Advertisement

Physiologic Anticarcinogenesis: Effects of Stable Strontium on Metastatic Bone Disease

  • S. C. Skoryna
  • P. Koch
  • E. Yeghiayan
  • M. Fuskova
  • A. Sauvé
  • J. F. Stara

Abstract

Metastatic inefficiency (1) presents a unique challenge for the investigation of local and systemic factors in physiologic anticarcinogenesis. It appears that a point has been reached whereby there is general agreement that the transfer of cancer cells from the primary tumor to secondary sites is a multi-step process (2) and likely also multifactorial since each step is affected by different factors (3,4). Purely mechanical factors seem to be insufficient to explain why 99.9% of circulating tumor cells are destroyed before they are able to produce a viable metastatic focus. Recent animal studies indicate that only specialized cancer cells are capable of initiating metastatic foci and that they are to a certain degree site specific (5). There is a need for further development of animal models, whereby experimental conditions are controlled, in order to explain the diversity of response to treatment (6).

Keywords

Multiple Myeloma Circulate Tumor Cell Metastatic Bone Disease Recent Animal Study Strontium Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Weiss, Dynamic aspects of cancer cell populations in metastasis. Am. J. Path. 97, 601–608 (1979).PubMedGoogle Scholar
  2. 2.
    P.A. Cerutti, Multistep carcinogenesis. In: Anticarcinogenesis and radiation protection 1987 (O. Nygaard, M. Simic and P. Cerutti, Eds.) Plenum Press, New York.Google Scholar
  3. 3.
    A. Horava and S.C. Skoryna, Observations on pathogenesis of neoplasia. C.M.A.J. 73, 630–638 (1955).Google Scholar
  4. 4.
    S.C Skoryna, Systemic factors in carcinogenesis. C.M.A.J. 80, 689–697 (1959).Google Scholar
  5. 5.
    I.J. Fidler, Circumvention of biologic diversity of cancer metastases. In: Anticarcinogenesis and radiation protection 1987 (O. Nygaard, M. Simic and P. Cerutti, Eds.) Plenum Press, New York.Google Scholar
  6. 6.
    J.E. Talmadge, Preclinical studies with recombinant cytokines for the treatment of metastatic cancer. (These proceedings).Google Scholar
  7. 7.
    J.W. Smith and D.L. Longo, Clinical trials using monoclonal antibodies. (These proceedings).Google Scholar
  8. 8.
    A.R. Kennedy, Protease inhibitors as anticarcinogens. (These proceedings).Google Scholar
  9. 9.
    K.F. Gey, H.B. Stahelin and G.B. Brumbacker, Cancer mortality inversely related to plasma levels of antioxidant vitamins. (These proceedings).Google Scholar
  10. 10.
    S.C. Skoryna, Gastric cancer — An attempt to correlate experimental and clinical findings. Leber-Magen-Darm 6, 92–96 (1976).PubMedGoogle Scholar
  11. 11.
    J. Paget, The distribution of secondary growth in cancer of the throat. Lancet 1, 571–573 (1889).CrossRefGoogle Scholar
  12. 12.
    H.M. Frost, Skeletal physiology and bone remodelling. An overview. In: Fundamental and Clinical Bone Physiology 1980 (M.R. Urist, Ed.) pp. 242–267, Lippincott, Philadelphia.Google Scholar
  13. 13.
    C.S.B. Galasko, Mechanisms of lytic and blastic metastatic disease of bone. In: Metastatic disease of bone 1982 (R.N. Levy, Ed.) pp. 20–27, Clinical Orthopedics 169, Lippincott, Philadelphia.Google Scholar
  14. 14.
    S. Bhardway and J.F. Holland, Chemotherapy of metastatic cancer in bone. In: Metastatic disease of bone 1987 (R.N. Levy, Ed.) pp. 28–37, Lippincott, Philadelphia.Google Scholar
  15. 15.
    R.J. Blair and J.C. McAfee, Radiological detection of skeletal metastases: radiographs versus scans. Int. J. Radiat. Oncol. Biol. Phys 1, 1201–1205 (1976).Google Scholar
  16. 16.
    S.C. Skoryna, Effects of oral supplementation with stable strontium. C.M.A.J. 125, 703–712 (1981).Google Scholar
  17. 17.
    P.J. Marie, R.J. Pivon, G. Chabot et al, Histomorphometry of bone changes in stable strontium therapy. In:Trace Subst. Env. Health 1985 (D.D. Hemphill, Ed.) Vol. 19, pp. 193–208, University of Missouri Press.Google Scholar
  18. 18.
    Squire’s Companion to the British Pharmacopeia, 19th Ed., London, (1916).Google Scholar
  19. 19.
    A. Osol, G.E. Farrar Jr., K.H. Beyor Jr. et al. The dispensatory of the United States of America, pp. 1871–73, Lippincott Co., Philadelphia (1955).Google Scholar
  20. 20.
    S.C. Skoryna and D.S. Kahn, The late effects of radioactive strontium on bone. Cancer 12, 306–322 (1959).PubMedCrossRefGoogle Scholar
  21. 21.
    H.T. Odum, ITie stability of the world strontium cycle. Science 114, 407–411 (1951).PubMedCrossRefGoogle Scholar
  22. 22.
    F.E. McCaslin and J.M. Janes, The effects of strontium lactate in the treatment of osteoporosis. Proc. Mayo Clin. 34, 329–334 (1959).Google Scholar
  23. 23.
    S.C. Skoryna and P. Koch, Unpublished observations. (1987).Google Scholar
  24. 24.
    J.C. Foreman and L.M. Lichtenstein, Spontaneous histamine secretion from leucocytes in the presence of strontium. J. Pharm. Exp. Ther. 210, 75–81 (1979).Google Scholar
  25. 25.
    N. El Solh and F. Rousselet, Effects of Stable Strontium administration on Calcium metabolism. In: Handbook of Stable Strontium 1981 (S.C. Skoryna, Ed.) pp. 515–561, Plenum Press, New York.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • S. C. Skoryna
    • 1
    • 2
    • 3
  • P. Koch
    • 1
    • 2
    • 3
  • E. Yeghiayan
    • 1
    • 2
    • 3
  • M. Fuskova
    • 1
    • 2
    • 3
  • A. Sauvé
    • 1
    • 2
    • 3
  • J. F. Stara
    • 1
    • 2
    • 3
  1. 1.St. Mary’s Hospital CenterMcGill UniversityMontreal, QueCanada
  2. 2.Department of BiologyUniversité de MontréalMontreal, QueCanada
  3. 3.Environmental Protection AgencyCincinnatiUSA

Personalised recommendations