltimore, pp. 181–191.Google Scholar
  130. Perrins, C. M., and Moss, D., 1975, Reproductive rates in the Great Tit, J. Anim. Ecol. 44:695–706.CrossRefGoogle Scholar
  131. Pianka, E. R., 1970, On r and K selection, Am. Natural. 104:592–597.CrossRefGoogle Scholar
  132. Pianka, E. R., 1976, Natural selection of optimal reproductive tactics, Am. Zool. 16:775–784.Google Scholar
  133. Pierotti, R., 1982, Habitat selection and its effect on reproductive output in the Herring Gull in Newfoundland, Ecology 63:854–868.CrossRefGoogle Scholar
  134. Pizzy, G., 1980, A Field Guide to the Birds of Australia, Princeton University Press, Princeton.Google Scholar
  135. Poslavskii, A. N., and Krivonosov, G. A., 1976, Ecology of the Sandwich Tern (ThaJasseus sandvicensis Lath.) at the boundary of the distribution range, Soviet J. Ecol. 7:232–236.Google Scholar
  136. Pugesek, B. H., 1981, Increased reproductive effort with age in the California Gull (Larus californicus), Science 212:822–823.PubMedCrossRefGoogle Scholar
  137. Rahn, H., Paganelli, C. V., and Ar, A., 1975, Relation of avian egg weight to body weight, Auk 92:750–765.CrossRefGoogle Scholar
  138. Raveling, D. G., 1979, The annual cycle of body composition of Canada Geese with special reference to control of reproduction, Auk 96:234–252.Google Scholar
  139. Rice, D. W., and Kenyon, K. W., 1962, Breeding cycles and behaviour of Laysan and Black-footed albatrosses, Auk 79:517–567.CrossRefGoogle Scholar
  140. Ricklefs, R. E., 1968, Patterns of growth in birds, Ibis 110:419–451.CrossRefGoogle Scholar
  141. Ricklefs, R. E., 1970, Clutch-size in birds: Outcome of opposing predator and prey adaptations, Science 168:599–600.PubMedCrossRefGoogle Scholar
  142. Ricklefs, R. E., 1973, Patterns of growth in birds. II. Growth rate and mode of development, Ibis 115:177–201.CrossRefGoogle Scholar
  143. Ricklefs, R. E., 1977a, On the evolution of reproductive strategies in birds:Reproductive effort, Am. Natural. 111:453–478.CrossRefGoogle Scholar
  144. Ricklefs, R. E. 1977b, A note on the evolution of clutch-size in altricial birds, in: Evolutionary Ecology (B. M. Stonehouse and C. M. Perrins, eds.), University Park Press, Baltimore, pp. 193–214.Google Scholar
  145. Ricklefs, R. E., 1979a, Patterns of growth in birds. V. A comparative study of development in the Starling, Common Tern, and Japanese Quail, Auk 96:10–30.Google Scholar
  146. Ricklefs, R. E., 1979b, Adaptation, constraint, and compromise in avian postnatal development, Biol. Rev. 54:269–290.PubMedCrossRefGoogle Scholar
  147. Ricklefs, R. E., 1980, Geographical variation in clutch size among passerine birds: Ashmole’s hypothesis, Auk 97:38–49.Google Scholar
  148. Ricklefs, R. E., White, S., and Cullen, J., 1980, Postnatal development of Leach’s Storm-Petrel, Auk 97:768–781.Google Scholar
  149. Rinkel, G. L., 1940, Waarnemingen over het gedrag van de Kievit (Vanellus vanellus (L.)) dedurende de broedtijd, Ardea 29:108–147. (Dutch with English summary).Google Scholar
  150. Ripley, S. D., 1977, Rails of the World, Godine, Boston.Google Scholar
  151. Ross, H. A., 1979, Multiple clutches and shorebird egg and body weight, Am. Natural. 113:618–622.CrossRefGoogle Scholar
  152. Royama, T., 1966, Factors governing feeding rate, food requirements, and brood size of nestling Great Tits, Parus major, Ibis 108:313–347.Google Scholar
  153. Royama, T., 1969, A model for the global variation of clutch size in birds, Oikos 20:562–567.CrossRefGoogle Scholar
  154. Ryder, J. P., 1970, A possible factor in the evolution of clutch size in Ross’ Goose, Wilson Bull. 82:5–13.Google Scholar
  155. Ryder, J. P., 1980, The influence of age on the breeding biology of colonial nesting sea-birds, in: Behavior of Marine Animals, Volume 4, Marine Birds (J. Burger, B. L. Olla, and H. E. Winn, eds.), Plenum Press, New York, pp. 153–168.Google Scholar
  156. Ryder, J. P., and Somppi, P. L., 1979, Female-female pairing in Ring-billed Gulls, Auk 96:1–5.Google Scholar
  157. Safriel, U. N., 1975, On the significance of clutch size in nidifugous birds, Ecology 56:703–708.CrossRefGoogle Scholar
  158. Sauer, E. G. F., and Sauer, E. M., 1966, The behavior and ecology of the South African Ostrich, Living Bird 5:45–75.Google Scholar
  159. Savory, C. J., 1975, Seasonal variation in the food intake of captive Red Grouse, Br. Poult. Sci. 16:471–479.PubMedCrossRefGoogle Scholar
  160. Schaffer, W. M., 1974, Optimal reproductive effort in fluctuating environments, Am. Natural. 108:783–790.CrossRefGoogle Scholar
  161. Schifferli, L., 1978, Experimental modification of brood size among House Sparrows, Passer domesticus, Ibis 120:365–369.CrossRefGoogle Scholar
  162. Sealy, S. G., 1978, Clutch size and nest placement in the Pied-billed Grebe in Manitoba, Wilson Bull 90:301–302.Google Scholar
  163. Slagsvold, T., 1982, Clutch size variation in passerine birds: The nest prédation hypothesis, Oecologia 54:159–169.CrossRefGoogle Scholar
  164. Smith, C. C., and Fretwell, S. D., 1974, The optimal balance between size and number of offspring, Am. Natural. 108:499–506.CrossRefGoogle Scholar
  165. Stearns, S. C., 1976, Life-history tactics: A review of the ideas, Quart. Bev. Biol. 51:3–47.Google Scholar
  166. Stearns, S. C., 1977, The evolution of life history traits: A critique of the theory and a review of the data, Annu. Bev. Ecol. Syst. 8:145–171.CrossRefGoogle Scholar
  167. Steen, J. B., and Parker, H., 1981, The egg-numerostat—A new concept in the regulation of clutch size, Ornis Scand. 12:109–110.CrossRefGoogle Scholar
  168. Tasker, C. R., and Mills, J. A., 1981, A functional analysis of courtship feeding in the Red-billed Gull, Larus novaehollandiae scopulinus, Behaviour 77:221–241.CrossRefGoogle Scholar
  169. Thomson, A. L., ed., 1964, A New Dictionary of Birds, Nelson, London.Google Scholar
  170. Trivers, R. L., 1972, Parental investment and sexual selection, in: Sexual Selection and the Descent of Man (B. Campbell, ed.), Aldine, Chicago, pp. 136–179.Google Scholar
  171. Van Tyne, J., and Berger, A. J., 1976, Fundamentals of Ornithology, 2nd ed., Wiley-In-terscience, New York.Google Scholar
  172. Veen, J., 1977, Functional and causal aspects of nest distribution in colonies of the Sandwich Tern (Sterna sandvicensis Lath.), Behaviour Suppl. 20:1–193.Google Scholar
  173. Vehrencamp, S. L., 1977, Relative fecundity and parental effort in communally nesting anis, Crotophaga sulcirostris, Science 197:403–405.Google Scholar
  174. Walters, J. R., 1980, The Evolution of Parental Behavior in Lapwings, Ph.D. thesis, University of Chicago.Google Scholar
  175. Walters, J. R., 1982, Parental behavior in lapwings (Charadriidae) and its relationship with clutch sizes and mating systems, Evolution 36:1030–1040.CrossRefGoogle Scholar
  176. Walters, J. R., in press, The evolution of parental behavior and clutch size in shorebirds, in: Behavior of Marine Animals, Volume 5, Shorebirds (J. Burger and B. Olla, eds.), Plenum Press, New York.Google Scholar
  177. Ward, J. G., 1973, Reproductive Success, Food Supply, and the Evolution of Clutch-Size in the Glaucous-winged Gull, Ph.D. thesis, University of British Columbia, Vancouver.Google Scholar
  178. Weidmann, U., 1956, Obervations and experiments on egg-laying in the Black-headed Gull (Larus ridibundus L.), Anim. Behav. 4:150–161.CrossRefGoogle Scholar
  179. Weiler, M. W., 1959, Parasitic egg laying in the Redhead (Aythya americana) and other North American Anatidae, Ecol. Monogr. 29:333–365.CrossRefGoogle Scholar
  180. Weiler, M. W., 1968, The breeding biology of the parasitic Black-headed Duck, Living Bird 7:169–208.Google Scholar
  181. Welty, J. C., 1982, The Life of Birds, 3rd ed., W. B. Saunders Co., Philadelphia, p. 293.Google Scholar
  182. Williams, A. J., 1980, Offspring reduction in Macaroni and Rockhopper penguins, Auk 97:754–759.Google Scholar
  183. Williams, A. J., 1981, Why do penguins have long laying intervals? Ibis 123:202–204.CrossRefGoogle Scholar
  184. Williams, G. C., 1966, Natural selection, the costs of reproduction, and a refinement of Lack’s principle, Am. Natural. 100:687–690.CrossRefGoogle Scholar
  185. Winkler, D. W., 1982, Clutch size and its relations to food supply, courtship feeding and egg size in the California Gull (Larus calrfornicus), (abst.) 1982 Meeting, Am. Ornithol. Union, Chicago.Google Scholar
  186. Yom-Tov, Y., 1974, Effect of food and predation on breeding density and success, clutch size and laying date of crow (Corvus corone L.) J. Anim. Ecol. 43:479–497.CrossRefGoogle Scholar
  187. Yom-Tov, Y., and Hilborn, R., 1981, Energetic constraints on clutch size and time of breeding in temperate zone birds, Oecoiogia 48:234–243.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • David W. Winkler
    • 1
  • Jeffrey R. Walters
    • 2
  1. 1.Museum of Vertebrate Zoology and Department of ZoologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of ZoologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations