Bioprocessing of agro-residues to value added products

  • V. S. Bisaria

Abstract

Vast quantities of agricultural and agro-industrial residues that are generated as a result of diverse agricultural and industrial practices represent one of the most important energy-rich resources. Accumulation of this biomass in large quantities every year results not only in deterioration of the environment but in a loss of potentially valuable material which can be processed to yield a number of value added products such as food, fuel, feed and a variety of chemicals. A few of these potential residues are listed in Table 5.1. While cellulose, hemicellulose and lignin are the major constituents of these lignocellulosic residues, minor quantities of protein, pectin, soluble sugars, vitamins and minerals are also present. The composition of these residues, which depends on the age of the plant, is also different in different parts of the same crop, such as stalks, stems, straws, hulls and cobs. A correct analysis of the carbohydrates and other chemical components of lignocellulosic residues is of utmost importance for the evaluation of effectiveness of pretreatment method, product yield and process design. The limitations involved in comparison of data from different laboratories have been discussed by Saddler and Makle (1990). Using recent methods for their analysis, the carbohydrate components are first hydrolysed to monomeric sugars which are then estimated by gas chromotography (GC) or high-pressure liquid chromatography (HPLC). Based on the monomeric sugars, the relative amounts of the corresponding polymers from which they are derived, i.e., cellulose and hemicellulose, are calculated stoichiometrically (Karr et al., 1991; Puls, 1993; Hayn et al., 1993). This procedure also allows the determination of relative amounts of soluble sugars in the lignocellulosic biomass. The composition of a few lignocellulosic residues is summarized in Table 5.2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, A.L. and Andreotti, R.E. (1982) In Fourth Symposium on Biotechnology in Energy Production and Cónservation, Biotechnology and Bioengineering Symposium No. 12 (ed. C.D. Scott), John Wiley, New York, p. 451.Google Scholar
  2. Allen, A.L. and Roche, C.D. (1989) Biotechnol. Bioeng., 33, 650.CrossRefGoogle Scholar
  3. Bailey, M.J. and Nevelainen, K.M.H. (1981) Enzyme Microbiol. Technol., 3, 153.CrossRefGoogle Scholar
  4. Bailey, M.J., Bushert, J. and Viikari, K. (1993) Appl. Microbiol. Biotechnol., 40, 224.CrossRefGoogle Scholar
  5. Bailey, R.B., Benitez, T. and Woodward, A. (1982) Appl. Environ. Microbiol., 44, 631.Google Scholar
  6. Bajpai, P. and Bajpai, P.K. (1996) Adv. Biochem. Eng. Biotechnol., 56, 1.CrossRefGoogle Scholar
  7. Bajpai, P. and Bajpai, P.K. (1996) Adv. Biochem. Eng. Biotechnol., 56, 1.CrossRefGoogle Scholar
  8. Beck, M.J. (1993) In Bioconversion of Forest and Agricultural Plant Residues (ed. J.N. Saddler), CAB International, Oxford, p. 211.Google Scholar
  9. Beguin, P. (1990) Ann. Rev. Microbiol., 44, 219.CrossRefGoogle Scholar
  10. Beguin, P. and Aubert, J.-P. (1994) FEMS Microbiol. Rev., 13, 25.Google Scholar
  11. Ben-Ghedalia, D. and Miron, J. (1981) Biotechnol. Bioeng., 23, 823.CrossRefGoogle Scholar
  12. Biely, P. and Petrakova, E. (1984) FEES Lett., 178, 323.CrossRefGoogle Scholar
  13. Biely, P., MacKenzie, C.R., Puls, J. and Schneider, H. (1986) Bio/Technology, 4, 731.CrossRefGoogle Scholar
  14. Binder, A., Haltmeir, T. and Fiechter, A. (1980) In Proceedings of the Symposium on Bioconversion and Biochemical Engineering, Vol. 1 (ed. T.K. Ghose), Indian Institute of Technology, New Delhi, p. 315.Google Scholar
  15. Bisaria, V.S. (1991) In Bioconversion of Waste Materials to Industrial Products (ed. A.M. Martin), 1st edn, Elsevieт Applied Science, London, p. 187.Google Scholar
  16. Bisaria, V.S. and Ghose, T.K. (1978) In Proceedings of the Symposium on Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Protein (ed. T.K. Ghose), Indian Institute of Technology, New Delhi, p. 155.Google Scholar
  17. Bisaria, V.S. and Ghose, T.K. (1981) Enzyme Microbiol. Technól., 3, 90.CrossRefGoogle Scholar
  18. Bisaria, V.S. and Mishra, S. (1989) Crit. Rev. Biotechnol., 9, 61.CrossRefGoogle Scholar
  19. Bisaria, V.S., Nanda, M. and Ghose, T.K. (1986) J. Gen. Microbiol., 132, 973.Google Scholar
  20. Bisaria, R., Madan, M. and Bisaria, V.S. (1987a) Biol. Wastes, 19, 239.CrossRefGoogle Scholar
  21. Bisaria, R., Gujral, G.S. and Bisaria, V.S. (1987b) Crit. Rev. Biotechnol., 7, 17.CrossRefGoogle Scholar
  22. Brener, D. and Johnson, B.F. (1984) Appl. Environ. Microbiol., 47, 1126.Google Scholar
  23. Brigham, J.S., Adney, W.S. and Himmel, M.E. (1996) In Handbook on Bioethanol (ed. C.E. Wyman), Taylor and Francis, Washington, DC, p. 119.Google Scholar
  24. Brown, J.A., Falconer, D.J. and Wood, T.M. (1987) Enzyme Microbiol. Technol., 9, 169.CrossRefGoogle Scholar
  25. Brownell, H.H. and Saddler, J.N. (1986) Biotechnol. Bioeng., 28, 792.CrossRefGoogle Scholar
  26. Brownell, H.H. and Saddler, J.N. (1987) Biotechnol. Bioeng., 29, 228.CrossRefGoogle Scholar
  27. Bruchmann, E.E., Schach, H. and Graf, H. (1987) Biotechnol. Appi. Biochem., 9, 146.Google Scholar
  28. Buehanen, R.A., Otey, F.H. and Hamerstrand, G.E. (1980) Ind. Eng. Chem. Prod. Res. Div., 19, 489.CrossRefGoogle Scholar
  29. Buchert, J., Ranua, M., Kantelinen, A. and Viikari, L. (1992) Appl. Microbiol. Biotechnol., 37, 825.CrossRefGoogle Scholar
  30. Castanon, M. and Wilke, C.R. (1980) Biotechnol. Bioeng., 22, 1037.CrossRefGoogle Scholar
  31. Castellanos, O.F., Sinitsyn, A.P. and Vlasenko, E.Y. (1995) Biores. Technol., 52, 119.CrossRefGoogle Scholar
  32. Cavaco-Paulo, A. and Almeida, L. (1994) Biocatalysis, 10, 353.CrossRefGoogle Scholar
  33. Chang, M. (1971) J. Polym. Sci., Part C, no. 36, 343.Google Scholar
  34. Chanzy, H., Henrissat, B., Voung, R. and Schulein, M. (1983) FEES Lett., 163, 113.CrossRefGoogle Scholar
  35. Chaudhuri, B.K. and Sahai, V. (1993) Enzyme Microbiol. Technol., 15, 513.CrossRefGoogle Scholar
  36. Chen, L.-F. and Gong, C.-S. (1982) In Fourth Symposium on Biotechnology in Energy Production and Conservation, Biotechnology Bioengineering Symposium No. 12 (ed. C.D. Scott), John Wiley, New York, p. 57.Google Scholar
  37. Chippaux, M. (1988) In Proceedings of a Symposium and Genetics of Cellulose Degradation (eds J.-P. Aubert, P. Beguin and J. Millet), Academic Press, New York, p. 219.Google Scholar
  38. Chou, Y.C. (1986) In Eighth Symposium on Biotechnology for Fuels and Chemicals, Biotechnology Bioengineering Symposium No. 17 (ed. C.D. Scott), John Wiley, New York, p. 19.Google Scholar
  39. Claeyssens, M., Henrissat, B. and Tomme, P. (1993) In Bioconversion of Forest and Plant Agricultural Residues (ed. J.N. Saddler), CAB International, Oxford, p. 117.Google Scholar
  40. Clark, T.A. and Mackie, K.L. (1986) In Biotechnology in the Pulp and Paper Industry, 3 rd International Conference, Stockholm, 1(-19 June, p. 101.Google Scholar
  41. Converse, A.O. (1993) In Bioconversion of Forest and Agricultural Plant Residues (ed. J.N. Saddler), CAB International, Oxford, p. 93.Google Scholar
  42. Coudray, M.R., Canavascini, G. and Meier, H. (1982) Biochem. J., 203, 227.Google Scholar
  43. Coughlan, M.P. (1992a) Biores. Teehnol., 39, 107.CrossRefGoogle Scholar
  44. Coughlan, M.P. (1992b) In Xylan and Xylanases (eds J. Visser, G. Beldman, M.A. Kusters-van Someren and A.G.J. Vorgen), Elsevier, New York, p. 111.Google Scholar
  45. Coughlan, M.P. and Hazlewood, G.P. (1993) Hemicellulose and Hemicellulases, Portland, London.Google Scholar
  46. Coughlan, M.P. and Ljungdahl, L.G. (1988) In Proceedings of a Symposium on Biochemistry and Genetics of Cellulose Degradation (ed. J.-P. Aubert, P. Beguin and J. Millet), Academic Press, London, p. 11.Google Scholar
  47. Cowling, E.B. (1975) In Biotechnology and Bioengineering Symposium No. 5, Cellulose as a Chemical and Energy Resource (ed. C.R. Wilke), John Wiley, New York, p. 163.Google Scholar
  48. Crabbe, P.G., Tse, C.W. and Munro, P.A. (1986) Biotechnol. Bioeng., 28, 939.CrossRefGoogle Scholar
  49. Crawford, R.L. (1981) Lignin Biodegradation and Transformation, Wiley Interscience, New York.Google Scholar
  50. Dadger, A.M. and Foutth, G.L. (1986) In Seventh Symposium on Biotechnology for Fuels and Chemicals, Biotechnology Bioengineering Symposium No. 15 (ed. C.D. Scott), John Wiley, New York, p. 611.Google Scholar
  51. Dale, B.E. (1987) Trends Biotechnol., 5, 287.CrossRefGoogle Scholar
  52. Dale, B.E. and Moreira, M.J. (1982) In Fourth Symposium on Biotechnolgy in Energy Production and Conservation, Biotechnology Bioengineering Symposium No. 12 (ed. C.D. Scott), John Wiley, New York, p. 31.Google Scholar
  53. Davies, G.J., Dodson, G.G., Hubbard, R.E. et al. (1993) Nature, 365, 362.CrossRefGoogle Scholar
  54. Deeble, M.F. and Lee, J.M. (1986) In Seventh Symposium on Biotechnology for Fuels and Chemicals, Biotechnology Bioengineering Symposium No. 15 (ed. C.D. Scott), John Wiley, New York, p. 277.Google Scholar
  55. Dekker, R.F.H. (1980) J. Gen. Microbiol., 120, 309.Google Scholar
  56. Dekker, R.F.H. (1985) In Biosynthesis and Biodegradation of Wood Components (ed. T. Higuchi), Academic Press, New Delhi, p. 505.Google Scholar
  57. Dekker, R.F.H. and Wallis, A.F.A. (1983) Biotechnol. Bioeng., 25, 3027.CrossRefGoogle Scholar
  58. Demain, A.L. and Wu, J.H.D. (1989) In Bioproeess Engineering; The First Generation (ed. T.K. Ghose), Ellis Horwood, Chichester, p. 68.Google Scholar
  59. Deshpande, M.V. and Eriksson, K.E. (1984) Enzyme Microbiol. Technol., 6, 338.CrossRefGoogle Scholar
  60. Divne, C., Stahlberg, J., Reinikainen, T. et al. (1994) Science, 265, 524.CrossRefGoogle Scholar
  61. Doelle, H.W. and Doelle, M.B. (1989) Austral. J. Biotechnol., 3, 218.Google Scholar
  62. Doppelbauer, R., Esterbauer, H., Steiner, W., Lafferty, R.M. and Steinmuller, H. (1987) Appi. Microbiol. Biotechnol., 26, 485.Google Scholar
  63. Duff, S.J.B. and Murray, W.D. (1996) Biores. Technol., 55, 1.CrossRefGoogle Scholar
  64. Duff, S.J.B., Cooper, D.G. and Fuller, O.M. (1985) Appl. Environ. Microbiol., 49, 934.Google Scholar
  65. Duff, S.J.B., Cooper, D.G. and Fuller, O.M. (1987) Enzyme Microbiol. Technol., 9, 47.CrossRefGoogle Scholar
  66. Duff, S.J.B., Moritz, J.W. and Cosavant, T.E. (1995) Biotechnol. Bioeng., 45, 239.CrossRefGoogle Scholar
  67. Durand, H., Baron, M., Calmels, T. and Tiraby, G. (1988) In Proceedings of a FEMS Symposium on Biochemistry and Genetics of Cellulose Degradation (eds J.-P. Aubert, P. Beguin and J. Millet), Academic Press, London, p. 135.Google Scholar
  68. Enari, T.N. and Niku-Paavola, M.L. (1987) Crit. Rev. Biotechnol., 5, 67.CrossRefGoogle Scholar
  69. Eriksson, K.-E. (1981) In Trends in the Biology of Fermentations for Fuels and Chemicals (ed. A. Hollaender), Plenum Press, New York, p. 19.CrossRefGoogle Scholar
  70. Erikkson, K.-E. and Wood, T.M. (1985) In Biosynthesis and Biodegradation of Wood Components (ed. T. Higuchi), Academic Press, New York, p. 469.Google Scholar
  71. Eriksson, K.-E., Gruenewald, A. and Vallender, L. (1980) Biotechnol. Bioeng., 22, 363.CrossRefGoogle Scholar
  72. Esterbauer, H., Steiner, W., Labudova, I., Hermann, A. and Hayn, M. (1991) Biores. Technol., 36, 51.CrossRefGoogle Scholar
  73. Eveleigh, D.E. (1981) In Alcohol Fuels Process RIO Newsletter (Summer), Solar Energy Research Institute, Colorado, p. 50.Google Scholar
  74. Fadda, M.B., Dessi, M.R., Rinaldi, A. and Satta, G. (1989) Biotechnol. Bioeng., 33, 777.CrossRefGoogle Scholar
  75. Fan, L.T., Lee, Y.-H. and Beardmore, D.H. (1980) In Advances in Biochemical Engineering, Vol. 14 (ed. A. Fiechter), Springer-Verlag, Berlin, p. 101.CrossRefGoogle Scholar
  76. Fan, L.T., Lee, Y.-H. and Beardmore, D.H. (1981) In Proceedings of a Symposium Bioconversion and Biochemical Engineering, Vol. 1 (ed. T.K. Ghose), Indian Institute of Technology, New Delhi, p. 233.Google Scholar
  77. Feldman, S.D., Sahm, H. and Sprenger, G.A. (1992) Appl. Microbiol. Biotechnol., 38, 354.CrossRefGoogle Scholar
  78. Fengel, D. and Wegner, G. (1984) Wood: Chemistry, Ultrastructure and Reactions, Walter de Gruyter, New York.Google Scholar
  79. Foody, B.E. and Fondy, K.J. (1991) In Energy from Biomass and Wastes (ed. D.L. Klass), Institute of Gas Technology, Chicago, p. 1225.Google Scholar
  80. Gallo, B.J. (1982) Paper presented at National Meeting of American Institute of Chemical Engineers, Orlando, 28 February-3 March.Google Scholar
  81. Garg, S.K. and Jain, A. (1995) Biores. Technol., 51, 103.CrossRefGoogle Scholar
  82. Ghose, T.K. (1969) Biotechnol. Bioeng., 11, 239.CrossRefGoogle Scholar
  83. Ghose, T.K. (1987) Pure Appt. Chem., 59, 257.CrossRefGoogle Scholar
  84. Ghose, T.K. and Bisaria, V.S. (1979) Biotechnol. Bioeng., 21, 131.CrossRefGoogle Scholar
  85. Ghose, T.K. and Kostick, J.A. (1970) Biotechnol. Bioeng., 12, 921.CrossRefGoogle Scholar
  86. Ghose, T.K. and Pathak, A.N. (1973) Process Biochem., 8 (5), 20.Google Scholar
  87. Ghose, T.K. and Tyagi, R.D. (1979) Biotechnol. Bioeng., 21, 1387.CrossRefGoogle Scholar
  88. Ghose, T.K., Roychoudhury, P.K. and Ghosh, P. (1984) Biotechnol. Bioeng., 26, 377.CrossRefGoogle Scholar
  89. Ghosh, P. and Singh, A. (1993) Adv. Appl. Microbiol., 39, 295.CrossRefGoogle Scholar
  90. Ghosh, P., Pamment, N.B. and Martin, W.R.B. (1982a) Enzyme Microbiol. Technol., 4, 425.CrossRefGoogle Scholar
  91. Ghosh, V.K., Ghose, T.K. and Gopalkrishnan, K.S. (1982b) Biotechnol. Bioeng., 24, 241.CrossRefGoogle Scholar
  92. Gilbert, H.J. and Hazelwood, G.P. (1993) J. Gen. Microbiol., 139, 187.CrossRefGoogle Scholar
  93. Gilbert, L.G. and Tsao, G.T. (1983) In Annual Reports on Fermentation Processes, Vol. 6 (ed. G.T. Tsao), Academic Press, New York, p. 323.Google Scholar
  94. Gilkes, N.R., Henrissat, B., Kilburn, D.G., Miller, R.C. Jr and Warren, R.A.J. (1991) Microbiol. Rev., 55, 303.Google Scholar
  95. Giuliano, C. and Khan, A.W. (1984) Appt. Environ. Microbiol., 48, 446.Google Scholar
  96. Gomes, I., Gomes, J., Steiner, W. and Esterbauer, H. (1992) Appl. Microbiol. Biotechnol., 36, 701.CrossRefGoogle Scholar
  97. Gould, J.M. (1984) Biotechnol. Bioeng., 26, 46.CrossRefGoogle Scholar
  98. Goyal, A., Ghosh, B. and Eveleigh, D. (1991) Biores. Technol., 36, 37.CrossRefGoogle Scholar
  99. Grethlein, H.E. (1978) Biotechnol. Bioeng., 20, 503.CrossRefGoogle Scholar
  100. Gritzali, M. and Brown, R.D. (1979) In Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis, Advances in Chemistry Series 181 (eds R.D. Brown, Jr and L. Jurasek), American Chemical Society, Washington, DC, p. 237.CrossRefGoogle Scholar
  101. Grohmann, K. (1993) In Bioconversion of Forest and Agricultural Plant Residues (ed. J.N. Saddler), CAB International, Oxford, p. 183.Google Scholar
  102. Grohmann, K., Torget, R. and Himmell, M. (1986) In Eighth Symposium on Biotechnology for Fuels and Chemicals, Biotechnology Bioengineering Symposium No. 17 (ed. C.D. Scott), John Wiley, New York, p. 135.Google Scholar
  103. Grous, W.R., Converse, A.O. and Grethlein, H.E. (1986) Enzyme Microbiol. Technol., 8, 274.CrossRefGoogle Scholar
  104. Guidoboni, G.E. (1984) Enzyme Microbiol. Technol., 6, 194.CrossRefGoogle Scholar
  105. Gusakov, A.V., Sinitsyn, A.P. and Klyosov, A.A. (1987) Biotechnol. Bioeng., 29, 898.CrossRefGoogle Scholar
  106. Hahn-Haggerdal, B., Hallborn, J., Jeppsson, H. et al. (1993) In Bioconversion of Forest and Agricultural Plant Residues (ed. J.N. Saddler), CAB International, Oxford, p. 231.Google Scholar
  107. Hallborn, J., Walfridsson, J., Airaksinen, U. et al. (1991) Biotechnology, 9, 1090.CrossRefGoogle Scholar
  108. Haltrich, D., Preiss, M. and Steiner, W. (1993) Enzyme Microbiol. Technol., 15, 854.CrossRefGoogle Scholar
  109. Hamilton, T.J., Dale, B.E., Ladisch, M.R. and Tsao, G.T. (1984) Biotechnol. Bioeng., 26, 781.CrossRefGoogle Scholar
  110. Han, Y.W. and Ciegler, A. (1982) In Fourth Symposium on Biotechnology in Energy Production and Conservation, Biotechnology and Bioengineering Symposium No. 12 (ed. C.D. Scott), John Wiley, New York, p. 73.Google Scholar
  111. Hatakka, A.I. (1983) Eur. J. Appt. Microbiol. Biotechnol., 18, 350.CrossRefGoogle Scholar
  112. Hawley, M.C., Downey, K.W., Selke, S.M. and Lamport, D.T.A. (1986) In Cellulose: Structure, Modification and Hydrolysis (eds R.A. Young and R.M. Rowell), John Wiley, New York, p. 297.Google Scholar
  113. Hayn, M., Steiner, W., Klinger, R. et al. (1993) In Bioconversion of Forest and Agricultural Plant Residues (ed. J.N. Saddler), CAB International, Oxford, p. 33.Google Scholar
  114. Helle, S.S., Duff, S.J.B. and Cooper, D.G. (1993) Biotechnol. Bioeng., 42, 611.CrossRefGoogle Scholar
  115. Hendy, N., Wilke, C.R. and Blanch, H. (1984) Enzyme Microbiol. Technol., 6, 73.CrossRefGoogle Scholar
  116. Henrissat, B. (1991) Biochem. J., 280, 309.Google Scholar
  117. Henrissat, B. and Bairoch, A. (1993) Biochem. J., 293, 781.Google Scholar
  118. Hiltner, P. and Dehority, B.A. (1983) Appl. Environ. Microbiol., 46, 642.Google Scholar
  119. Hogsett, D.A., Ahn, H.-J., Bernardez, T.D., South, C.R. and Lynd, L.R. (1992) Appt. Biochem. Biotechnol., 34/35, 527.Google Scholar
  120. Holtzapple, M., Cognate, M., Shu, Y. and Hendrickson, C. (1990) Biotechnol. Bioeng., 36, 247.CrossRefGoogle Scholar
  121. Holtzapple, M.T. Lundeen, J.E., Sturgis, R., Lewis, J.E. and Dale, B.E. (1992) Appt. Biochem. Biotechnol., 34/35, 5.Google Scholar
  122. Hoq, M.M., Hampel, C. and Deckwer, W.-D. (1994) J. Biotechnol., 37, 49.CrossRefGoogle Scholar
  123. Hreggvidsson, G.O., Kaiste, E., Holst, O. et al. (1996) Appt. Environ. Microbiol., 62, 3047.Google Scholar
  124. Hsu, T.-A. (1996) In Handbook on Bioethanol: Production and Utilization (ed. C.E. Wyman), Taylor and Francis, Washington, DC, p. 179.Google Scholar
  125. Ingram, L.O., Conway, T., Clark, D.P., Sewell, G.W. and Preston, J.F. (1987) Appl. Environ. Microbiol., 53, 2420.Google Scholar
  126. Ishihara, M., Uemura, S., Hayashi, N. and Shimizu, K. (1991) Biotechnol. Bioeng., 37, 948.CrossRefGoogle Scholar
  127. Jurasek, L., Paice, M.G., Yaguchi, M. and O’Leary, S. (1987) In Biomass Conversion Technology: Principles and Practice (ed. M. Moo-Young), Pergamon Press, New York, p. 131.Google Scholar
  128. Kadam, K.L. (1996) In Handbook on Bioethanol: Production and Utilization (ed. C.E. Wyman), Taylor and Francis, Washington, DC, p. 213.Google Scholar
  129. Kaushik, V. and Bisaria, V.S. (1989) J. Sci. Ind. Res., 48, 276.Google Scholar
  130. Karr, W.E., Cool, L.G., Merriman, M.M. and Brink, D.I. (1991), J. Wood Chem. Technol., 11, 447.CrossRefGoogle Scholar
  131. Kirk, T.K. and Farrell, R.L. (1987) Ann. Rev. Microbiol., 41, 465.CrossRefGoogle Scholar
  132. Klapatch, T.R., Hogsett, D.A., Baskaran, S., Pal, S. and Lynd, L.R. (1994) Appt. Biochem. Biotechnol., 45/46, 209.Google Scholar
  133. Kluepfel, D., Vats-Mehta, S., Aumont, F., Shareck, F. and Morosoli, R. (1990) Biochem. J., 267, 45.Google Scholar
  134. Klyosov, A.A. (1986) Appl. Biochem. Biotechnol., 12, 249.CrossRefGoogle Scholar
  135. Klyosov, A.A. (1989) In Bioprocess Engineering: The First Generation (ed. T.K. Ghose), Ellis Horwood, Chichester, p. 59.Google Scholar
  136. Knowles, J., Lehtovarra, P. and Terri, T. (1987) Trends Biotechnol., 5, 255.CrossRefGoogle Scholar
  137. Kolot, F.B. (1984) Process Biochem., 19, 7.Google Scholar
  138. Kosaric, N., Wieczroek, A., Cosentino, G.P., Magee, R.J. and Prenosil, J.E. (1983) In Biotechnology, Vol. 3 (ed. H. Dellweg), Verlag-Chemie, Weinheim, p. 257.Google Scholar
  139. Kotter, P., Amore, R., Hollenberg, C.P. and Ciriacy, M. (1990) Curr. Genet., 18, 493.CrossRefGoogle Scholar
  140. Kubicek, C.P. (1992) Advances in Biochemical Engineering Biotechnology, Vol. 45 (ed. A. Fiechter), Springer Verlag, Berlin, p. 1.Google Scholar
  141. Kundu, S., Ghose, T.K. and Mukhopadhyay, S.N. (1983) Biotechnol. Bioeng., 25, 1109.CrossRefGoogle Scholar
  142. Kyriacou, A., Neufeld, R. and MacKenzie, C.R. (1989) Biotechnol. Bioeng., 33, 631.CrossRefGoogle Scholar
  143. Lachke, A. and Deshpande, M.V. (1988) FEMS Microbiol. Rev., 54, 177.CrossRefGoogle Scholar
  144. Ladisch, M.R. and Svarczkopf, J.A. (1991) Biores. Technol., 36, 83.CrossRefGoogle Scholar
  145. Ladisch, M.R.; Lin, K.W., Voloch, M. and Tsao, G.T. (1983) Enzyme Microbiol. Technol., 5, 82.CrossRefGoogle Scholar
  146. Lappalainen, A. (1986) Biotechnol. Appl. Biochem., 8, 437.Google Scholar
  147. Lastick, S.M., Mohagheghi, A., Tucker, M.P. and Grohmann, K. (1990) Appl. Biochem. Biotechnol., 25/25, 431.Google Scholar
  148. Lee, D.S. and Pack, M.V. (1987) Enzyme Microbiol. Technol., 9, 504.CrossRefGoogle Scholar
  149. Leisola, M.S.A. and Fiechter, A. (1985) Adv. Biotechnol. Processes, 5, 59.Google Scholar
  150. Leathers, T.-D. (1989) J. Ind. Microbiol., 4, 341.CrossRefGoogle Scholar
  151. Lindner, A. and Wegener, G. (1990) J. Wood Chem. Technol., 10, 331.CrossRefGoogle Scholar
  152. Lindley, N.D. and Durand, G. (1989) In Bioprocess Engineering: The First Generation (ed. T.K. Ghose), Ellis Horwood, Chichester, p. 324.Google Scholar
  153. L’Italien, Y., Thibault, J. and Le Duy, A. (1989) Biotechnol. Bioeng., 33, 471.CrossRefGoogle Scholar
  154. Ljungdahl, L.G. and Wiegel, J.K.W. (1981) Anaerobic thermophilic culture system, US Patent 4292406.Google Scholar
  155. Lynd, L.R. (1989) In Advances in Biochemical Engineering/Biotechnology, Vol. 38 (cd. A. Fiechter), Springer-Verlag, Berlin, p. 1.Google Scholar
  156. Lynd, L.R. and Grethlein, H.E. (1987) Biotechnol. Bioeng., 29, 92.CrossRefGoogle Scholar
  157. Lynd, L.R., Cushman, J.H., Nicols, R.J. and Wyman, C.E. (1991) Science, 251, 1318.CrossRefGoogle Scholar
  158. Macdonald, D.G. and Mathews, J.F. (1979) Biotechnol. Bioeng., 21, 1091CrossRefGoogle Scholar
  159. MacKenzie, C.R., Bilnus, D. and Johnson, K.G. (1984) Can. J. Microbiol., 30, 1171.CrossRefGoogle Scholar
  160. Mairoella, B.L., Blanch, H.W. and Wilke, C.R. (1984) Biotechnol. Bioeng., 26, 1003.CrossRefGoogle Scholar
  161. Mandels, M. (1975) In Cellulose as a Chemical and Energy Resource, Biotechnology Bioengineering Symposium No. 5 (cd. C.R. Wilke), John Wiley, New York, p. 81.Google Scholar
  162. Mandels, M. (1981) In Annual Reports in Fermentation Processes, Vol. 5, (ed. G.T. Tsao), Academic Press, New York, p. 35.Google Scholar
  163. Mandels, M. (1985) Biochem. Soc. Trans., 13, 414.Google Scholar
  164. Mandels, M., Hontz, L. and Nystrom, J. (1974) Biotechnol. Bioeng., 16, 1471.CrossRefGoogle Scholar
  165. Mandels, M., Medeiros, J.E., Andreotti, R.E. and Bissett, F.H. (1981) Biotechnol. Bioeng., 23, 2009.CrossRefGoogle Scholar
  166. Marchal, R., Ropars, M., Pourquie, J. and Vandescasteele, J.P. (1992) Biores. Technol., 42, 205.CrossRefGoogle Scholar
  167. Mas, C., Jansen, N.B. and Tsao, G.T. (1988) Biotechnol. Bioeng., 31, 366.CrossRefGoogle Scholar
  168. McCleary, B.V., Gibson, T.S., Allen, H. and Gams, T.C. (1986) Starke, 38, 433.CrossRefGoogle Scholar
  169. McLean, D. and Podruzny, M.F. (1985), Biotechnol. Lett., 7, 683.CrossRefGoogle Scholar
  170. McMillan, J.D. (1994) In Bioconversion for Fuels (eds M.E. Himmel, J.O., Baker and R.P. Overend), ACS Symposium Series, 566, American Chemical Society, Washington, DC, p. 411.Google Scholar
  171. McMillan, J.D. (1996) In Handbook on Bioethanol - Production and Utilization (ed. C.E. Wyman), Taylor and Francis, Washington, DC, p. 287.Google Scholar
  172. Messner, K. and Srebotnik, E. (1994) FEMS Microbiol. Rev., 1, 351.CrossRefGoogle Scholar
  173. Millet, M.A. Effland, M.J. and Caulfield, D.F. (1979) In Hydrolysis of Cellulose: Google Scholar
  174. Mechanisms of Enzymatic and Acid Catalysis, Advances in Chemistry Series No. 181 (eds R.D. Brown, Jr and L. Jurasek), American Chemical Society, Washington, DC, p. 71.Google Scholar
  175. Mohagheghi, A., Grohmann, K. and Wyman, C.E. (1990) Biotechnol. Bioeng., 35, 211.CrossRefGoogle Scholar
  176. Moloney, A.P., McCrae, S.I., Wood, T.M. and Coughlan, M.P. (1985) Biochem. J., 225, 365.Google Scholar
  177. Monot, F., Martin, J.R., Petitdemange, H. and Gay, R. (1982) Appt. Environ. Microbiol., 44, 1318.Google Scholar
  178. Montenecourt, B.S. (1983) Trends Biotechnol., 1, 156.CrossRefGoogle Scholar
  179. Montenecourt, B.S. and Eveleigh, D.E. (1979) In Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis, Advances in Chemistry Series No. 181 (eds R.D. Brown, Jr and L. Jurasek), American Chemical Society, Washington, DC, p. 289.CrossRefGoogle Scholar
  180. Morpath, F.F. and Jones, G.D. (1986) Biochem. J., 236, 221.Google Scholar
  181. Mukataki, S., Kobayashi, N., Sato, S. and Takahashi, J. (1988) Biotechnol. Bioeng., 32, 760.CrossRefGoogle Scholar
  182. Mulchandani, A. and Volesky, B. (1994) J. Biotechnol., 34, 51.CrossRefGoogle Scholar
  183. Nanda, M., Bisaria, V.S. and Ghose, T.K. (1986) J. Gen. Microbiol., 132, 2761.Google Scholar
  184. Neely, W.C. (1984) Biotechnol. Bioeng., 26, 59.CrossRefGoogle Scholar
  185. Neese, N. Wallick, J. and Harper, J.M. (1977) Biotechnol. Bioeng., 19, 323.CrossRefGoogle Scholar
  186. Nevalainen, K.M.H., Palva, E.T. and Bailey, M.J.B. (1980) Enzyme Microbiol. Technol., 3, 59.CrossRefGoogle Scholar
  187. Ng, T.K. and Zeikus, J.G. (1982) J. Bacteriol., 150, 1391.Google Scholar
  188. Ng, T.K., Weimer, P.J. and Zeikus, J.G. (1977) Arch. Microbiol., 114, 1.CrossRefGoogle Scholar
  189. Nigam, M. (1989) Studies on the kinetics of 2, 3-butanediol formation by Klebsiella oxytoca. Ph.D. thesis, Indian Institute of Technology, New Delhi.Google Scholar
  190. Nishikawa, N.K., Sutcliffe, R. and Saddler, J.N. (1988) Biotechnol. Bioeng., 31, 624.CrossRefGoogle Scholar
  191. Nummi, M., Niku-Paavola, M.-L., Lappalainen, A., Enari, T.-M. and Rounio, V. (1983) Biochem. J., 215, 677.Google Scholar
  192. Ohta, K., Alterthum, F. and Ingram, L.O. (1990) Appt. Environ. Microbiol., 56, 463.Google Scholar
  193. Panda, T., Bisaria, V.S. and Ghose, T.K. (1987) Biotechnol. Bioeng., 30, 868.CrossRefGoogle Scholar
  194. Parisi, F. (1989) In Advances in Biochemical Engineering/Biotechnology, Vol. 38, (ed. A.Google Scholar
  195. Fiechter, Springer-Verlag, Berlin, p. 53.Google Scholar
  196. Park, C.-H., Okos, M.R. and Wankat, P.C. (1989) Biotechnol. Bioeng., 34, 18.CrossRefGoogle Scholar
  197. Paszner, L. and Cho, H.J. (1988) Energy Exploit. Explor., 6, 39.Google Scholar
  198. Pearce, P.D. and Bauchop, T.D. (1985) Appl. Environ. Microbiol., 49, 1265.Google Scholar
  199. Philippidis, G.P. (1996) In Handbook on Bioethanol - Production and Utilization (ed. C.E. Wyman), Taylor and Francis, Washington, DC, p. 253.Google Scholar
  200. Philippidis, G.P., Smith, T.K. and Wyman, C.E. (1993) Biotechnol. Bioeng., 41, 846.CrossRefGoogle Scholar
  201. Picataggio, S.K. and Zhang, M. (1996) In Handbook on Bioethanol - Production and Utilization (ed. C.E. Wyman), Taylor and Francis, Washington, DC, p. 163.Google Scholar
  202. Pokorny, M., Zupancic, S., Steiner, T. and Kreiner, W. (1990) In Trichoderma reesei Cellulases: Biochemistry, Genetics, Physiology and Applications (eds C.P. Kubicek, D.E.Google Scholar
  203. Eveleigh, H. Esterbauer, W. Steiner and E.M. Kubicek-Pranz), The Royal Society of Chemistry, Cambridge, p. 168.Google Scholar
  204. Poole, D.M., Hazlewood, G.P., Huskisson, N.S., Virden, R. and Gilbert, H.J. (1993) FEMS Microbiol. Lett., 106, 77.CrossRefGoogle Scholar
  205. Pourquie, J. and Warzywoda, M. (1993) In Bioconversion of Forest and Agricultural Plant Residues (ed. J.N. Saddler), CAB International, Oxford, p. 107.Google Scholar
  206. Pourquie, J., Warzywoda, M., Chevron, F., Thery, M., Lonchamp, D. and Vandercasteelé, J.P. (1988). In Proceedings of the FEMS Symposium Biochemistry and Genetics of Cellulose Degradation (eds J.-P. Aubert, P. Beguin and J. Millet), Academic Press, New York, USA, p. 71.Google Scholar
  207. Poutanen, K. and Puls, J. (1988) Appt. Microbiol. Biotechnol., 28, 425.CrossRefGoogle Scholar
  208. Puls, J. (1993) In Bioconversion of Forest and Agricultural Plant Residues (ed. J.N. Saddler), CAB International, Oxford, p. 13.Google Scholar
  209. Puls, J., Poutanen, K., Kroner, H.U. and Viikari, L. (1985) Appl. Microbiol. Biotechnol., 22, 416.CrossRefGoogle Scholar
  210. Ratto, M., Poutanen, K. and Viikar~, L. (1992) Appt. Microbiol. Biotechnol., 37, 470.Google Scholar
  211. Reese, E.T. and Ryu, D.Y. (1980) Enzyme Microbiol. Technol., 2, 239.CrossRefGoogle Scholar
  212. Reinikainen, T., Ruohonen, L., Nevanen, T. et al. (1992) Proteins, 14, 475.CrossRefGoogle Scholar
  213. Reynen, M., Reipen, I., Sahm, H. and Sprenger, G.A. (1990) Molec. Gen. Genet., 223, 335.Google Scholar
  214. Robson, L.M. and Chambliss, G.H. (1989) Enzyme Microbiol. Technol., 11, 626.CrossRefGoogle Scholar
  215. Rogers, P.L., Lee, K.J. and Tribe, D.E. (1980) Process Biochem., 15, 7.Google Scholar
  216. Ropars, M., Marchai, R., Pourquie, J. and Vendecasteele, J.P. (1992) Biores. Technol., 42, 197.CrossRefGoogle Scholar
  217. Roukas, T. (1994) Biotechnol. Bioeng., 43, 189.CrossRefGoogle Scholar
  218. Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J.K.C. and Jones, T.A. (1990) Science, 249, 380.CrossRefGoogle Scholar
  219. Rowland, S.P. and Roberts, E.J. (1972) J. Polym. Sci. PartA-1, no. 10, 2447.CrossRefGoogle Scholar
  220. Ryu, D.D.Y. and Mandels, M. (1980) Enzyme Microbiol. Technol., 2, 91.CrossRefGoogle Scholar
  221. Ryu, D.D.Y., Andreotti, R., Mandels, M., Gallo, B. and Reese, E.T. (1979) Biotechnol. Bioeng., 21, 1887.CrossRefGoogle Scholar
  222. Sablayrolles, J.M. and Goma, G. (1984) Biotechnol. Bioeng., 26, 148.CrossRefGoogle Scholar
  223. Saddler, J.N. and Chan, M.K.-H. (1982) Eur. J. Appi. Microbiol. Biotechnol., 16, 99.CrossRefGoogle Scholar
  224. Saddler, J.N. and Makie, K. (1990) Biomass, 22, 293.CrossRefGoogle Scholar
  225. Saddler, J.N., Brownell, H.H., Clermont, L.P. and Levitin, N. (1982) Biotechnol. Bioeng., 24, 1389.CrossRefGoogle Scholar
  226. Saddler, J.N., Mes-Hartee, M., Yu, E.K.C. and Brownell, H.H. (1983) In Fifth Symposium on Biotechnology for Fuels and Chemicals, Biotechnology Bioengineering Symposium No. 13 (ed. C.D. Scott), John Wiley, New York, p. 225.Google Scholar
  227. Saddler, J.N., Ramos, L.P. and Brenil, C. (1993) In Bioconversion of Forest and Agricultural Plant Residues (ed. J.N. Saddler), CAB International, Oxford, p. 73.Google Scholar
  228. Sahm, H. (1989) In Bioprocess Engineering: The First Generation (ed. T.K. Ghose), Ellis Horwood, Chichester, p. 303.Google Scholar
  229. Saraswat, V. and Bisaria, V.S. (1997) J. Ferment. Bioeng., 83, 316.CrossRefGoogle Scholar
  230. Sarkarsen, K.V. (1980) In Progress in Biomass Conversion, Vol. 2 (eds K.V. Sarkarsen and D.A. Tillman), Academic Press, New York, p. 127.Google Scholar
  231. Sattler, W., Esterbauer, H., Glatter, O. and Steiner, W. (1989) Biotechnol. Bioeng., 33, 1221.CrossRefGoogle Scholar
  232. Schaffner., D.W. and Toledo, R.T. (1991) Biotechnol. Bioeng., 37, 12.Google Scholar
  233. Schell, D.J. and Duff, B. (1996) In Handbook on Bioethanol - Production and Utilization (ed. C.E. Wyman), Taylor and Francis, Washington, DC, p. 381.Google Scholar
  234. Schneider, H. (1989) Crit. Rev. Biotechnol., 9, 1.CrossRefGoogle Scholar
  235. Schultz, T.P., Rughani, J. and McGinnis, J.D. (1989) Appl. Biochem. Biotechnol., 20/21, 9.Google Scholar
  236. Schell, D.J., Hinman, N.D., Wyman, E.C. and Werdene, P.J. (1990) Appt. Biochem. Biotechnol., 24/25, 287.Google Scholar
  237. Schell, D., Torget, R., Power, A. et al., (1991) Appt. Biochem. Biotechnol., 28/29, 87.Google Scholar
  238. Senior, D.J., Mayers, P.R. and Saddler, J.N. (1989) ACS Symposium Series, Vol. 399, 641.CrossRefGoogle Scholar
  239. Sheir-Neiss, G. and Montenecourt, B.S. (1984) Appt. Microbiol. Biotechnol., 20, 46.Google Scholar
  240. Shoemaker, S.P., Raymond, J.C. and Burner, R. (1981) In Trends in the Biology of Fermentations for Fuels and Chemicals (ed. A. Hollaender), Plenum Press, New York, p. 89.CrossRefGoogle Scholar
  241. Shukla, R., Kang, W. and Sirkar, K.K. (1989) Biotechnol. Bioeng., 34, 1158.CrossRefGoogle Scholar
  242. Singh, A., Kumar, P.K.R. and Schugerl, K. (1991) J. Biotechnol., 18, 205.CrossRefGoogle Scholar
  243. Skoog, K. and Hahn-Haggerdal, B. (1990) Appt. Environ. Microbiol., 56, 3389.Google Scholar
  244. Skotnicki, M.L., Tribe, D.E. and Rogers, P.L. (1980) Appl. Environ. Microbiol., 40, 7.Google Scholar
  245. Slapack, G.E., Russell, I. and Stewart, G.G. (1987) Thermophilic Microbes in Ethanol Production, CRC Press, Boca Raton, FL.Google Scholar
  246. Smith, D.C. and Wood, T.M. (1991) Biotechnol. Bioeng., 38, 883.CrossRefGoogle Scholar
  247. Soni, B.K., Das, K., Soucaille, P. and Goma, G. (1986) In Eighth Symposium Biotechnology for Fuels and Chemicals, Biotechnology Bioengineering Symposium No. 17 (ed. C.D.Scott), John Wiley, New York, p. 591.Google Scholar
  248. Spangler, D.J. and Emert, (1986) Biotechnol. Bioeng., 28, 115.CrossRefGoogle Scholar
  249. Spindler, D.D., Wyman, C.E., Mohagheghi, A. and Grohmann, K. (1988) Appl. Biochem. Biotechnol., 17, 279.CrossRefGoogle Scholar
  250. Spindler, D.D., Wyman, C.E. and Grohmann, K. (1989) Biotechnol. Bioeng., 34, 189.CrossRefGoogle Scholar
  251. Sprey, B. and Bochem, H.P. (1991) FEMS Microbiol. Lett., 78 (2–3), 183.Google Scholar
  252. Srivastava, S.K. (1985) Kinetics of ß-glucosidase production and its role in the enzymatic hydrolysis of cellulose. Ph.D. thesis, Indian Institute of Technology, New Delhi.Google Scholar
  253. Srivastava, A.K. (1989) Bioconversion of cellulosic residues into microbiol biomass protein by lignocellulolytic fungus Coriolus hirsutus. Ph.D. thesis, Indian Institute of Technology, New Delhi.Google Scholar
  254. Stark, J.R. and Yin, X.S. (1987) Enzyme Microbiol. Technol., 9, 156.CrossRefGoogle Scholar
  255. Sternberg, D. and Dorval, S. (1979) Biotechnol. Bioeng., 21, 181.CrossRefGoogle Scholar
  256. Sternberg, D. and Mandels, G.R. (1979) J. Bacteriol., 139, 761.Google Scholar
  257. Sternberg, D., Vijay Kumar, P. and Reese, E.T. (1977) Can. J. Microbiol., 23, 139.CrossRefGoogle Scholar
  258. Stockberger, P. (1993) Tappi J., 76, 71.Google Scholar
  259. Sundstrom, D.W., Klei, H.E., Coughlin, R.W., Biederman, G.J. and Brouwer, C.A. (1981) Biotechnol. Bioeng., 23, 473.CrossRefGoogle Scholar
  260. Szabo, I.J., Johansson, G. and Pettersson, G. (1996) J. Biotechnol., 48, 221.CrossRefGoogle Scholar
  261. Szczodrak, J. (1988) Biotechnol. Bien g., 32, 771.CrossRefGoogle Scholar
  262. Szczodrak, J. (1989) Biotechnol. Bioeng., 33, 1112.CrossRefGoogle Scholar
  263. Szczodrak, J. and Targonski, Z. (1988) Biotechnol. Bioeng., 31, 300.CrossRefGoogle Scholar
  264. Tailliez, P., Girard, H., Millet, J. and Beguin, P. (1989) Appt. Environ. Microbiol., 55, 207.Google Scholar
  265. Takagi, M., Abe, S., Suzuki, S., Emert, G.H. and Yata, N. (1978) In Proceedings of the Symposium on Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Protein (ed. T.K. Ghose), Indian Institute of Technology, New Delhi, p. 551.Google Scholar
  266. Takuma, S., Nakashima, N., Tantirungkij, S. et al. (1991) Appl. Biochem. Biotechnol., 28/29, 327.Google Scholar
  267. Tan, L.U.L., Yu, E.K.C., Mayers, P. and Saddler, J.N. (1987) Appi. Microbiol. Biotechnol., 26, 21.CrossRefGoogle Scholar
  268. Tanaka, M., Ikesaka, M., Matsuno, R. and Converse, A.O. (1988a) Biotechnol. Bioeng., 32, 698.CrossRefGoogle Scholar
  269. Tanaka, M., Fukuii, M. and Matsuno, R. (1988b) Biotechnol. Bioeng., 32, 897.CrossRefGoogle Scholar
  270. Taniguchi, M., Kobayashi, M. and Fujii, M. (1989) Biotechnol. Bioeng., 34, 1092.CrossRefGoogle Scholar
  271. Tassinari, T. and Macy, C. (1977) Biotechnol. Bioeng., 19, 1321.CrossRefGoogle Scholar
  272. Tenkanen, M., Puls, J. and Poutanen, K. (1992) Enzyme Microbiol. Technol., 14, 566.CrossRefGoogle Scholar
  273. Tjerneld, F., Persson, I., Albertsson, P.-A. and Hahn-Haegerdal, B. (1986) In Seventh Symposium on Biotechnology for Fuels and Chemicals, Biotechnology Bioengineering Symposium No. 15 (C.D. Scott), John Wiley, New York, p. 419.Google Scholar
  274. Tofan, J.S. (1996) In Industrial Enzymology, 2nd edn (ed. T. Godfrey and S. West), Macmillan Press, London, p. 327.Google Scholar
  275. Tomme, P., Warren, R.A.J. and Gilkes, N.R. (1995) Adv. Microbiol. Physiol., 37, 1.CrossRefGoogle Scholar
  276. Toyama, N. (1969) In Cellulases and their Applications, Advances in Chemistry Series, Vol. 95 (ed. R.F. Gould), American Chemical Society, Washington, DC, p. 359.Google Scholar
  277. Torrie, J. (1991) Extracellular ß-D-mannanase activity from Trichoderma harzianum E 58, Ph.D. thesis, University of Ottawa, Canada.Google Scholar
  278. Turker, M. and Mavituna, F. (1987) Enzyme Microbiol. Technol., 9, 739.CrossRefGoogle Scholar
  279. Vallender, L. and Eriksson, K.E. (1990) Advances in Biochemical Engineering Biotechnology, Vol. 42 (ed. A. Fiechter), Springer Verlag, Berlin, p. 63.Google Scholar
  280. Viikari, L., Nybergh, P. and Linko, M. (1981) In Advances in Biotechnology, Vol. 2 (eds. M. Moo-Young and C.W. Robinson), Pergamon Press, New York, p. 137.Google Scholar
  281. Viikari, L., Sundquist, J. and Kettunen, J. (1991) Paper Timber, 73, 384.Google Scholar
  282. Visser, J., Beldman, G., Kusters-van Someren, M.A. and Voragen, A.G.J. (1992) In Xylans and Xylanases, Elsevier, New York.Google Scholar
  283. von Sivers, M. and Zacchi, G. (1995) Biores. Technol., 51, 43.CrossRefGoogle Scholar
  284. Votruba, J., Volseky, B. and Yerushalmi, L. (1986) Biotechnol. Bioeng., 28, 247.CrossRefGoogle Scholar
  285. Wang, D.i.C., Avgerinos, G.C., Biocic, I., Wang, S.-D and Fang, H.-Y (1983) Phil. Trans. Roy. Soc. Lond. Ser. B., 300, 323.CrossRefGoogle Scholar
  286. Warren, R.A.J. (1993) Curr. Opin. Biotechnol., 4, 469.CrossRefGoogle Scholar
  287. Watson, T.G., Nelligan, I. and Lessing, L. (1984) Biotechnol. Leu., 6, 667.CrossRefGoogle Scholar
  288. Wilke, C.R., Yang, R.D. and Von Stockar, U. (1976) In Enzymatic Conversion of Cellulosic Materials: Technology and Applications, Biotechnology Bioengineering Symposium No.6 (eds E.L. Gaden, Jr, M.H. Mandels, E.T. Reese and L.A. Spann), John Wiley, New York, p. 155.Google Scholar
  289. Wong, D.W.S. (1995) Food Enzymes: Structure and Mechanism, Chapman & Hall, New York.Google Scholar
  290. Wong, K.K.Y., Tan, L.U.L. and Saddler, J.N. (1986), Enzyme Microbiol. Technol., 8, 617.CrossRefGoogle Scholar
  291. Wood, T.M. (1985) Biochem. Soc. Trans., 13, 407.Google Scholar
  292. Wood, T.M. (1988) In Biodeterioration 7 (eds D.R. Houghton, R.-N. Smith and H.O.W. Eggins), Elsevier Applied Science, London, p. 333.Google Scholar
  293. Wood, T.M. and McCrae, S.I. (1977) Carbohydr. Res., 57, 117.CrossRefGoogle Scholar
  294. Wood, T.M. and McCrae, S.I. (1979) In Hydrolysis of Cellulose: Mechanism of Enzymatic and Acid Catalysis, Advances in Chemistry Series no. 181 (eds R.D. Brown, Jr and L. Jurasek), American Chemical Society, Washington, DC, p. 181.Google Scholar
  295. Wood, T.M. and Saddler, J.N. (1988) Meth. Enzymol., 160 (Part A), 3.CrossRefGoogle Scholar
  296. Wood, T.M., McCrae, S.I., Wilson, C.A., Bhat, K.M. and Gow, L.A. (1988) In Proceedings of the Symposium on Biochemistry and Genetics of Cellulose Degradation (ed. J.-P. Aubert, P. Beguin and J. Millet), Academic Press, London, p. 31.Google Scholar
  297. Woodward, J., Whaley, K.S., Zachry, G.S. and Wohlpart, D.L. (1981) In Third Symposium on Biotechnology in Energy Production and Conservation, Biotechnology Bioengineering Symposium No. 11 (ed. C.D. Scott), John Wiley, New York, p. 619.Google Scholar
  298. Wright, J.D. (1988) Chem. Eng. Prog., 8, 62.Google Scholar
  299. Wright, J.D., Power, A.J. and Douglas, L.J. (1986) In Eighth Symposium on Biotechnology for Fuels and Chemicals, Biotechnology Bioengineering Symposium No. 17 (ed. C.D. Scott), John Wiley, New York, p. 285.Google Scholar
  300. Wyman, C.D. (1994) Biores, Technol., 50, 3.CrossRefGoogle Scholar
  301. Wyman, C.E. and Goodman, B.J. (1993) Appt. Biochem. Biotechnol., 39/40, 41.Google Scholar
  302. Yablonsky, M.D., Bartley, T., Elliston, K.O. et al. (1988) In Proceedings of the Symposium Biochemistry and Genetics of Cellulose Degradation (eds J.-P. Aubert, P. Beguin and J. Millet), Academic Press, New York, p. 249.Google Scholar
  303. Yu, E.K.C. and Saddler, J.N. (1987) In Biomass Conversion Technology Principles and Practices (ed. M. Moo-Young), Pergamon Press, New York, p. 103.Google Scholar
  304. Zadril, F. and Grabbe, K. (1983) In Biotechnology, Vol. 3 (ed. H. Dellweg), Verlag Chemie, Weinheim, p. 145.Google Scholar
  305. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M. and Picataggio, S. (1995) Science, 267, 240.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • V. S. Bisaria

There are no affiliations available

Personalised recommendations