Skip to main content

Protein Denaturation and Functionality Losses

  • Chapter
Quality in Frozen Food

Abstract

Frozen storage is one of the most important preservation methods for maintaining microbiological and chemical stability and extending the shelf life of food products. Deteriorations in texture, flavor, and color, resulting from biochemical, enzymatic, and functional changes in proteins, however, are problems associated with freezing and subsequent storage at subfreezing temperatures for many fresh and processed foods. Freeze-induced protein denaturation, enzyme inactivation, and related functionality losses are commonly observed in frozen fish, meat, poultry, egg products, and doughs. Muscle proteins are particularly susceptible to freeze denaturation compared to plant-derived proteins, and this is especially true for fish species. Denaturation of proteins during freezing and frozen storage can be monitored by measuring alterations in protein surface hydrophobicity, amino acid composition, conformational stability, solubility, aggregation, and enzyme activity. Losses in functional properties of proteins are commonly assessed by comparing water-holding ability, viscosity, gelation, emulsification, foaming, and whipping properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ang, J.F. and Hultin, H.O. 1989. Denaturation of cod myosin during freezing after modification with formaldehyde. J. Food Sci. 54:814–818.

    Article  CAS  Google Scholar 

  • Awad, A., Powrie, W.D., and Fennema, O. 1968. Chemical deterioration of frozen bovine muscle at −4°C. J. Food Sci. 33:227–235.

    Article  CAS  Google Scholar 

  • Berglund, P.T., Shelton, D.R., and Freeman, T.P. 1991. Frozen bread dough ultrastructure as affected by duration of frozen storage and freeze-thaw cycles. Cereal Chem. 68:105–107.

    Google Scholar 

  • Buttkus, H. 1970. Accelerated denaturation of myosin in frozen solution. J. Food Sci. 35:558–562.

    Article  CAS  Google Scholar 

  • Careche, M. and Tejada, M. 1994. Hake natural actomyosin interaction with free fatty acids during frozen storage. J. Sci. Food Agric. 64:501–507.

    Article  CAS  Google Scholar 

  • Castrillón, A.M., Alvarez-Pontes, E., Arias, M.T.G., and Navarro, P. 1996. Influence of frozen storage and defrosting on the chemical and nutritional quality of sardine (Clupea pilchardus). J. Sci. Food Agric. 70:29–34.

    Article  Google Scholar 

  • Cotterill, O.J. 1990. Freezing egg products. In Egg Science and Technology, 3d ed. (Stadelman, W.J. and Cotterill, O.J., eds.) pp. 217–242, Haworth Press, Binghamton, New York.

    Google Scholar 

  • Davies, J.R., Ledward, D.A., Bardsley, R.G., and Poulter, R.G. 1994. Species dependence of fish myosin stability to heat and frozen storage. Int. J. Food Sci. Technol. 29:287–301.

    Article  CAS  Google Scholar 

  • Dyer, W.J. and Dingle, J.R. 1961. Fish proteins with special reference to freezing. In Fish as Food. I. Biochemistry and Microbiology. (Borgstrom, G., ed.) pp. 275–327, Academic Press, New York.

    Google Scholar 

  • Feeney, R.E. and Yeh, Y. 1993. Antifreeze proteins: Properties, mechanism of action, and possible applications. Food Technol. 47(1):82, 84–88, 90.

    Google Scholar 

  • Fennema, O. 1982. Behavior of proteins at low temperatures. In Food Protein Deterioration Mechanisms and Functionality. (Cherry, J.P., ed.) pp. 109–133, ACS Symposium Series 206, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Franks, F. 1995. Protein destabilization at low temperatures. Adv. Protein Chem. 46:105–139.

    Article  CAS  Google Scholar 

  • Herald, T.J., Osorio, F.A., and Smith, D.M. 1989. Rheological properties of pasteurized liquid whole egg during frozen storage. J. Food Sci. 54:35–38, 44.

    Article  Google Scholar 

  • Huidobro, A. and Tejada, M. 1992. Foaming capacity of fish minces during frozen storage. J. Sci. Food Agric. 60:263–270.

    Article  Google Scholar 

  • Huidobro, A. and Tejada, M. 1993. Emulsifying capacity of fish mince from several species during frozen storage. J. Sci. Food Agric. 61:333–338.

    Article  Google Scholar 

  • Huidobro, A. and Tejada, M. 1995. Alteration of the electrophoretic pattern of myofibrillar proteins in fish mince during frozen storage. Z. Lebensm. Unters. Forsch. 200:247–251.

    Article  CAS  Google Scholar 

  • Inoue, N., Takatori, K., Motoshige, T., and Shinano, H. 1992. Effect of storage temperature on the freeze denaturation of fish myosin B. Nippon Suisan Gakkaishi 58:2357–2360.

    Article  CAS  Google Scholar 

  • Inoue, Y., Sapirstein, H.D., Takayanagi, S., and Bushuk, W. 1994. Studies on frozen doughs. III. Some factors involved in dough weakening during frozen storage and thaw-freeze cycles. Cereal Chem. 71:118–121.

    Google Scholar 

  • Jarenbäck, L. and Liljemark, A. 1975. Ultrastructural changes during frozen storage of cod. III. Effects of linoleic acid and linolenic acid hydroperoxides on myofibrillar proteins. J. Food Technol. 10:437–452.

    Article  Google Scholar 

  • Jiang, S.-T., Hwang, B.-S., Moody, M.W., and Chen, H.-C. 1991. Thermostability and freeze denaturation of grass prawn (Penaeus monodon) muscle proteins. J. Agric. Food Chem. 39:1998–2001.

    Article  CAS  Google Scholar 

  • Jiménez-Colmenero, F., Tejada, M., and Borderias, A.J. 1988. Effect of seasonal variations on protein functional properties of fish during frozen storage. J. Food Biochem. 12:159–170.

    Article  Google Scholar 

  • Kang, J.O., Ito, T., and Fukazawa, T. 1983. Effect of frozen storage on the structure and enzymatic activities of myofibrillar proteins of rabbit skeletal muscle. Meat Sci. 9:131–144.

    Article  CAS  Google Scholar 

  • Kim, B.Y., Hamann, D.D., Lanier, T.C., and Wu, M.C. 1986. Effects of freeze-thaw abuse on the viscosity and gel-forming properties of surimi from two species. J. Food Sci. 51:951–956, 1004.

    Article  Google Scholar 

  • Kinsella, J.E. 1976. Functional properties of proteins in foods: a survey. CRC Crit. Rev. Food Sci. Nutr. 7:219–280.

    Article  CAS  Google Scholar 

  • Lawrie, R.A. 1991. Meat Science, 5th ed. Pergamon Press, New York.

    Google Scholar 

  • LeBlanc, E.L. and LeBlanc, R.J. 1992. Determination of hydrophobicity and reactive groups in proteins of cod (Gadus morhua) muscle during frozen storage. Food Chem. 43:3–11.

    Article  CAS  Google Scholar 

  • Li-Chan, E., Nakai, S., and Wood, D.F. 1985. Relationship between functional (fat binding, emulsifying) and physicochemical properties of muscle proteins: effects of heating, freezing, pH, and species. J. Food Sci. 50:1034–1040.

    Article  CAS  Google Scholar 

  • Love, R.M. 1968. Ice formation in frozen muscle. In Low Temperature Biology of Foodstuffs. (Hawthorn, J. and Rolfe, E.J., eds.) pp. 105–124, Pergamon Press, Oxford.

    Google Scholar 

  • Love, R.M. and Lavéty, J. 1972. The connective tissues of fish. VII. Postmortem hydration and ice crystal formation in myocommata and their influence on gaping. J. Food Technol. 7:431–441.

    Article  Google Scholar 

  • Montera, P. and Borderías, J. 1990. Behavior of myofibrillar proteins and collagen in hake (Merluccius merluccius L.) muscle during frozen storage and its effect on texture. Z Lebensm. Unters. Forsch. 190:112–117.

    Article  Google Scholar 

  • Nambudiri, D.D. and Gopakumar, K. 1992. ATPase and lactate dehydrogenase activity in frozen stored fish muscle as indices of cold storage deterioration. J. Food Sci. 57:72–76.

    Article  CAS  Google Scholar 

  • Olley, J., Pirie, R., and Watson, H. 1962. Lipase and phospholipase activity in fish skeletal muscle and its relationship to protein denaturation. J. Sci. Food Agric. 13:501–516.

    Article  CAS  Google Scholar 

  • Park, J.W., Lanier, T.C., and Pilkington, D.H. 1993. Cryostabilization of functional properties of prerigor and postrigor beef by dextrose polymer and/or phosphates. J. Food Sci. 58:467–472.

    Article  CAS  Google Scholar 

  • Payne, S.R. and Young, O.A. 1995. Effects of pre-slaughter administration of antifreeze proteins on frozen meat quality. Meat Sci. 41:147–155.

    Article  CAS  Google Scholar 

  • Privalov, P.L., Griko, Y.V., Venyaminov, Y.S., and Kutyshenko, VP. 1986. Cold denaturation of myoglobin. J. Mol. Biol. 190:487–497.

    Article  CAS  Google Scholar 

  • Privalov, P.L. and Makhatadze, G.I. 1993. Contribution of hydration to protein folding thermodynamics. II. The entropy and Gibbs energy of hydration. J. Mol. Biol. 232:660–679.

    Article  CAS  Google Scholar 

  • Rahelic, S., Gawwad, A.H., and Puac, S. 1985. Structure of beef longissimus dorsi muscle frozen at various temperatures. Part 2: Ultrastructure of muscle frozen at −10, −22, −33, −78, and −115°C. Meat Sci. 14:73–81.

    Article  CAS  Google Scholar 

  • Reddy, G.VS., Srikar, L.N., and Sudhara, N.S. 1992. Deteriorative changes in pink perch mince during frozen storage. Int. J. Food Sci. Technol. 27:271–276.

    Article  CAS  Google Scholar 

  • Shenouda, S.Y.K. 1980. Theories of protein denaturation during frozen storage of fish flesh. Adv. Food Res. 26:275–311.

    Article  CAS  Google Scholar 

  • Smith, D.M. 1987. Functional and biochemical changes in deboned turkey due to frozen storage and lipid oxidation. J. Food Sci. 52:22–27.

    Article  CAS  Google Scholar 

  • Sotelo, C.G., Piñeir, C., and Pérez-Martin, R.I. 1995. Denaturation of fish proteins during frozen storage: role of formaldehyde. Z Lebensm. Unters. Forsch. 200:14–23.

    Article  CAS  Google Scholar 

  • Sych, J., Lacroix, C., Adambounou, L.T., and Castaigne, F. 1990. Cryoprotective effects of lactitol, palatinit, and polydextrose on cod surimi proteins during frozen storage. J. Food Sci. 55:356–360.

    Article  CAS  Google Scholar 

  • Sych, J., Lacroix, C., Adambounou, L.T., and Castaigne, F. 1991. The effect of low-and non-sweet additives on the stability of protein functional properties of frozen cod surimi. Int. J. Food Sci. Technol. 26:185–197.

    Article  Google Scholar 

  • Takahashi, K., Inoue, N., and Shinano, H. 1993. Effect of storage temperature on freeze denaturation of carp myofibrils with KC1 or NaCl. Nippon Suisan Gakkaishi 59:519–527.

    Article  CAS  Google Scholar 

  • Wagner, J.R. and Añón, M.C. 1985. Effect of freezing rate on the denaturation of myofibrillar proteins. J. Food Technol. 20:735–744.

    Article  Google Scholar 

  • Wagner, J.R. and Añón, M.C. 1986. Effect of frozen storage on protein denaturation in bovine muscle. 1. Myofibrillar ATPase activity and differential scanning calorimetric studies. J. Food Technol. 21:9–18.

    Article  CAS  Google Scholar 

  • Wootton, M., Hong, N.T., and Thi, H.A.P. 1981. A study of the denaturation of egg white proteins during freezing using differential scanning calorimetry. J. Food Sci. 46:1336–1338.

    Article  Google Scholar 

  • Xiong, Y.L., Decker, E.A., Robe, G.H., and Moody, W.G. 1993. Gelation of crude myofibrillar protein isolated from beef heart under antioxidative conditions. J. Food Sci. 58:1241–1244.

    Article  CAS  Google Scholar 

  • Yamamoto, K., Samejima, K., and Yasui, T. 1977. A comparative study of the changes in hen pectoralis muscle during storage at 4°C and −20°C. J. Food Sci. 42:1642–1645.

    Article  CAS  Google Scholar 

  • Yoon, K.S., Lee, CM., and Hufnagel, L.A. 1991. Effect of washing on the texture and microstructure of frozen fish mince. J. Food Sci. 56:294–298.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xiong, Y.L. (1997). Protein Denaturation and Functionality Losses. In: Erickson, M.C., Hung, YC. (eds) Quality in Frozen Food. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5975-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5975-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7738-2

  • Online ISBN: 978-1-4615-5975-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics