Advertisement

An Introduction to Variable Neighborhood Search

  • Pierre Hansen
  • Nenad Mladenović
Chapter

Abstract

In this paper we examine a relatively unexplored approach to the design of heuristics, the guided change of neighborhood in the search process. Using systematically this idea and very little more, i.e., only a local search routine, leads to a new metaheuristic, which is widely applicable. We call this approach Variable Neighborhood Search (VNS).

Keywords

Local Search Tabu Search Travel Salesman Problem Travel Salesman Problem Variable Neighborhood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K.H. Al-Sultan. A Tabu Search Approach to the Clustering Problem. Pattern Recog. 28, 1443–1451 (1995).CrossRefGoogle Scholar
  2. [2]
    M.R. Anderberg. Cluster Analysis for Application. Academic Press, New-York (1973).Google Scholar
  3. [3]
    K. Appel and W. Haken. Every Planar Map is Four Colorable. Part I. Discharging. Illinois J. Math. 21, 429–490 (1977).Google Scholar
  4. [4]
    K. Appel and W. Haken. Every Planar Map is Four Colorable. Part II. Reducibility. Illinois J. Math. 21, 491–567 (1977).Google Scholar
  5. [5]
    K. Appel and W. Haken. Every Planar Map is Four Colorable. A.M.S. Contemp. Math. 98, 1–741 (1989).CrossRefGoogle Scholar
  6. [6]
    G.P. Babu and M.N. Murty. A Near-Optimal Initial Seed Value Selection in k-Means Algorithm Using Genetic Algorithm. Pattern Recog. Lett. 14, 763–769 (1993).CrossRefGoogle Scholar
  7. [7]
    J.E. Beasley. A Note on Solving Large p-Median Problems. European J. Oper. Res. 21, 270–273 (1985).CrossRefGoogle Scholar
  8. [8]
    J.L. Bentley. Fast Algorithms for Geometric Traveling Salesman Problem. ORSA J. Comput. 4, 387–411 (1992).CrossRefGoogle Scholar
  9. [9]
    K.D. Boese, A.B. Kahng and S. Muddu. A New Adaptive Multi-Start Technique for Combinatorial Global Optimizations. Oper. Res. Lett. 16, 101–113 (1994).CrossRefGoogle Scholar
  10. [10]
    R.C. Brigham and R.D. Dutton. Ingrid: A Software Tool for Extremal Graph Research Theory. Congressus Numerantium 39, 337–352 (1983).Google Scholar
  11. [11]
    R.C. Brigham, R.D. Dutton and F. Gomez. Ingrid: A Graph Invariant Manipulator. J. Symbolic Comput. 7, 163–177 (1989).CrossRefGoogle Scholar
  12. [12]
    J. Brimberg and N. Mladenović. A Variable Neighborhood Algorithm for Solving the Continuous Location-Allocation Problem. Stud. in Locat. Analysis 10, 1–12 (1996).Google Scholar
  13. [13]
    J. Brimberg, P. Hansen, N. Mladenović and É. Taillard. Improvements and Comparison of Heuristics for Solving the Multisource Weber Problem. Les Cahiers du GERAD G-97-37, Montréal, Canada (1997).Google Scholar
  14. [14]
    G. Caporossi and P. Hansen. Variable Neighborhood Search for Extremal Graphs. Les Cahiers du GERAD G-97-41, Montréal, Canada (1997) (to appear in Discrete Mathematics).Google Scholar
  15. [15]
    D. Cvetković and I. Pevac. Man-machine theorem proving in graph theory. Artificial Intelligence 35, 1–23 (1988).CrossRefGoogle Scholar
  16. [16]
    D. Cvetkovic and S. Simić. Graph Theoretical Results Obtained by the Support of the Expert System GRAPH. Bulletin de l’Académie Serbe des Sciences et des Arts T CVII, 14–41 (1994).Google Scholar
  17. [17]
    D. Cvetković, April 1997. Email communication.Google Scholar
  18. [18]
    S. Cook. The Complexity of Theorem-Proving Procedures. in Proc. of the 3rd annual ACM Symp. on Theory of Computing, 151–158 (1971).Google Scholar
  19. [19]
    L. Cooper. Location — Allocation Problems. Oper. Res. 11, 331–343 (1963).CrossRefGoogle Scholar
  20. [20]
    O. du Merle, D. Villeneuve, J. Desrosiers and P. Hansen. Stabilisation dans le Cadre de la Génération de Colonnes. Les Cahiers du GERAD G-97-08, Montréal, Canada (1997).Google Scholar
  21. [21]
    O. du Merle, P. Hansen, B. Jaumard and N. Mladenović. An Interior Point Algorithm for Minimum Sum-of-Squares Clustering. Les Cahiers du GERAD G-97-53, Montréal, Canada (1997).Google Scholar
  22. [22]
    D. Erlenkotter. A Dual-Based Procedure for Uncapacitated Facility Location. Oper. Res. 26, 992–1009 (1978).CrossRefGoogle Scholar
  23. [23]
    S. Fajtlowicz. On Conjectures of Graffiti. Discr. Math. 72, 113–118 (1987).CrossRefGoogle Scholar
  24. [24]
    S. Fajtlowicz. On Conjectures of Graffiti — II. Congressus Numerantium 60, 187–197 (1987).Google Scholar
  25. [25]
    S. Fajtlowicz. On Conjectures of Graffiti — III. Congressus Numerantium 66, 23–32 (1988).Google Scholar
  26. [26]
    S. Fajtlowicz. On Conjectures of Graffiti — IV. Congressus Numerantium 70, 231–240 (1990).Google Scholar
  27. [27]
    S. Fajtlowicz. On Conjectures of Graffiti — V. 7th Intern. Quadrennial Conference on Graph Theory 1, 367–376 (1995).Google Scholar
  28. [28]
    T. Feo and M. Resende. Greedy Randomized Adaptive Search. J. Global Optim. 6, 109–133 (1995).CrossRefGoogle Scholar
  29. [29]
    M. Gendreau, A. Hertz and G. Laporte. New Insertion and Postoptimization Procedures for the Traveling Salesman Problem. Oper. Res. 40, 1086–1094 (1992).CrossRefGoogle Scholar
  30. [30]
    M. Gendreau, A. Hertz and G. Laporte, The Traveling Salesman Problem with Back-Hauls, Computers Oper. Res. 23, 501–508 (1996).CrossRefGoogle Scholar
  31. [31]
    F. Glover. Tabu Search — Part I, ORSA J. Comput. 1, 190–206 (1989).CrossRefGoogle Scholar
  32. [32]
    F. Glover. Tabu Search — Part II, ORSA J. Comput. 2, 4–32 (1990).CrossRefGoogle Scholar
  33. [33]
    F. Glover and M. Laguna. Tabu Search. In C. Reeves, editor, Modern Heuristic Techniques for Combinatorial Optimization, pages 70–150, Blackwell, Oxford (1993).Google Scholar
  34. [34]
    F. Glover. Tabu Thresholding: Improved Search by Nonmonotonic Trajectories. ORSA J. Comput. 7, 426–442 (1995).CrossRefGoogle Scholar
  35. [35]
    F. Glover and M. Laguna. Tabu Search. Kluwer, Boston (1997).CrossRefGoogle Scholar
  36. [36]
    A.D. Gordon. Classification: Methods for the Exploratory Analysis of Multivariate Data, Chapman and Hall, New York (1981).Google Scholar
  37. [37]
    P. Hansen and B. Jaumard. Algorithms for the Maximum Satisfiability Problem. Computing 44, 279–303 (1990).CrossRefGoogle Scholar
  38. [38]
    P. Hansen, B. Jaumard and N. Mladenović. How to Choose K Entities Among N. In I.J. Cox, P. Hansen and B. Julesz editors, Partitioning Data Sets, pages 105–116, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 19, American Mathematical Society, Providence, Rhode Island (1993).Google Scholar
  39. [39]
    P. Hansen, B. Jaumard, N. Mladenović and A. Parreira. Variable Neighborhood Search for Weighted Maximum Satisfiability (in preparation).Google Scholar
  40. [40]
    P. Hansen, N. Mladenović and E. Taillard. Heuristic Solution of the Multisource Weber Problem as a p-Median Problem. Les Cahiers du GERAD, G-96-10, Montréal, Canada (1996) (to appear in Oper. Res. Lett.).Google Scholar
  41. [41]
    P. Hansen and N. Mladenović. Variable Neighborhood Search for the p-Median, Les Cahiers du GERAD G-97-39, Montréal, Canada, (1997) (to appear in Location Science).Google Scholar
  42. [42]
    P. Hansen and N. Mladenović. Variable Neighborhood Search for Minimum Sum-of-Squares Clustering, Les Cahiers du GERAD (1998), Montréal, Canada, (forthcoming).Google Scholar
  43. [43]
    P. Hansen, N. Mladenović and D. Perez-Brito. Variable Neighborhood Decomposition Search. Les Cahiers du GERAD, Montréal, Canada, (1998) (forthcoming).Google Scholar
  44. [44]
    J.H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, Michigan (1975).Google Scholar
  45. [45]
    T.S. Hu, V. Klee and D. Larman. Optimization of globally convex functions. SIAM J. Control Optim. 27 1026–1047 (1989).CrossRefGoogle Scholar
  46. [46]
    R.C. Jancey. Multidimensional Group Analysis. Australian J. Botany 14, 127–130 (1966).CrossRefGoogle Scholar
  47. [47]
    D.S. Johnson and L.A. McGeoch, The Traveling Salesman Problem: a Case Study in Local Optimization. In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial Optimization, pages 215–310, Wiley, London (1997).Google Scholar
  48. [48]
    D.S. Johnson and M. Trick, eds., Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26 American Mathematical Society, Providence, Rhode Island (1996).Google Scholar
  49. [49]
    O. Kariv and S.L. Hakimi. An Algorithmic Approach to Network Location Problems; part 2. The p-medians. SIAM J. App. Math. 37, 539–560 (1969).CrossRefGoogle Scholar
  50. [50]
    S. Kirkpatrick, C.D. Gelatt and M. Vecchi. Optimization by Simulated Annealing. Science 220, 671–680 (1983).CrossRefGoogle Scholar
  51. [51]
    R.W. Klein and R.C. Dubes. Experiments in Projection and Clustering by Simulated Annealing. Pattern. Recogn. 22, 213–220 (1989).CrossRefGoogle Scholar
  52. [52]
    R.E. Kuenne, and R.M. Soland. Exact and Approximate Solutions to the Multisource Weber Problem. Math. Program. 3, 193–209 (1972).CrossRefGoogle Scholar
  53. [53]
    S. Lin. Computer Solutions of the Traveling Salesman Problem. Bell Syst. Tech. J. 44, 2245–2269 (1965).Google Scholar
  54. [54]
    S. Lin and B.W. Kernighan. An Effective Heuristic Algorithm for the Traveling Salesman Problem. Oper. Res. 21, 498–516 (1973).CrossRefGoogle Scholar
  55. [55]
    R.F. Love and H. Juel. Properties and Solution Methods for Large Location — Allocation Problems. J. Oper. Res. Soc. 33, 443–452 (1982).Google Scholar
  56. [56]
    J.B. MacQueen. Some Methods for Classification and Analysis of Multivariate Observations, Proc. of the 5th Berkeley Symp. on Mathem. Statist, and Probab. 1, 281–297 (1967).Google Scholar
  57. [57]
    K.-T. Mak and A. Morton. Distances Between Traveling Salesman Tours, Discr. App. Math. 58, 281–291 (1995).CrossRefGoogle Scholar
  58. [58]
    F.E. Maranzana. On the Location of Supply Points to Minimize Transportation Costs. Oper. Res. Quart. 12, 138–139 (1964).Google Scholar
  59. [59]
    P. Mirchandani and R. Francis, eds., Discrete Location Theory, Wiley-Interscience (1990).Google Scholar
  60. [60]
    N. Mladenović. A Variable Neighborhood Algorithm — a New Metaheuristic for Combinatorial Optimization. Abstracts of papers presented at Optimization Days, Montréal, p. 112 (1995).Google Scholar
  61. [61]
    N. Mladenović, J.P. Moreno, and J. Moreno-Vega. A Chain-Interchange Heuristic Method, Yugoslav J. Oper. Res. 6(1), 41–54 (1996).Google Scholar
  62. [62]
    N. Mladenović and P. Hansen. Variable Neighborhood Search. Computers Oper. Res. 24, 1097–1100 (1997).CrossRefGoogle Scholar
  63. [63]
    I.H. Osman and N. Christofides. Capacitated Clustering Problems by Hybrid Simulated Annealing and Tabu Search. Int. Trans. Oper. Res. 1(3), 317–336 (1994).CrossRefGoogle Scholar
  64. [64]
    I.H. Osman and G. Laporte, Metaheuristics: A bibliography. Ann. Oper. Res. 63, 513–628 (1996).CrossRefGoogle Scholar
  65. [65]
    C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization, Algorithms and Complexity. Prentice Hall, New Jersey (1982).Google Scholar
  66. [66]
    M. Randić. On Characterization of Molecular Branching. J. Americ. Chemical Soc. 97, 6609–6615 (1975).CrossRefGoogle Scholar
  67. [67]
    C. Reeves (eds.). Modern Heuristic Techniques for Combinatorial Problems. Blackwell, Oxford (1993).Google Scholar
  68. [68]
    G. Reinelt. TSLIB-A Traveling Salesman Library. ORSA J. Comput. 3, 376–384 (1991).CrossRefGoogle Scholar
  69. [69]
    M.G.C. Resende, L.S. Pitsoulis and P.M. Pardalos. Approximate Solution of Weighted MAX-SAT Problems Using GRASP. in Dingzhu Su, Jun Gu and Panos M. Pardalos (editors), Satisfiability Problem: Theory and Applications, DIMACS Series in Discrete Mathematics and Theoritical Computer Science 35, American Mathematical Society, Providence, Rhode Island (1997).Google Scholar
  70. [70]
    N. Robertson, D. Sanders, P. Seymour and R. Thomas. The Four-Color Theorem. J. Combin. Theory, Ser. B 70, 2–44 (1997).CrossRefGoogle Scholar
  71. [71]
    P. Seymour, May 1997. Private Communication at the Workshop on Graph Coloring and Applications, Montréal (1997).Google Scholar
  72. [72]
    H. Späth, Cluster Dissection and Analysis (Theory, Fortran Programs, Examples), Ellis Horwood, Chichester, (1985).Google Scholar
  73. [73]
    M.B. Teitz and P. Bart. Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph. Oper. Res. 16(5), 955–961 (1968).CrossRefGoogle Scholar
  74. [74]
    S. Voß. A Reverse Elimination Approach for the p-Median Problem. Studies in Locational Analysis 8, 49–58 (1996).Google Scholar
  75. [75]
    R. Whitaker. A Fast Algorithm for the Greedy Interchange for Large-Scale Clustering and Median Location Problems. INFOR 21, 95–108 (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Pierre Hansen
    • 1
  • Nenad Mladenović
    • 1
  1. 1.GERAD and École des Hautes Études CommercialesMontréalCanada

Personalised recommendations