Delay-Differential Equations for Structured Populations

  • Roger M. Nisbet
Part of the Population and Community Biology Series book series (PCBS, volume 18)

Abstract

This chapter develops an approach to continuous-time models that emphasizes the stage structure of a population. The key motivating idea is that, in many situations, biological differences among individuals within a stage may be unimportant in comparison with interstage differences. For example, the rate of egg production by adult insects may depend on their age, but much insight into population dynamics may be obtained from models that recognize only the distinction between nonreproductive individuals (juveniles) and reproductive individuals (adults). Likewise, an organism’s susceptibility to parasitism may depend on its size but with a range of sizes at which the organism is not vulnerable. It is reasonable to explore the qualitative effects of the invulnerable class before investigating the detailed, quantitative consequences of the size structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. van der Heiden, U., and M. C. Mackay. 1982. Dynamics of destruction and renewal. Journal of Mathematical Biology 16: 75–101.CrossRefGoogle Scholar
  2. Auslander, D. M., G. F. Oster, and C. B. Huffaker. 1974. Dynamics of interacting populations. Journal of the Franklin Institute 297: 345–376.CrossRefGoogle Scholar
  3. Blythe, S. P., R. M. Nisbet, and W. S. C. Gurney. 1982. Instability and complex dynamic behavior in population models with long time delays. Theoretical Population Biology 22: 147–176.CrossRefGoogle Scholar
  4. Blythe, S. P., R. M. Nisbet, and W. S. C. Gurney 1984. The dynamics of population models with distributed maturation periods. Theoretical Population Biology 25: 289–311.Google Scholar
  5. Briggs, C. J. 1993. Competition among parasitoid species on an age-structured host, and its effect on host suppression. American Naturalist 141: 372–397.CrossRefGoogle Scholar
  6. Briggs, C. J., R. M. Nisbet, and W. W. Murdoch. 1993. Coexistence of competing parasitoid species on a host with a variable life cycle. Theoretical Population Biology 44: 341–373.CrossRefGoogle Scholar
  7. Crowley, P. H., R. M. Nisbet, W. S. C. Gurney, and J. H. Lawton. 1987. Population regulation in animals with complex life histories: Formulation and analysis of a damselfly model. Advances in Ecological Research 17: 1–59.CrossRefGoogle Scholar
  8. Diekmann, O., S. A. Van Gils, S. M. V. Lunel, and H. O. Walther. 1995. Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Springer-Verlag, New York.Google Scholar
  9. Godfray, H. C. J., and M. P. Hassell. 1989. Discrete and continuous insect populations in tropical environments. Journal of Animal Ecology 58: 153–174.CrossRefGoogle Scholar
  10. Godfray, H. C. J., and J. K. Waage. 1991. Predictive modelling in biological control: The mango mealy bug (Rastrococcus invadens) and its parasitoids. Journal of Applied Ecology 28: 434–453.CrossRefGoogle Scholar
  11. Gordon, D. M., W. S. C. Gurney, R. M. Nisbet, and R. K. Stewart. 1988. A model of Cadra cautella larval growth and development. Journal of Animal Ecology 57: 645–658.CrossRefGoogle Scholar
  12. Gordon, D. M., R. M. Nisbet, A. M. de Roos, W. S. C. Gurney, and R. K. Stewart. 1991. Discrete generations in host-parasitoid models with contrasting life cycles. Journal of Animal Ecology 60: 295–308.CrossRefGoogle Scholar
  13. Gurney, W. S. C., and R. M. Nisbet. 1985. Fluctuation periodicity, generation separation and expression of larval competition. Theoretical Population Biology 28: 150–180.CrossRefGoogle Scholar
  14. Gurney, W. S. C., and S. Tobia. 1995. SOLVER-A program template for initial value problems expressible as sets of coupled ordinary or delay differential equations. STAMS, University of Strathclyde, Glasgow.Google Scholar
  15. Gurney, W. S. C., S. P. Blythe, and R. M. Nisbet. 1980. Nicholson’s blowflies revisited. Nature 287: 17–21.CrossRefGoogle Scholar
  16. Gurney, W. S. C., R. M. Nisbet, and J. H. Lawton. 1983. The systematic formulation of tractable single-species population models incorporating age structure. Journal of Animal Ecology 52: 479–495.CrossRefGoogle Scholar
  17. Gurney, W. S. C., R. M. Nisbet, and S. P. Blythe. 1986. The systematic formulation of models of stage structured populations. Pp. 474–494 in J. A. J. Metz and O. Diekmann, eds., Lecture Notes in Biomathematics: The Dynamics of Physiologically Structured Populations. Springer-Verlag, Berlin.Google Scholar
  18. Gyori, I., and G. Ladas. 1991. Oscillation Theory of Delay Differential Equations: With Applications. Oxford University Press.Google Scholar
  19. Hastings, A. 1987. Cycles in cannibalistic egg-larval interactions. Journal of Mathematical Biology 24: 651–666.CrossRefGoogle Scholar
  20. Jansen, V. A. A., R. M. Nisbet, and W. S. C. Gurney. 1990. Generation cycles in stage structured populations. Bulletin of Mathematical Biology 52: 375–396.Google Scholar
  21. Jones, A. E., R. M. Nisbet, W. S. C. Gurney, and S. P. Blythe. 1988. Period to delay ratio near stability boundaries for systems with delayed feedback. Journal of Mathematical Analysis and Applications 135: 354–368.CrossRefGoogle Scholar
  22. Kuang, Y. 1993. Delay Differential Equations: With Applications in Population Dynamics. Academic Press, Boston.Google Scholar
  23. MacDonald, N. 1989. Biological Delay Systems: Linear Stability Theory. Cambridge University Press, New York.Google Scholar
  24. May, R. M. 1980. Mathematical models in whaling and fisheries management. Pp. 1–63 in G. F. Oster, ed., Lectures on Mathematics in the Life Sciences 13. American Mathematical Society, Providence, R.I.Google Scholar
  25. McCauley, E. D., R. M. Nisbet, A. M. de Roos, W. W. Murdoch, and W. S. C. Gurney. In press. Structured population models of herbivorous zooplankton. Ecology.Google Scholar
  26. Metz, J. A. J., and O. Diekmann. 1991. Exact finite dimensional representations of models for physiologically structured populations. I: The abstract foundations of linear chain trickery. Pp. 269–289 in J. A. Goldstein, F. Kappel, and W. Schappacher, eds., Differential Equations with Applications in Biology, Physics, and Engineering. Marcel Dekker, New York.Google Scholar
  27. Murdoch, W. W. 1994. Population regulation in theory and practice. Ecology 75: 271–287.CrossRefGoogle Scholar
  28. Murdoch, W. W., and C. J. Briggs. In press. Theory for biological control: Recent developments. Ecology.Google Scholar
  29. Murdoch, W. W., R. M. Nisbet, S. P. Blythe, W. S. C. Gurney, and J. D. Reeve. 1987. An invulnerable age class and stability in delay-differential parasitoid-host models. American Naturalist 129: 263–282.CrossRefGoogle Scholar
  30. Murdoch, W. W., R. M. Nisbet, R. F. Luck, H. C. J. Godfray, and W. S. C. Gurney. 1992. Size-selective sex-allocation and host feeding in a parasitoid-host model. Journal of Animal Ecology 61: 533–541.CrossRefGoogle Scholar
  31. Murdoch, W. W., C. J. Briggs, and R. M. Nisbet. In press. Competitive displacement and biological control in parasitoids: A model. American Naturalist.Google Scholar
  32. Nicholson, A. J. 1954. An outline of the dynamics of animal populations. Australian Journal of Ecology 2: 9–65.Google Scholar
  33. Nicholson, A. J. 1957. The self-adjustment of populations to change. Cold Spring Harbor Symposia 22: 153–173.Google Scholar
  34. Nisbet, R. M., and J. R. Bence. 1989. Alternative dynamic regimes for canopy-forming kelp: A variant on density-vague population regulation. American Naturalist 134: 377–408.CrossRefGoogle Scholar
  35. Nisbet, R. M., and W. S. C. Gurney. 1982. Modelling Fluctuating Populations. Wiley, Chichester, Engl.Google Scholar
  36. Nisbet, R. M., and W. S. C. Gurney. 1983. The systematic formulation of population models for insects with dynamically varying instar duration. Theoretical Popula tion Biology 23: 114–135.CrossRefGoogle Scholar
  37. Nisbet, R. M., and W. S. C. Gurney. 1986. The formulation of age-structure models. Pp. 95–115 in T. G. Hallam and S. A. Levin, eds., Mathematical Ecology. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  38. Nisbet, R. M., W. S. C. Gurney, W. W. Murdoch, and E. McCauley. 1989. Structured population models: A tool for linking effects at individual and population levels. Biological Journal of the Linnean Society 37: 79–99.CrossRefGoogle Scholar
  39. Shea, K., R. M. Nisbet, W. W. Murdoch, and J. S. Yoo. In press. The effect of egg limitation in insect host-parasitoid population models. Journal of Animal Ecology Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Roger M. Nisbet

There are no affiliations available

Personalised recommendations