Thermoreversible gelation of rigid rod-like and semirigid polymers

  • Andreas Greiner
  • Willie E. Rochefort
Part of the Polymer Liquid Crystals Series book series (PLCS, volume 3)


Nestled in the region between the physical states defined as fluid and solid, is that ubiquitous substance called a ‘gel’. It is fairly widely accepted that a gel can be defined topologically as three-dimensional network of connected strands swollen by a solvent. A satisfactory ‘working’ definition of the physical gel state was given many years ago by Ferry [1] in which he stated that ‘A gel is a substantially diluted system which exhibits no steady state flow’. A further complication of the gel state is that this three-dimensional network can be formed by a number of systems (small molecules, aggregates, biopolymers or synthetic polymers) and in several different ways. Most polymeric gels are broken down into two categories based on how their network strands are connected: chemical or physical gels.


Persistence Length Dichloroacetic Acid Hydrogen Bonding Potential Thermoreversible Gelation Gelation Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferry, J.D. (1961) Viscoelastic Properties of Polymers, Wiley, New York, p. 391.Google Scholar
  2. 2.
    . Russo, P.S. (1987) in Reversible Polymeric Gels and Related Systems (ed. P.S. Russo) ACS Symp. Ser.,350, American Chemical Society, Washington, p. 1. Google Scholar
  3. 3.
    Guenet, J.-M. (1992) Thermoreversible Gelation of Polymers and Biopolymers, Academic Press, New York.Google Scholar
  4. 4.
    Rehage, G. (1975) Prog. Colloid. & Polymer Sci., 57, 7.CrossRefGoogle Scholar
  5. 5.
    Miller, W.G., Chakrabarti, S. and Seibel, K.M. (1985) in Microdomains in Polymer Solutions, (ed. P.L. Dubin), Plenum, New York.Google Scholar
  6. 6.
    Robinson, C. (1956) Trans. Faraday Soc.,52, 571.CrossRefGoogle Scholar
  7. 7.
    Robinson, C., Ward, J.C. and Beevers, R.B. (1958) Discuss. Faraday Soc.,25, 29.CrossRefGoogle Scholar
  8. 8.
    Rai, J.H. and Miller, W.G. (1972) Macromolecules,6, 257.CrossRefGoogle Scholar
  9. 9.
    . Flory, P.J. (1956) Proc. Royal Soc. London, A234, 73. CrossRefGoogle Scholar
  10. 10.
    Doty, P., Bradbury, J.H. and Holtzler, A.M. (1956) J. Am. Chem. Soc., 78, 947.CrossRefGoogle Scholar
  11. 11.
    . Katchalski, E. (1951) Adv. Prot. Chem.,VI, 123. CrossRefGoogle Scholar
  12. 12.
    Gerber, J. and Elias, H.-G. (1968) Makromol. Chem., 112, 142.CrossRefGoogle Scholar
  13. 13.
    Duke, R.W., DuPré, D.B. (1974) Macromolecules, 7, 374.CrossRefGoogle Scholar
  14. 14.
    DuPré, D.B. and Duke, R.W. (1975) J. Chem. Phys., 63, 143.CrossRefGoogle Scholar
  15. 15.
    Murthy, N.S., Knox, J.R. and Samulski, E.T. (1976) J. Chem. Phys., 65, 4835.CrossRefGoogle Scholar
  16. 16.
    Duke, R.W., DuPré, D.B. and Samulski, E.T. (1977) J. Chem. Phys., 66, 2748.CrossRefGoogle Scholar
  17. 17.
    Watanabe, J., Imai, K. and Uematsu, I. (1978) Polymer Bull.,1, 67.Google Scholar
  18. 18.
    Patel, D. and DuPré, D.B. (1979) Mol. Cryst. Liq. Cryst., 53, 323.CrossRefGoogle Scholar
  19. 19.
    Toriumi, H., Minakuchi, S., Uematsu, I. (1980) Polymer J., 12, 431.CrossRefGoogle Scholar
  20. 20.
    Geobel, K.D. and Miller, W.G. (1970) Macromolecules, 3, 64.CrossRefGoogle Scholar
  21. 21.
    Wee, E.L. and Miller, W.G. (1971) J. Phys. Chem., 75, 1446.CrossRefGoogle Scholar
  22. 22.
    Miller, W.G., Wu, C.C., Wee, E.L. et al. (1974) Pure Appl. Chem., 38, 37.CrossRefGoogle Scholar
  23. 23.
    Miller, W.G., Rai, J.H. and Wee, E.L. (1974) Liquid Crystals and Ordered Fluids, Vol. 2 (eds J.F. Johnson and R.S. Porter), Plenum, New York, p. 243.CrossRefGoogle Scholar
  24. 24.
    Miller, W.G., Kou, L., Tohyama, K. and Voltaggio, V. (1978) J. Polymer Sci. Symp., 65, 91.CrossRefGoogle Scholar
  25. 25.
    Tohyama, K. and Miller, W.G. (1981) Nature, 289, 813.CrossRefGoogle Scholar
  26. 26.
    Russo, P.S. and Miller, W.G. (1983) Macromolecules, 16, 1690.CrossRefGoogle Scholar
  27. 27.
    Russo, P.S., Magestro, P. and Miller, W.G. (1987) in Reversible Polymeric Gels and Related Systems (ed. P.S. Russo), ACS Symp. Ser., 350, American Chemical Society, Washington, p. 152.Google Scholar
  28. 28.
    Russo, P.S., Chowdhury, A.H. and Mustafa, M. (1989) in Mater. Res. Soc. Symp., 134, (eds W.W. Adams, R.K. Eby and D.R. Maclemore), p. 207.Google Scholar
  29. 29.
    Chowdhury, A.H. and Russo, P.S. (1990) J. Chem. Phys., 92, 5744.CrossRefGoogle Scholar
  30. 30.
    Hill, A. and Donald, A.M. (1988) Polymer,29, 1426.CrossRefGoogle Scholar
  31. 31.
    Horton, J.C., Donald, A.M. and Hill, A. (1990) Nature, 346, 44.CrossRefGoogle Scholar
  32. 32.
    Horton, J.C. and Donald, A.M. (1993) Polymer,32, 2418.CrossRefGoogle Scholar
  33. 33.
    Prystupa, D.A. and Donald, A.M. (1993) Macromolecules,26, 1947.CrossRefGoogle Scholar
  34. 34.
    Luzatti, M.C., Spack, G. et al. (1962) J. Mol. Biol., 3, 566.CrossRefGoogle Scholar
  35. 35.
    Parry, D.A.D. and Elliot, A. (1967) J. Mol. Biol., 25, 1.CrossRefGoogle Scholar
  36. 36.
    . Sasaki, S., Hikata, M., Shiraki, C. and Uematsu, I. (1982) Polymer J., 14, 205. CrossRefGoogle Scholar
  37. 37.
    Russo, P.S. and Miller, W.G. (1984) Macromolecules, 17, 1324.CrossRefGoogle Scholar
  38. 38.
    Sasaki, S., Tokuma, K. and Uematsu, I. (1983) Polymer Bull.,10, 539.CrossRefGoogle Scholar
  39. 39.
    Ginzburg, B., Siromyatnikova, T. and Frenkel, S. (1985) Polymer Bull.,13, 139.Google Scholar
  40. 40.
    Cohen, Y. (1996) J. Polymer Sci.,34,.57.CrossRefGoogle Scholar
  41. 41.
    Lim, K.C. and Heeger, A.J. (1985) J. Chem. Phys., 82, 522.CrossRefGoogle Scholar
  42. 42.
    Sinclair, M., Lim, K.C. and Heeger, A.J. (1983) Phys. Rev. Lett., 51, 1768.CrossRefGoogle Scholar
  43. 43.
    Casalnuovo, S.A. and Heeger, A.J. (1984) Phys. Rev. Lett., 53, 2254.CrossRefGoogle Scholar
  44. 44.
    Cheng, S.Z.D., Lee, S.K., Barley, J.S. et al. (1991) Macromolecules, 24, 1883.CrossRefGoogle Scholar
  45. 45.
    Lee, S.K., Cheng, S.Z.D., Wu, Z. et al. (1993) Polymer Int., 30, 115.CrossRefGoogle Scholar
  46. 46.
    Kyu, T., Yang, J.-C., Cheng, S.Z.D. et al. (1994) Macromolecules, 27, 1861.CrossRefGoogle Scholar
  47. 47.
    Russo, P.S., Siripanyo, S., Saunders, M.J. and Karasz, F.E. (1986) Macromolecules,19, 2856.CrossRefGoogle Scholar
  48. 48.
    Greiner, A., Rochefort, W.E., Greiner, K. et al. (1992) Makromol. Chem., Rapid Commun., 13, 25.CrossRefGoogle Scholar
  49. 49.
    Schmitt, R., Bolle, B., Greiner, A. and Heitz, W. (1992) Makromol. Chem. Symp., 61, 297.CrossRefGoogle Scholar
  50. 50.
    Schmidt, H.W. and Guo, D. (1988) Makromol. Chem., 189, 2029.CrossRefGoogle Scholar
  51. 51.
    Yamakawa, H. and Fujii, M. (1974) Macromolecules, 7, 128.CrossRefGoogle Scholar
  52. 52.
    Greiner, A., Rochefort, W.E., Greiner, K. et al. (1991) in Integration of Fundamental Polymer Science and Technology, Vol. 5, (eds P. Lemstra and L.A. Kleintjens), Elsevier Applied Science, London-New York, p. 258.CrossRefGoogle Scholar
  53. 53.
    Motamedi, F., Jonas, U., Greiner, A. and Schmidt, H.-W. (1993) Liq. Cryst., 14, 959.CrossRefGoogle Scholar
  54. 54.
    Bolle, B. (1991) Diploma thesis, Marburg, Germany.Google Scholar
  55. 55.
    van Krevelen, D.W. (1990) Properties of Polymers, 3rd edn, Elsevier Sci. Publ. Amsterdam -Oxord -New York.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Andreas Greiner
  • Willie E. Rochefort

There are no affiliations available

Personalised recommendations