Nucleophiles as Anticarcinogens

  • Lee W. Wattenberg
  • J. Bradley Hochalter
  • Usha D. G. Prabhu
  • Arthur R. Galbraith


The objective of the present work was to obtain chemopreventive compounds that can trap direct-acting carcinogens within the lumen of the gastrointestinal tract and thus prevent these carcinogens from attacking tissues of the host. Many direct-acting carcinogens are electrophiles (19, 36). One possible strategy for blocking their action is by trapping them with nucleophiles (electron donors). In the studies to be presented, emphasis has been placed on trapping direct-acting carcinogens in two sites, i.e., the stomach and the large intestine. To some extent different considerations pertain for each.


Sodium Thiosulfate Kojic Acid Styrene Oxide Nitrogen Mustard Oral Intubation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Ames, The detection of environmental mutagens and potential carcinogens. In “Accomplishments in Cancer Research — 1983 Prize Year — General Motors Cancer Res. Found.” (J. G. Fortner and J. E. Rhoads, Eds.), pp. 102–114. J. P. Lippineott, Philadelphia, 1983.Google Scholar
  2. 2.
    B. N. Ames, J. McCann and E. Yamasaki, Methods for detecting carcinogens and mutagens with the Salmonella/mammalian microsome mutagenicitytest. Mutat. Res.,31, 347–364 (1975).PubMedGoogle Scholar
  3. 3.
    J. M. Anderson, The kinetics of the specific antagonism in vivo of intraarterial methyl-bis(3-chloroethyl)amine hydrochloride by intravenous solutions of hydrous sodium thiosulfate. Cancer, 16, 1281–1287 (1983).CrossRefGoogle Scholar
  4. 4.
    L. F. Bjeldanes and H. Chow, Mutagenicity of 1,2-dicarbonyl compounds: maltol, kojic acid, diacetyl and related substances. Mutat. Res., 67, 367–371 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    G. Bonadonna and D. Karnofsky, Protection studies with sodium thiosulfate against methyl-bis(beta-chloroethyl)amine hydrochloride and its ethylenimonium derivative. Clin. Pharmacol. Ther., 6, 50–64 (1965).PubMedGoogle Scholar
  6. 6.
    R. K. Boutwell, N. H. Colburn and C. C. Muckerman, In vivo reactions of β-propiolactone. Ann. N. Y. Acad. Sci., 163, 751–764 (1969).CrossRefGoogle Scholar
  7. 7.
    W. R. Bruce, J. Batista, T. Che, R. Furrer, J. S. Ginerich, I. Grupta and J. J. Krepinsky, General structure of “fecapentaenes” — The mutagenic substances in human feces. Naturwissenschaften, 69, 557–558 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Callaway and K. W. Pearce, Protection against systemic poisoning by mustard gas, di(2-chloroethyl) sulphide, by sodium thiosulfate and thiocit in the albino rat. Br. J. Pharmacol., 13, 395–398 (1958).Google Scholar
  9. 9.
    K. K. Chen and C. L. Rose, Treatment of acute cyanide poisoning. J. Am. Med. Assoc., 162, 1154–1155 (1956).PubMedCrossRefGoogle Scholar
  10. 10.
    T. A. Connors, A. Jeney and M. Jones, Reduction of the toxicity of “radiomlmetic” alkylating agents in rats by thiol pretreatment — III. The mechanism of the protective action of thiosulfate. Biochem. Pharmacol., 13, 1545–1550 (1964).PubMedCrossRefGoogle Scholar
  11. 11.
    D. L. Dennis and W. S. Fletcher, Toxicity of sodium thiosulfate (NSC-45624), a nitrogen mustard antagonist, in the dog. Cancer Chemother. Rep., 50, 225–257 (1966).Google Scholar
  12. 12.
    T. L. Gresham, J. E. Jensen, F. W. Shaver and J. T. Gregory, β-propiolactone. II. Reactions with salts of inorganic acids. M, Chem. Soc., 70, 999–1001 (1948).CrossRefGoogle Scholar
  13. 13.
    I. Hatiboglu, E. Mihich, G. E. Moore and C. A. Nichol, Use of sodium thiosulfate as a neutralizing agent during regional administration of nitrogen mustard: an experimental study. Ann. Surg., 156, 994–1001 (1962).PubMedCrossRefGoogle Scholar
  14. 14.
    N. Hirai, D. G. I. Kingston, R. L. van Tassell and T. D. Wilkens, Isolation and structure elucidation of fecapentaenes-12, potent mutagens from human feces. Nat. Prod., 48, 622–630 (1985).CrossRefGoogle Scholar
  15. 15.
    — S. B. Howell, C. E. Pfeifle, W. E. Wung and R. A. Olshen, Intraperitoneal cis-diamminedichloroplatinum with systemic thiosulfate protection. Cancer Res., 43, 1426–1431 (1983).PubMedGoogle Scholar
  16. 16.
    Y. Iwamoto, T. Kawano, J. Uozumi, K. Aoki and T. Babo, “Two-route chemotherapy” using high dose i.p. cisplatin and i.v. sodium thiosulfate, its antidote, for peritoneally disseminated cancer in mice. Cancer Treat. Rep., 68, 1367–1373 (1984).PubMedGoogle Scholar
  17. 17.
    W. G. Jaffe, The influence of sodium thiosulfate on experimental tumor induction. Experientia, IV, 234–236 (1948).CrossRefGoogle Scholar
  18. 18.
    A. H. James and G. W. Pickering, The role of gastric acidity in the pathogenesis of peptic ulcer. Clin. Sci., 8, 181–210 (1949).PubMedGoogle Scholar
  19. 19.
    P. D. Lawley, Carcinogenesis by alkylating agents. In: Chemical Carcinogens, ACS Monograph 173, pp. 83–244. Am. Chem. Soc., Washington, DC, 1976.Google Scholar
  20. 20.
    D. M. Maron and B. N. Ames, Revised methods for the Salmonella mutagenicity test. Mutat. Res., 113, 173–215 (1983).PubMedGoogle Scholar
  21. 21.
    J. McCann, E. Choi, E. Yamasaki and B. Ames, Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci., USA, 72, 5135–5139 (1975).PubMedCrossRefGoogle Scholar
  22. 22.
    H. Marquardt, M. D. Sapozink and M. S. Zedeck, Inhibition of cysteamine-HCl on oncogenesis induced by 7,12-dimethylbenz(a)anthracene without affecting toxicity. Cancer Res., 34, 3387–3390 (1974).PubMedGoogle Scholar
  23. 23.
    C. N. Myers, M. R. Groehl and C. P. Metz, Therapeutic activity of sodium thiosulfate. Proc. Soc. Exp. Biol. Med., 23, 97–101 (1925).Google Scholar
  24. 24.
    G. Owens and I. Hatibozlu, Clinical evaluation of sodium thiosulfate as a systemic neutralizer of nitrogen mustard. Ann. Surg., 154, 895–897 (1961).PubMedGoogle Scholar
  25. 25.
    U. D. G. Prabhu and L. W. Wattenberg. Synthesis of α135 -tris-(4’-mercaptophenoxy)mellitene (unpublished).Google Scholar
  26. 26.
    D. Schmahl, M. Habs and A. M. Tacchi, Prophylaxe der Tumorentstehung in der Harnblase durch Natrium-2-mercaptoethansulfonat (Mesma). Urologie, 291–296 (1984).Google Scholar
  27. 27.
    A. Segal, J. J. Solomon, J. Mignano and J. Dino. The isolation and characterization of 3-(2-carboxyethyl)cytosine following in vitro reaction of 3-propiolactone with calf thymus DNA. Chem. Biol. Interact., 35, 349–361 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Shed, J. A. Koziol and S. B. Howell, Kinetics of sodium thiosulfate, a cisplatin neutralizer. Clin. Pharmacol. Ther. 35, 419–425 (1984).CrossRefGoogle Scholar
  29. 29.
    C. G. Swain and C. B. Scott, Quantitative correlation of relative rates. Comparison of hydroxide ion with other nucleophilic reagents toward allyl halides, esters, epoxides and acyl halides. M, Chem. Soc., 75, 141–147 (1953).CrossRefGoogle Scholar
  30. 30.
    J. Uozumi, M. Ishizawa, Y. Iwamoto and T. Bab, Sodium thiosulfate inhibits cis-diamminedichloroplatinum (II) activity. Cancer Chemother. Pharmacol., 13, 82–85 (1984).Google Scholar
  31. 31.
    B. L. Van Duuren, Carcinogenic epoxides, lactones, and halo ethers and their mode of action. Ann. N. Y. Acad. Sci., 163, 633–651 (1969).CrossRefGoogle Scholar
  32. 32.
    L. W. Wattenberg, Chemoprevention of cancer. Cancer Res., 45, 1–8 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    L. W. Wattenberg, P. Borchert, C. M. Destafney and J. B. Coccia, Effects of p-methoxyphenol and diet on carcinogen-induced neoplasia of the mouse forestomach. Cancer Res., 43, 4747–4751 (1983).PubMedGoogle Scholar
  34. 34.
    L. W. Wattenberg, J. B. Hochalter and A. R. Galbraith, Inhibition of beta-propiolactone-induced neoplasia by sodium thiosulfate. Cancer Res. (submitted 1987).Google Scholar
  35. 35.
    L. W. Wattenberg, U. D. G. Prabhu, J. B. Hochalter and A. R. Galbraith, Inhibitory effects of 4-mercaptobenzene sulfonate and α135-tris-4’mercaptophenoxy)mellitene on direct-acting carcinogens. Proc. Am. Assoc. Cancer Res., 27, 1987 (in press).Google Scholar
  36. 36.
    J. H. Weisburger and G. M. Williams, Metabolism of chemical carcinogens. In: Cancer: A Comprehensive Treatise (F. F. Becker, Ed.), Vol. 1 (2nd ed.), pp. 241–331. Plenum, New York, 1982.Google Scholar
  37. 37.
    J. Westley, Rhodanese and the sulfane pool. In: Enzymatic Basis of Detoxification, (W. B. Jakoby, Ed.), Vol. II, pp. 245–262. Academic Press, New York, 1980.Google Scholar
  38. 38.
    E. Wickstrom, Chlorambucil inhibition by dimethyl sulfoxide and thiosulfate: implications for chlorambucil chemotherapy. Med. Hypotheses, 6, 1035–1041 (1980).PubMedCrossRefGoogle Scholar
  39. 39.
    C. E. Williamson, A. M. Seligman and B. Witten, Intracellular toxic reactions of some sulfur and nitrogen mustards. Pharmacol. Exp. Ther., 182, 77–82 (1942).Google Scholar
  40. 40.
    A. W. Wright, R. S. Crowne and D. E. Hathway, The fate of 2,4,6-tri-(3’,5’-di-tert-butyl-4’-hydroxybenzyl)mesitylene (lonex 330) in the dog and rat. Biochem. J., 95, 98–103 (1965).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Lee W. Wattenberg
    • 1
  • J. Bradley Hochalter
    • 1
  • Usha D. G. Prabhu
    • 1
  • Arthur R. Galbraith
    • 1
  1. 1.Department of Laboratory Medicine and PathologyUniversity of Minnesota School of MedicineMinneapolisUSA

Personalised recommendations