The Structure of a Human Rheumatoid Factor Bound to IgG Fc

  • Brian J. Sutton
  • Adam L. Corper
  • Maninder K. Sohi
  • Roy Jefferis
  • Dennis Beale
  • Michael J. Taussig
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 435)


Rheumatoid factors (RF) are autoantibodies with reactivity towards the Fc regions of IgG molecules (1). They are found in the sera and synovia of most patients with rheumatoid arthritis (RA), and high levels of RF are associated with severe disease and poor prognosis (2,3) suggesting that they have a causative role in the pathology of this disease. The IgM or IgG RFs form immune complexes with IgG molecules in the joints, which can then activate complement and cause inflammation. However, not all RFs cause disease, and the distinction between “pathological” and “physiological” RFs is not understood (4).


Rheumatoid Arthritis Rheumatoid Factor Crystal Structure Analysis Carbohydrate Chain Galactose Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tighe, H. & Carson, D.A. Rheumatoid Factor. In Textbook of Rheumatology (Kelley, W.N., Harris, E.D., Ruddy, S. & Sledge, C.B. eds.) W.B. Saunders, Philadelphia, pp 241–249, 1997.Google Scholar
  2. 2.
    Zvaifler, N.J. The immunopathology of joint inflammation in rheumatoid arthritis. Adv. Immunol., 16, 265–336, 1973.PubMedCrossRefGoogle Scholar
  3. 3.
    Vaughan, J.H. Pathogenetic concepts and origins of rheumatoid factor in rheumatoid arthritis. Arthritis Rheum., 36, 1–6, 1993.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen, P.P. & Carson, D.A. New insights on the physiological and pathological rheumatoid factors in humans. In Autoimmunity: Physiology and Disease (Coutinho, A. & Kazatchkine, M., eds.) Wiley-Liss, New York, pp 247–266, 1994.Google Scholar
  5. 5.
    Olee, T., Lu, E.W., Huang, D-F. et al. Genetic analysis of self-associating IgG rheumatoid factors from two rheumatoid synovia implicates an antigen-driven response. J. Exp. Med., 175, 831–842, 1992.PubMedCrossRefGoogle Scholar
  6. 6.
    Randen, I., Thompson, K.M., Pascual, V. et al. Rheumatoid factor V genes from patients with rheumatoid arthritis are diverse and show evidence of an antigen-driven response. Immunol. Rev., 128, 49–71, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Ermel, R.W., Kenny, T.P., Chen, P.P. & Robbins, D.L. Molecular analysis of rheumatoid factors derived from rheumatoid synovium suggests an antigen-driven response in inflamed joints. Arthritis Rheum., 36, 380–388, 1993.PubMedCrossRefGoogle Scholar
  8. 8.
    Bonagura, V.R., Artandi, S.E., Davidson, A. et al. Mapping studies reveal unique epitopes on IgG recognised by rheumatoid arthritis-derived monoclonal rheumatoid factors. J. Immunol, 151, 3840–3852, 1993.PubMedGoogle Scholar
  9. 9.
    Artandi, S.E., Calame, K.L., Morrison, S.L. & Bonagura, V.R. Monoclonal IgM rheumatoid factors bind IgG at a discontinuous epitope comprised of amino acid loops from heavy-chain constant-region domains 2 and 3. Proc. Natl. Acad, Sci. USA, 89, 94–98, 1992.CrossRefGoogle Scholar
  10. 10.
    Peterson, C., Malone, C.C. & Williams, R.C. Rheumatoid-factor-reactive sites on CH3 established by overlapping 7-mer peptide epitope analysis. Mol. Immunol, 32, 57–75, 1995.PubMedCrossRefGoogle Scholar
  11. 11.
    Steinitz, M., Izak, G., Cohen, S., Ehrenfeld, M. & Flechner, J. Continuous production of monoclonal rheumatoid factor by EBV-transformed lymphocytes. Nature, 287, 443–445, 1980.PubMedCrossRefGoogle Scholar
  12. 12.
    Steinitz, M. & Tamir, S. Human monoclonal autoimmune antibody produced in vitro: rheumatoid factor generated by Epstein-Barr virus-transformed cell line. Eur. J. Immunol, 12, 126–133, 1982.PubMedCrossRefGoogle Scholar
  13. 13.
    Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S-M., Natvig, J.B. & Capra, J.D. Nucleotide sequence analysis of rheumatoid factors and polyreactive antibodies derived from patients with rheumatoid arthritis reveals diverse use of VH and VL gene segments and extensive variability in CDR-3. Scand. J. Immunol, 36, 349–362, 1992.PubMedCrossRefGoogle Scholar
  14. 14.
    Sohi, M.K., Corper, A.L., Wan, T., Steinitz, M., Jefferis, R., Beale, D., He, M., Feinstein, A., Sutton, B.J. & Taussig, M.J. Crystallization of a complex between the Fab fragment of a human immunoglobulin M (IgM) rheumatoid factor (RF-AN) and the Fc fragment of human IgG4 Fc. Immunology, 88, 636–641, 1996.PubMedCrossRefGoogle Scholar
  15. 15.
    Jefferis, R., Lund, J., Mizutani, H., Nakagawa, H., Kawazoe, Y., Arata, Y. & Takahashi, N. A comparative study of the N-linked oligosaccharide structures of human IgG subclass proteins. Biochem. J. 268, 529–537, 1990.PubMedGoogle Scholar
  16. 16.
    Parekh, R.B., Dwek, R.A., Sutton, B.J. et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature, 316, 452–457, 1985.PubMedCrossRefGoogle Scholar
  17. 17.
    Rahman, M.A.A. & Isenberg, D.A. Glycosylation of IgG in rheumatic disease. In Abnormalities of IgG Glycosylation and Immunological Disorders (Isenberg, D.A. & Rademacher, T.W. eds.) John Wiley & Sons Ltd., pp 101–118, 1996.Google Scholar
  18. 18.
    Parekh, R.B., Roitt, I.M., Isenberg, D.A., Dwek, R.A., Ansell, B.M. & Rademacher, T.W. Galactosylation of IgG associated oligosaccharides: reduction in patients with adult and juvenile onset rheumatoid arthritis and relation to disease activity. Lancet, i, 966–969, 1988.CrossRefGoogle Scholar
  19. 19.
    Corper, A.L., Sohi, M.K., Bonagura, V.R., Steinitz, M., Jefferis, R., Feinstein, A., Beale, D., Taussig, M.J. & Sutton, B.J. Structure of a human IgM rheumatoid factor in complex with its autoantigen IgG Fc. Nature Struct. Biol., in press, 1997.Google Scholar
  20. 20.
    Davies, D.R. & Cohen, G.H. Interactions of protein antigens with antibodies. Proc. Natl Acad. Sci. USA, 93, 7–12, 1996.PubMedCrossRefGoogle Scholar
  21. 21.
    Fields, B.A., Goldbaum, F.A., Ysern, X., Poljac, R.J. & Mariuzza, R.A. Molecular basis of antigen mimicry by an anti-idiotope. Nature, 374, 739–742, 1995.PubMedCrossRefGoogle Scholar
  22. 22.
    Sheriff, S. Some methods for examining the interactions between two molecules. Immunomethods, 3, 191–196, 1993.CrossRefGoogle Scholar
  23. 23.
    Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. & Foeler, C. Sequences of Proteins of Immunological Interest. US Department of Health and Human Services, NIH, Bethesda, MD, USA, 1991.Google Scholar
  24. 24.
    Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9-and 2.8-Å resolution. Biochemistry, 20, 2361–2370, 1981.PubMedCrossRefGoogle Scholar
  25. 25.
    Sutton, B.J. & Phillips, D.C. The three-dimensional structure of the carbohydrate within the Fc fragment of IgG. Biochem. Soc. Trans., 11, 130–132, 1983.Google Scholar
  26. 26.
    Malhotra, R., Wormald, M.R., Rudd, P.M., Fischer P.B., Dwek, R.A. & Sim, R.B. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nature Medicine, 1, 237–243, 1995.PubMedCrossRefGoogle Scholar
  27. 27.
    Gilhespy-Muskett, A.M., Partridge, J., Jefferis, R. & Homans, S.W. A novel 13C isotopic labelling strategy for probing the structure and dynamics of glycan chains in situ on glycoproteins. Glycobiology, 4, 485–489, 1994.PubMedCrossRefGoogle Scholar
  28. 28.
    Roitt, I.M., Dwek, R.A., Parekh, R.B. et al. Changes in carbohydrate structure of IgG in rheumatoid arthritis. Recenti Prog. Medicina, 79, 314–317, 1988.Google Scholar
  29. 29.
    Soltys, A.J., Hay, F.C., Bond, A., Axford, J.A., Jones, M.G., Randen, I., Thompson, K.M. & Natvig, J.B. The binding of synovial tissue-derived human monoclonal immunoglobulin M rheumatoid factor to immunoglobulin G preparations of differing galactose content. Scand. J. Immunol. 40, 135–143, 1994.PubMedCrossRefGoogle Scholar
  30. 30.
    Soltys, A.J., Bond, A., Westwood, O.M.R. & Hay, F.C. The effects of altered glycosylation of IgG on rheumatoid factor-binding and immune complex formation. In Glycoimmunology (Alavi, A & Axford J.S., eds.), Plenum Press, New York, Adv. Exp. Med. Biol., 376, 155–160, 1995.CrossRefGoogle Scholar
  31. 31.
    Newkirk, M. Fc glycosylation and rheumatoid factors. In Abnormalities of IgG Glycosylation and Immunological Disorders (Isenberg, D.A. & Rademacher, T.W. eds.) John Wiley & Sons Ltd., pp 119–130, 1996.Google Scholar
  32. 32.
    Newkirk, M.M., Fournier, M-J. & Shiroky, J. Rheumatoid factor avidity in patients with rheumatoid arthritis: identification of pathogenic RFs which correlate with disease parameters and with the Gal(0) glycoform of IgG. J. Clin. Immunol., 15, 250–257, 1995.PubMedCrossRefGoogle Scholar
  33. 33.
    Jefferis, R., Nik Jaafer, M.I. & Steinitz, M. Immunogenic and antigenic epitopes of immunoglobulins. VIII. A human monoclonal rheumatoid factor having specificity for a discontinuous epitope determined by histidine/arginine interchange at residue 435 of immunoglobulin G. Immunol. Lett., 7, 191–194, 1984.PubMedCrossRefGoogle Scholar
  34. 34.
    Sauer-Eriksson, A.E., Kleywegt, G.J., Uhlen, M. & Jones, T.A. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure, 3, 265–278, 1995.PubMedCrossRefGoogle Scholar
  35. 35.
    Burmeister, W.P., Huber, A.H. & Bjorkman, P.J. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature, 372, 379–383, 1994.PubMedCrossRefGoogle Scholar
  36. 36.
    Oppliger, I.R., Nardella, F.A., Stone, G.C. & Mannik, M. Human rheumatoid factors bear the internal image of the Fc binding region of Staphylococcal protein A. J. Exp. Med., 166, 702–710, 1987.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Brian J. Sutton
    • 1
  • Adam L. Corper
    • 1
  • Maninder K. Sohi
    • 1
  • Roy Jefferis
    • 2
  • Dennis Beale
    • 3
  • Michael J. Taussig
    • 3
  1. 1.The Randall InstituteKing’s College LondonLondonUK
  2. 2.Department of Immunology, The Medical SchoolUniversity of BirminghamBirminghamUK
  3. 3.Department of ImmunologyThe Babraham InstituteBabrahamUK

Personalised recommendations