Advertisement

Toward a Broader Logical Model for Information Retrieval

  • Jian-Yun Nie
  • Francois Lepage
Chapter
Part of the The Kluwer International Series on Information Retrieval book series (INRE, volume 4)

Abstract

The ultimate goal of Information Retrieval (IR) is to retrieve all and only the relevant documents for a user’s information need. Consequently a good IR model is the one which gives each document a relevance estimation as close as possible to the user’s own relevance judgement. The crucial problem in IR modelling is to correctly capture the notion of relevance within a computational model.

Keywords

Information Retrieval Situation Model Relevance Feedback Belief Revision Knowledge State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry, C. L. (1994). User-defined relevance criteria: an exploratory study. Journal of the American Society for Information Science, 45(3): 149–159.CrossRefGoogle Scholar
  2. Belkin, N. J. (1984). Cognitive models and information transfer. Social Science Information Studies, 4:111–129.CrossRefGoogle Scholar
  3. Chiaramella, Y. and Nie, J.-Y. (1989). A retrieval model based on an extended modal logic and its application to the rime experimental approach. In Research and Development on Information Retrieval — ACM-SIGIR Conference, pages 25–43, Brussel.Google Scholar
  4. Cooper, W. S. (1971). A definition of relevance for information retrieval. Information Storage and Retrieval, 7:19–37.CrossRefGoogle Scholar
  5. Crestani, F. and van Rijsbergen, C. J. (1995). Information retrieval by logical imaging. Journal of Documentation, 51(1):3–17.CrossRefGoogle Scholar
  6. Cuadra, C. A. and Katter, R. V. (1967). Opening the black box of relevance. Journal of Documentation, 23:291–303.CrossRefGoogle Scholar
  7. d. Swart, H. C. M. (1983). A gentzen-or beth-type system, a practical decision procedure and a constructive completeness proof for the counterfactual logics vc and vcs. The Journal of Symbolic Logic, 48:1–20.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Dervin, B. and Nilan, M. ( 1986). Information needs and uses. Annual Review of Science and Technology, 21:3–27.Google Scholar
  9. Froehlich, T. J. (1994). Relevance reconsidered — towards an agenda for the 21st century: Introduction to special topic issue on relevance research. Journal of the American Society for Information Science, 45(3):124–134.CrossRefGoogle Scholar
  10. Gärdenfors, P. (1988). Knowledge in Flux: Modeling in Dynamics of Epistemic States. MIT Press, Cambridge.zbMATHGoogle Scholar
  11. Gärdenfors, P. (1992). Belief Revision. Cambridge University Press.Google Scholar
  12. Gent, I. P. (1992). A sequent-or tableau-style system for lewis’s counterfactual logic vc. Notre Dame Journal of Formal Logic, 33(3):369–382.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Gibbard, A. and Harper, W. L. (1981). Counterfactuals and two kinds of expected utility. In Harper, W. L., Stalnaker, R., and Pearce, G., editors, Ifs, pages 153–190. Cambridge, D. Reidel.Google Scholar
  14. Ginsberg, M. L. (1986). Counterfactuals. Artificial Intelligence, 30:35–79.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Katsuno, H. and Mendelzon, A. O. (1992). On the difference between updating a knowledge base and revising it. In Gärdenfors, P., editor, Belief Revision, pages 181–203. Cambridge University Press.Google Scholar
  16. Lewis, D. (1973). Counterfactuals. Harvard University Press.Google Scholar
  17. Lewis, D. (1976). Probability of conditionals and conditional probabilities. Philosophical Review, 85(3):297–315.CrossRefGoogle Scholar
  18. Nie, J.-Y. and Brisebois, M. (1994). Using a general thesaurus to set fuzzy relevance of terms in information retrieval. In EXPERSYS, Houston, Texas.Google Scholar
  19. Nie, J.-Y. and Brisebois, M. (1996). An inferential approach to information retrieval and its implementation using a manual thesaurus. Artificial Intelligence Review, 10:409–439.zbMATHCrossRefGoogle Scholar
  20. Nie, J.-Y, Brisebois, M., and Lepage, F. (1995). Information retrieval as counterfactual. The Computer Journal, 38(8):643–657.CrossRefGoogle Scholar
  21. Read, S. (1988). Relevant Logic: A Philosophical Examination of Inference. B. Blackwell, Oxford, New York.Google Scholar
  22. Saracevic, T. (1970). The concept of relevance in information science: a historical review. In Saracevic, T., editor, Introduction to Information Science, pages 111–151. R. R. Bowker Company, New York.Google Scholar
  23. Saracevic, T. (1988). A study of information seeking and retrieving (i): Background and methodology. Journal of the American Society for Information Science, 39:161–176.CrossRefGoogle Scholar
  24. Sembok, T. M. T. and van Rijsbergen, C. J. (1990). Silol: A simple logical-linguistic document retrieval system. Information Processing & Management, 26(1):111–134.CrossRefGoogle Scholar
  25. Sperber, D. and Wilson, D. (1986). Relevance: Communication and cognition. Basil Blackwell, Oxford.Google Scholar
  26. Stalnaker, R. (1968). A Theory of conditional. Studies in Logical Theory. Blackwell, Oxford.Google Scholar
  27. van Rijsbergen, C. J. (1986). A non-classical logic for information retrieval. The Computer Journal, 29(6):481–485.zbMATHCrossRefGoogle Scholar
  28. van Rijsbergen, C. J. (1989). Towards an information logic. In Research and Development on Information Retrieval — ACM-SIGIR Conference, pages 77–86, Brussel.Google Scholar
  29. Yao, Y. Y. (1995). Measuring retrieval effectiveness based on user preference of documents. Journal of the American Society for Information Science, 46(2): 133–145.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Jian-Yun Nie
    • 1
  • Francois Lepage
    • 2
  1. 1.Département d’informatique et de recherche opérationnelleUniversité de MontréalMontrealCanada
  2. 2.Département de philosophieUniversité de MontréalMontrealCanada

Personalised recommendations