Advertisement

Human Succinic Semialdehyde Dehydrogenase

Molecular Cloning and Chromosomal Localization
  • Flavia Trettel
  • Patrizia Malaspina
  • Carla Jodice
  • Andrea Novelletto
  • Clive A. Slaughter
  • Deborah L. Caudle
  • Debra D. Hinson
  • Ken L. Chambliss
  • K. Michael Gibson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 414)

Abstract

4-Aminobutyric acid (GABA) is an important inhibitor of synaptic transmission (Tillakaratne, Medina-Kauwe and Gibson, 1995) in the mammalian central nervous system (CNS). Although bound forms of GABA contribute to the free GABA pool in CNS, most GABA is derived from glutamic acid in a reaction catalyzed by glutamic acid decarboxylase. The carbon skeleton of GABA eventually enters the Krebs cycle through the sequential action of two enzymes. GABA-transaminase converts GABA to succinic semialdehyde, by the stoichiometric conversion of 2-oxoglutarate to glutamic acid, which replenishes the main GABA precursor. Succinic semialdehyde is then oxidized by NAD+-dependent succinic semialdehyde dehydrogenase (E.C. 1.2.1.24; SSADH) to form succinic acid, thus playing a key role in maintenance of GABA homeostasis. In addition, as an inborn error in the metabolism of a neurotransmitter (McKusick 271980), SSADH deficiency represents an unusual neurometabolic disease. SSADH deficiency has been reported in approximately 100 patients ranging from 3 months to 25 years of age at the time of diagnosis (Scriver and Gibson, 1995).

Keywords

Aldehyde Dehydrogenase Transcription Initiation Site Polyadenylation Site Succinic Semialdehyde Human Chromosome 6p22 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chambliss, K.L. and Gibson, K.M.: Succinic semialdhyde dehydrogenase from mammalian brain: subunit analysis using polyclonal antiserum. Int.J.Biochem. 24 (1992) 1493–1499.PubMedCrossRefGoogle Scholar
  2. Chambliss, K.L., Caudle, D.L., Hinson, D.D., Moomaw, C.R., Slaughter, C.A., Jakobs, C. and Gibson, K.M.: Molecular cloning of the mature NAD+-dependent succinic semialdehyde dehydrogenase from rat and human: cDNA isolation, evolutionary homology, and tissue expression. J.Biol.Chem. 270 (1995) 461–467.PubMedCrossRefGoogle Scholar
  3. Chambliss, K.L., Zhang, Y.-A., Rossier, E., Vollmer, B. and Gibson, K.M.: Enzymatic and immunologic identification of succinic semialdehyde dehydrogenase in rat and human neural and nonneural tissues. J.Neurochem. 65 (1995) 851–855.PubMedCrossRefGoogle Scholar
  4. Gibson, K.M., Christensen, E., Jakobs, C., Fowler, B., Clarke, M.A., Wallace, G., Hammersen, G., Raab, K., Kobori, J., Moosa, A., Vollmer, B., Rossier, E., Iafolla, A.K., Matern, D., Brouwer, O.F., Hofman, K., Aksu, F., Weber, H.-P., Bakkeren, J.A.J.M., Gabreels, F., Bluestone, D., Barron, T.F., Beauvais, P., Rabier, D., Santos, C., Umansky, R. and Lehnert, W.: The clinical phenotype of succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria): case reports of 23 new patients, in press.Google Scholar
  5. Hempel J, Nicholas H. and Lindahl, R.: Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework. Protein Sci. 2 (1993) 1890–1900.PubMedCrossRefGoogle Scholar
  6. Hu, C.A., Lin W.-W. and Valle, D.: Cloning, characterization, and expression of cDNAs encloding human Δ1-pyrroline-5-carboxylate dehydrogenase. J.Biol.Chem. 271 (1996) 9795–9800.PubMedCrossRefGoogle Scholar
  7. Jakobs, C., Jaeken, J. and Gibson, K.M.: Inherited disorders of GABA metabolism. J.Inher.Metab.Dis. 16 (1993) 704–715.PubMedCrossRefGoogle Scholar
  8. Kurys, G., Shah, P.C., Kikonygo, A., Reed, D., Ambroziak, W., Pietruszko, R.: Human aldehyde dehydrogenase: cDNA cloning and primary structure of the enzyme that catalyzes dehydrogenation of 4-aminobutyraldehyde. Eur.J.Biochem. 218 (1993) 311–320.PubMedCrossRefGoogle Scholar
  9. Malaspina, P., Roetto, A., Trettel, F., Jodice, C., Blasi, P., Frontali, M., Carella, M., Franco, B., Camaschella, C. and Novelletto, A.: Construction of YAC contig covering human chromosome 6p22, in press.Google Scholar
  10. Ryzlak, M.T. and Pietruszko, R.: Human brain “high Km” aldehyde dehydrogenase: purification, characterization, and identification as NAD+-dependent succinic semialdehyde dehydrogenase. Arch.Biochem.Biophys. 266 (1988) 386–396.PubMedCrossRefGoogle Scholar
  11. Scriver, C.R. and Gibson, K.M.: Disorders of β-and γ-amino acids in free and peptide-linked forms. In Scriver, C.R., Beaudet, A.L., Sly, W.S. and Valle, D. (Eds.), The Metabolic and Molecular Basis of Inherited Disease. 7th ed. McGraw-Hill, N.Y., 1995, pp. 1349–1368.Google Scholar
  12. Snead, O.C.: Antiabsence seizure activity of specific GABA (B) and gamma-hydroxybutyric acid receptor antagonists. Pharmacol.Biochem.Behav. 53 (1996) 73–79.PubMedCrossRefGoogle Scholar
  13. Tillakaratne, N.J.K., Medina-Kauwe, L. and Gibson, K.M.: Gamma-amniobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp.Biochem.Physiol. 112A (1995) 247–263.CrossRefGoogle Scholar
  14. Valle, D.L., Phang, J.M., and Goodman, S.I.: Type 2 hyperprolinemia: absence of Δ1-pyrroline-5-carboxylic acid dehydrogenase activity. Science 185(1974) 1053–1054.PubMedCrossRefGoogle Scholar
  15. Wahle E., Keller W.: The biochemistry of 3′-end cleavage and polyadenylation of messenger RNA precursors. Annu.Rev.Biochem. 61 (1992) 419–440.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Flavia Trettel
    • 1
  • Patrizia Malaspina
    • 1
  • Carla Jodice
    • 1
  • Andrea Novelletto
    • 1
  • Clive A. Slaughter
    • 2
  • Deborah L. Caudle
    • 3
  • Debra D. Hinson
    • 3
  • Ken L. Chambliss
    • 3
  • K. Michael Gibson
    • 3
    • 4
  1. 1.Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Department of Biochemistry Howard Hughes Medical InstituteUniversity of Texas Southwestern Medical CenterDallasUSA
  3. 3.Institute of Metabolic DiseaseBaylor Research Institute and Baylor University Medical CenterDallasUSA
  4. 4.Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations