Advertisement

Segregation in Crystal Growth under High Gravity on a Centrifuge: A Comparison between Experimental and Theoretical Results

  • J. Friedrich
  • G. Müller

Abstract

Germanium crystals doped with gallium were grown by the gradient freeze technique on a centrifuge at different rotation rates and with different lengths of the centrifuge arm. The resulting dopant distributions of these crystals indicate that convection was reduced during growth at some certain rotation rates, resulting in an effective segregation coefficient closer to one than for normal growth conditions. The experimental results agree with the theoretical prediction of a modified segregation model using a special boundary layer (Ekman layer) that occurs on a centrifuge. The results with respect to the uniformity of the crystals grown under high gravity on a centrifuge are compared with results obtained under microgravity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Friedrich and G. Müller, Convection in crystal growth under high gravity on a centrifuge, in present volume.Google Scholar
  2. 2.
    J. Friedrich, J. Baumgartl, H.J. Leister, and G. Müller, Experimental and theoretical analysis of convection and segregation in vertical Bridgman growth under high gravity on a centrifuge, J. Crystal Growth, in press.Google Scholar
  3. 3.
    D. Camel and J.J. Favier, Scaling analysis of convective solute transport and segregation in Bridgman crystal growth from the doped melt, J. Physique47: 1001 (1986).CrossRefGoogle Scholar
  4. 4.
    H. Rodot, L.L. Regel, and A.M. Turtchaninov, Crystal growth of IV-VI semiconductors in a centrifuge, J. Crystal Growth104: 280 (1990).CrossRefGoogle Scholar
  5. 5.
    G. Müller, G. Neumann, and W. Weber, The growth of homogeneous semiconductor crystals in a centrifuge by the stabilizing influence of the Coriolis force, J. Crystal Growth 129: 8 (1992).CrossRefGoogle Scholar
  6. 6.
    J.J. Favier, J. deGoer, R. LeMagnet, Analyse de la segregation du gallium dans des barreux de germanium solidifies unidirectionnallement en fusee sonde (missions TEXUS IV et TEXUS VI ), C.E.A. Internal Report, Grenoble (1985).Google Scholar
  7. 7.
    J.J. Favier, Macrosegregation I: unified analysis during non-steady state solidification, Acta Metallurgica29: 197 (1981).CrossRefGoogle Scholar
  8. 8.
    W.A. Arnold, W.R. Wilcox, F. Carlson, A. Chait, and L.L. Regel, Transport mode during crystal growth in a centrifuge, J. Crystal Growth129: 24 (1992).CrossRefGoogle Scholar
  9. 9.
    A.G. Ostrogorsky and G. Müller, A model of effective segregation coefficient, accounting for convection in the solute layer at the growth interface, J. Crystal Growth131: 587 (1992).CrossRefGoogle Scholar
  10. 10.
    A.G. Ostrogorsky and G. Müller, A model of effective segregation coefficient, accounting for convection in the solute layer at the growth interface, J. Crystal Growth131: 587 (1992).CrossRefGoogle Scholar
  11. 11.
    M.A. Fikri, G. Labrosse, and M. Betrouni, The melt phase hydrodynamics for the “stabilized” Bridgman procedure applied under centrifugation; preliminary analysis and numerical results, J. Crystal Growth119: 41 (1992).CrossRefGoogle Scholar
  12. 12.
    R. Hide, Theory of axisymmetric thermal convection in a rotating fluid annulus, Phys. Fluids10: 56 (1967).CrossRefGoogle Scholar
  13. 13.
    N. Ma and J.S. Walker, Liquid-metal buoyant convection in a vertical cylinder with a strong magnetic field with a nonaxisymmetric temperature, Phys. Fluids7: 2061 (1995).CrossRefGoogle Scholar
  14. 14.
    J.P. Garandet, T. Duffar, and J.J. Favier, On the scaling analysis of the solute boundary layer in idealized growth configurations, J. Crystal Growth106: 437 (1990).CrossRefGoogle Scholar
  15. 15.
    I.N. Bronstein, and K.A. Semendjajew, “Taschenbuch der Mathematik,” Verlag Ham Deutsch, Thun and Frankfurt/Main (1987).Google Scholar
  16. 16.
    C.J. Chang and R.A. Brown, Radial segregation induced by natural convection and melt/solid interface shape in vertical Bridgman growth, J. Crystal Growth63: 343 (1983).CrossRefGoogle Scholar
  17. 17.
    D.H. Matthiesen, M.J. Wargo, S. Motakef, D.J. Carlson, J.S. Nakos, and A.F. Witt, Dopant segregation during vertical Bridgman-Stockbarger growth with melt stabilization by strong axial magnetic fields, J. Crystal Growth85: 557 (1987).CrossRefGoogle Scholar
  18. 18.
    A.G. Ostrogorsky, F. Mosel, and M. Schmidt, Diffusion-controlled distribution of solute in Sn-1%Bi solidified by the Submerged Heater Method, J. Crystal Growth110: 950 (1991).CrossRefGoogle Scholar
  19. 19.
    A.G. Ostrogorksy, H.J. Sell, S. Scharl, and G. Müller, Convection and segregation during growth of Ge and InSb crystals by the Submerged Heater Method, J. Crystal Growth128: 207 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. Friedrich
    • 1
  • G. Müller
    • 1
  1. 1.Institut für Werkstoffwissenschaften LS 6Universität Erlangen – NürnbergErlangenGermany

Personalised recommendations