Advertisement

Adaptive Daily Strategies in Behavior

  • Serge Daan

Abstract

For most animals, the environment is a complex of variables fluctuating with a distinct 24-hr periodicity. There are abiotic fluctuations as a direct consequence of the earth’s rotation on its axis and of the periodic exposure of its surface to irradiation from the sun. Foremost among the physical factors with a distinct 24-hr pattern are light and temperature and, in addition, water vapor pressure and wind in the terrestrial milieu, oxygen pressure and turbulence in the aquatic milieu. Secondarily, there are biotic variations, due to organisms on other trophic levels, such as food species, predators, and parasites, or on the same trophic level: competitors and reproductive mates. By the creation of such daily patterns, the earth’s rotation has profoundly affected the ecological complexity of animal communities. Only a few environments, such as deep caves and ocean abysses, are fairly constant throughout the day. Some are only temporarily constant, at least in some variables (e.g., when covered by insulating snow and ice), or are polar habitats at the summer and winter solstices.

Keywords

Daily Rhythm Black Grouse Daily Pattern Daily Movement Time Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, H. E. Sensory factors in migration. Animal Behaviour, 1964, 11, 566–577.CrossRefGoogle Scholar
  2. Aschoff, J. Tagesperiodik bei Mäusestämmen unter konstanten Umgebungsbedingungen. Pflügers Archiv, 1955, 262, 51–59.CrossRefGoogle Scholar
  3. Aschoff, J. Spontane lokomotorische Aktivität. Handbuch der Zoologie, 1962, 8, 1–76.Google Scholar
  4. Ashmole, N. P. The biology of the wideawake or sooty tern on Ascension Island. The Ibis, 1963, 103b, 297–364.CrossRefGoogle Scholar
  5. Beier, W., and Lindauer, M. Der Sonnenstand als Zeitgeber für die Biene. Apidologie, 1970, 1, 5–28.CrossRefGoogle Scholar
  6. Beling, I. Über das Zeitgedächtnis der Bienen Zeitschrift für vergleichende Physiologie, 1923, 9, 259–338.CrossRefGoogle Scholar
  7. Beling, I. von Stein-. Über das Zeitgedächtnis bei Tieren. Biological Reviews, 1935, 10, 18–41.CrossRefGoogle Scholar
  8. Bolles, R. C., and Stokes, L. W. The rat’s anticipation of diurnal and adiurnal feeding. Journal of Comparative Physiology and Psychology, 1965, 60, 290–294.CrossRefGoogle Scholar
  9. Bovet, J. On the social behavior in a stable group of long-tailed field mice (Apodemus sylvaticus). II. Its relations with distribution of daily activity. Behaviour, 1972, 41, 55–67.CrossRefGoogle Scholar
  10. Briedermann, L. Ermittlungen zur Aktivitätsperiodik des mitteleuropäischen Wildschweines (Sus s. scrofa L.). Zoologische Garten (Leipzig), 1971, 40, 302–327.Google Scholar
  11. Broekhuizen, S., and Maaskamp, F. Behaviour of does and leverets of the European hare (Lepus europaeus) whilst nursing. Journal of Zoology (London), 1980, 191, 487–501.CrossRefGoogle Scholar
  12. Collopy, M. W. Food caching by female American kestrels in winter. The Condor, 1977, 79, 63–68.CrossRefGoogle Scholar
  13. Corbet, P. S. Discussion contribution. In A. Chovnick (Ed.), Biological ClocksCold Spring Harbor Symposia on Quantitative Biology, 1960, 25, 354.Google Scholar
  14. Cott, H. B. Adaptive Coloration in Animals. London: Methuen, 1940.Google Scholar
  15. Crowcroft, P. The daily cycle of activity in British shrews. Proceedings of the Zoological Society of London, 1954, 123, 713–729.Google Scholar
  16. Daan, S., and Tinbergen, J. M. Young guillemots (Uria lomvia) leaving their Arctic breeding cliffs: A daily rhythm in numbers and risk. Ardea, 1980, 67, 96–100.Google Scholar
  17. Daan, S., and Slopsema, S. Short-term rhythms in foraging behaviour of the common vole, Microtus arvalis. Journal of Comparative Physiology, 1978, 127, 215–227.CrossRefGoogle Scholar
  18. Davis, R. E., and Bardach, J. E. Time-coordinated pre-feeding activity in a fish. Animal Behaviour, 1965, 13, 154–162.CrossRefGoogle Scholar
  19. Dorka, V. Das jahres- and tageszeitliche Zugmuster von Kurz- und Langstreckenziehern nach Beobachtungen auf den Alpenpässen Cou/Bretolet (Wallis). Der Ornithologische Beobachter, 1966, 63, 165–223.Google Scholar
  20. Elliott, J. M. Diel changes in invertebrate drift and the food of trout Salmo trutta L. Journal of Fish Biology, 1970, 2, 161–165.CrossRefGoogle Scholar
  21. Enright, J. T. Ecological aspects of endogenous rhythmicity. Annual Reviews of Ecology and Systematics, 1970, 1, 221–238.CrossRefGoogle Scholar
  22. Enright, J. T. The circadian tape recorder and its entrainment. In F. J. Vernberg (Ed.), Physiological Adaptation to the Environment. New York: Intext, 1975.Google Scholar
  23. Enright, J. T. Diurnal vertical migration: Adaptive significance and timing. I. Selective advantage: A metabolic model. Limnology and Oceanography, 1977, 22, 856–872.CrossRefGoogle Scholar
  24. Enright, J. T., and Hamner, W. M. Vertical diurnal migration and endogenous rhythmicity. Science, 1967, 157, 937–941.CrossRefGoogle Scholar
  25. Enright, J. T., and Honegger, H. W. Diurnal vertical migration: Adaptive significance and timing. II. Test of the model: Details of timing. Limnology and Oceanography, 1977, 22, 973–886.Google Scholar
  26. Eriksson, L. O. Spring inversion of the diel rhythm of locomotor activity in young sea-going brown trout, Salmo trutta trutta L., and atlantic salmon, Salmo salar L. Aquilo, Series Zoologica, 1973, 14, 68–79.Google Scholar
  27. Erkinaro, E. Der Phasenwechsel der lokomotorischen Aktivität bei Microtus agrestis (L.), M. arvalis (Pall.) and M. oeconomus (Pall.). Aquilo, Series Zoologica, 1969, 8, 1–31.Google Scholar
  28. Frisch, K. von. Die Tänze und das Zeitgedächtnis der Bienen in Widerspruch. Die Naturwissenschaften, 1940, 28, 5–69.CrossRefGoogle Scholar
  29. Fujimoto, K. [Diurnal activity of mice in relation to social order.] [Physiology and Ecology], Kyoto, 1953, 5, 97–103.Google Scholar
  30. Gee, J. H. Effect of daily synchronization of sexual activity on mating success in laboratory populations of two species of Dacus (Diptera: Tephritidae). Australian Journal of Zoology, 1969, 17, 619–624.CrossRefGoogle Scholar
  31. Gwinner, E. Beobachtungen über Nestbau und Brutpflege des Kolkraben (Corvus corax) in Gefangenschaft. Journal für Ornithologie, 1965, 106, 146–178.Google Scholar
  32. Gwinner, E. Circadian and circannual rhythms in birds. In J. A. King and D. S. Farner (Eds.), Avian Biology. Vol. 5. New York: Academic Press, 1975.Google Scholar
  33. Haddow, A. J., Yarrow, I. H. H., Lancaster, G. A., and Corbet, P. S. Nocturnal flight cycle in the males of African doryline ants (Hymenoptera: Formicidae). Proceedings of the Royal Entomological Society, London (A), 1966, 41, 103–106.CrossRefGoogle Scholar
  34. Hamilton, W. J., and Gilbert, W. M. Starling dispersal from a winter roost. Ecology, 1969, 50, 886–898.CrossRefGoogle Scholar
  35. Hansson, L. Small rodent food, feeding and population dynamics. Oikos, 1971, 22, 183–198.CrossRefGoogle Scholar
  36. Hediger, H. Bemerkungen zum Raum-Zeit-System der Tiere. Schweizerische Zeitschrift für Psychologie, 1946, 5, 241–269.Google Scholar
  37. Heimbach, F. Sympatric species, Clunio marinus Hal. and Cl. balticus n.sp. (Dipt., Chironomidae), isolated by differences in diel emergence time. Oecologia, 1978, 32, 195–202.CrossRefGoogle Scholar
  38. Holloway, F. A., and Wansley, R. A. Multiple retention deficits at periodic intervals after active and passive avoidance learning. Behavioral Biology, 1973, 9, 1–14.CrossRefGoogle Scholar
  39. Hörnicke, H., and Batsch, F. Coecotrophy in rabbits—A circadian function. Journal of Mammalogy, 1977, 58, 240.CrossRefGoogle Scholar
  40. Hughes, B. O. A circadian rhythm of calcium intake in the domestic fowl. British Poultry Science, 1972, 13, 485–493.CrossRefGoogle Scholar
  41. Hulscher, J. B. Localization of cockles (Cardium edule L.) by the oystercatcher (Haematopus ostralegus L.) in darkness and daylight. Ardea, 1976, 64, 292–310.Google Scholar
  42. Jolly, A. Hour of birth in primates and man. Folia Primato logica, 1972, 18, 108–121.CrossRefGoogle Scholar
  43. Kacelnik, A. The foraging efficiency of great tits (Parus major L.) in relation to light intensity. Animal Behaviour, 1979, 27, 237–241.CrossRefGoogle Scholar
  44. Kamran, N. A. Life history and behavior of Polydesma umbricola in Hawaii. Annals of the Entomological Society of America, 1968, 61, 795–802.Google Scholar
  45. Kayser, C., and Heusner, A. A. Le rhythme nycthéméral de la dépense d’énergie. Journal de Physiologie, 1967, 59, 3–116.Google Scholar
  46. Kennedy, C. H. Evolutionary level in relation to geographic, seasonal and diurnal distribution in insects. Ecology, 1928, 9, 367–379.CrossRefGoogle Scholar
  47. Kleber, E. Hat das Zeitgedächtnis der Bienen biologische Bedeutung? Zeitschrift für vergleichende Physiologie, 1935, 22, 221–262.CrossRefGoogle Scholar
  48. Koltermann, R. 24-Std-Periodik in der Langzeiterinnerrung an Duft- und Farbsignalen bei der Honigbiene. Zeitschrift für vergleichende Physiologie, 1971, 75, 49–68.CrossRefGoogle Scholar
  49. Kureck, A. Two circadian eclosion times in Chironomus thummi (Diptera), alternately selected with different temperatures. Oecologia, 1979, 40, 311–323.CrossRefGoogle Scholar
  50. Lewis, T., and Taylor, L. R. Diurnal periodicity of flight by insects. Transactions of the Royal Entomological Society, London, 1964, 116, 293–476.Google Scholar
  51. Lloyd, M., and Dybas, H. S. The periodical circada problem. I, II. Evolution, 1966, 20, 133–149, 466–505.CrossRefGoogle Scholar
  52. McMillan, J. P., Gauthreaux, S. A., and Helms, C. W. Spring migratory restlessness in caged birds: A arcadian rhythm. BioScience, 1970, 20, 1259–1260.CrossRefGoogle Scholar
  53. McNab, B. K. The evolution of endothermy in the phylogeny of mammals. The American Naturalist, 1978, 112, 1–21.CrossRefGoogle Scholar
  54. Meddis, R. On the function of sleep. Animal Behaviour, 1975, 23, 676–691.CrossRefGoogle Scholar
  55. Morgan, N. L. The biology of Leptocerus aterrinus Steph. with reference to its availability as food for trout. Journal of Animal Ecology, 1956, 25, 349–365.CrossRefGoogle Scholar
  56. Nyholm, E. S. Zur Ökologie von Myotis mystacinus (Leisl.) und M. daubentoni (Leisl.) (Chiroptera). Annales Zoologici Fennici, 1965, 2, 77–123.Google Scholar
  57. Orians, G. H., and Horn, H. Overlap in foods and foraging of four species of blackbirds in the potholes of central Washington. Ecology, 1969, 50, 930–938.CrossRefGoogle Scholar
  58. Park, O. Nocturnalism: The development of a problem. Ecological Monographs, 1940, 10, 485.CrossRefGoogle Scholar
  59. Pearson, D. L. Vertical stratification of birds in a tropical dry forest. The Condor, 1971, 73, 46–55.CrossRefGoogle Scholar
  60. Porter, W. P., Mitchell, J. W., Beckman, W. A., and DeWitt, C. B. Behavioral implications of mechanistic ecology: Thermal and behavioral modeling of desert ectotherms in their microenvironment. Oecologia, 1973, 13, 1–54.CrossRefGoogle Scholar
  61. Remmert, H. Der Schlüpfrhythmus der Insekten. Wiesbaden: Steiner, 1962.Google Scholar
  62. Renner, M. The contribution of the honey bee to the study of time sense and astronomical orientation. Cold Spring Harbor Symposia of Quantitative Biology, 1960, 25, 361–367.CrossRefGoogle Scholar
  63. Richter, C. P. A behavioristic study of the activity of the rat. Comparative Psychology Monographs, 1922, 1, 1–55.Google Scholar
  64. Rijnsdorp, A., Daan, S., and Dijkstra, C. Hunting in the kestrel, Falco tinnunculus, and the adaptive significance of daily habits. Oecologia, 1981, in press.Google Scholar
  65. Rongstad, O. J., and Tester, J. R. Behavior and maternal relations of young snowshoe hares. Journal of Wildlife Management, 1971, 35, 338–346.CrossRefGoogle Scholar
  66. Rovee, C. K., Kaufman, L. W., Collier, G. H., and Kent, G. G. Periodicity of death feigning by domestic fowl in response to simulated predation. Physiology and Behaviour, 1976, 17, 891–895.CrossRefGoogle Scholar
  67. Schoener, T. W. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 1970, 51, 408–418.CrossRefGoogle Scholar
  68. Schoener, T. W. Resource partitioning in ecological communities. Science, 1974, 185, 27–58.CrossRefGoogle Scholar
  69. Stein, H. Untersuchungen über den Zeitsinn bei Vögelin. Zeitschrift für vergleichende Physiologie, 1951, 33, 387–403.Google Scholar
  70. Steinborn, W. Beobachtungen zum Verhalten des Alpensteinbocks, Capra ibex ibex Linné, 1758. Säugetier-kundliche Mitteilungen, 1973, 21, 37–65.Google Scholar
  71. Tamisier, A. Rhythmes nycthéméraux des sarcelles d’hiver pendant leur hivernage en Camargue. Alauda, 1972, 40, 109–135, 235–256.Google Scholar
  72. Toates, F. M. A circadian rhythm of hoarding in the hamster. Animal Behaviour, 1978, 26, 631.CrossRefGoogle Scholar
  73. Wahl, O. Neue Untersuchungen über das Zeitgedächtnis der Bienen. Zeitschrift für vergleichende Physiologie, 1932, 16, 529–589.Google Scholar
  74. Walls, G. L. The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science Bulletin, 1942, 19.CrossRefGoogle Scholar
  75. Ward, P., and Zahavi, A. The importance of certain assemblages of birds as information centres for food finding. The Ibis, 1973, 115, 517–534.CrossRefGoogle Scholar
  76. Wilson, E. O., and Bossert, W. H. Chemical communication among animals. Recent Progress in Hormone Research, 1963, 19, 673–716.Google Scholar
  77. Young, A. M. Community ecology of some tropical rain forest butterflies. The American Midland Naturalist, 1972, 87, 146–157.CrossRefGoogle Scholar
  78. Zeigler, H. P., Green, H. L., and Lehrer, R. Patterns of feeding behavior in the pigeon. Journal of Comparative and Physiological Psychology, 1971, 76, 468–477.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Serge Daan
    • 1
  1. 1.Zoology DepartmentGroningen State UniversityHarenThe Netherlands

Personalised recommendations