Advertisement

Intratumoral Injection of Encapsulated Cells Producing an Oxazaphosphorine Activating Cytochrome P450 for Targeted Chemotherapy

  • Peter Karle
  • Petra Müller
  • Renate Renz
  • Ralf Jesnowski
  • Robert Saller
  • Kerstin von Rombs
  • Horst Nizze
  • Stefan Liebe
  • Walter H. Günzburg
  • Brian Salmons
  • Matthias Löhr
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 451)

Abstract

The prognosis of pancreatic adenocarcinoma is poor and current treatment is for the most part ineffective. We describe here a novel treatment strategy using a mouse model system for pancreatic cancer. Human embryonic epithelial cells have been genetically modified to express the cytochrome P450 2B1 enzyme under the control of a CMV immediate-early promoter. This CYP2B1 gene converts oxazaphosphorines (ifosfamide or cyclophosphamide) to their active cytotoxic compounds, phosphoramide mustard, which alkylates DNA, and acrolein, which alkylates proteins. A number of assays were performed to demonstrate the CYP2B1 gene function as well as toxic effects on neighbouring cells (bystander effect). The cells were then encapsulated in a cellulose sulphate formulation shown to be well tolerated in the pancreas of immunocompetent mice, and injected 1 cm away from pre-established tumours derived from a human pancreatic tumour cell line (PaCa-44). Intraperitoneal administration of low-dose ifosfamide to tumour bearing mice that received the encapsulated cells results in partial or even complete tumour ablation. Such an in situ chemotherapy strategy utilizing genetically modified cells in an immuno-protected environment may prove useful for solid tumour therapy in man.

Keywords

Bystander Effect Reporter Cell Cytochrome P450 Gene Encapsulate Cell Cellulose Sulphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlgren JD (1996): Chemotherapy for pancreatic carcinoma. Cancer; 78: 654–663.PubMedGoogle Scholar
  2. Brock N, Hilgard P, Peukert M, Pohl J and Sindermann H (1988): Basis and New developments in the Field of Oxazaphosphorines. Cancer Investigation; 6: 513–532.PubMedCrossRefGoogle Scholar
  3. Carmichael J, Fink U, Russell RCG, Spittle MF, Harris AL, Spiessi G, Blatter J (1996): Phase II study of gemci-tabine in patients with advanced pancreatic cancer. Br J Cancer; 73: 101–105.PubMedCrossRefGoogle Scholar
  4. Chen L and Waxman J (1995): Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Research; 55: 581–589.PubMedGoogle Scholar
  5. Crandell RA, Fabricant CG, Nelson-Rees WA (1973): Development, characterization, and viral susceptibility of a feline (Felis catus) renal cell line (CRFK). In Vitro; 9: 176–185.PubMedCrossRefGoogle Scholar
  6. Connors TA (1995): The choice of prodrugs for gene directed enzyme prodrug therapy of cancer. Gene Therapy; 2: 702–709.PubMedGoogle Scholar
  7. Cosset FL, Takeuchi Y, Battini JL, Weiss RA and Collins MK (1995): High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol; 69: 7430–7436.PubMedGoogle Scholar
  8. Dirven HAAM, van Ommen B, van Blaederen PJ (1996): Glutathione conjugation of alkylating cytostatic drugs with a nitrogen mustard group and the role of glutathione S-transferases. Chem Res Toxicol; 9: 351–360.PubMedCrossRefGoogle Scholar
  9. Donato MT, Gomez-Lechon MJ, Castell JV (1993): A microassay for measuring cytochrome P450IA1 and P450IIB1 activities in intact human rat hepatocytes cultured on 96-well plates. Anal Biochem; 213: 29–33.PubMedCrossRefGoogle Scholar
  10. Günzburg WH, Karle P, Mrochen S, Sparmann G, Sailer R, Klein D, Uckert W and Salmons B (1997): Regulated gene expression after retroviral vector-mediated delivery of cancer-relevant therapeutic genes. Recent Results Cancer Res; 144: 116–126.CrossRefGoogle Scholar
  11. Kalthoff H, Löhr M, Roeder C, Schmiegel W (1995): Das Pankreaskarzinom: Zellbiologie, Matrixproteine und Wachstumsregulation. In: Erkrankungen des exkretorischen Pankreas; Adler G, Fölsch UR, Mössner J, Singer MV. eds. Fischer, Jena: 2nd edition, p.385–404.Google Scholar
  12. Kedzie KM, Balfour CA, Escobar GY, Grimm SW, He YA, Pepperl DJ, Regan JW, Stevens JC, Halpert JR (1991): Molecular basis for a functionally unique cytochrome P450IIB1 variant. J Biol Chem; 266: 22515–22521.PubMedGoogle Scholar
  13. Keizer HJ, Ouwerkerk J, Welvaart K, van der Velde CJH, Cleton FJ (1995): Ifosfamide treatment as a 10-day continuous intravenous infusion. J Cancer Res Clin Oncol; 121: 297–302.PubMedCrossRefGoogle Scholar
  14. Kurowski V, Wagner T (1993): Comparative pharmacokinetics of ifosfamide, 4-hydroxyifosfamide, chloracetaldehyde, and 2- and 3-dechloroethylifosfamide in patients on fractionated intravenous ifosfamide therapy. Cancer Chemother Pharmacol; 33: 36–42.PubMedCrossRefGoogle Scholar
  15. Löhr M, Trautmann B, Göttler M, Peters S, Zauner I, Maillet B, Klöppel G (1994): Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins. Br J Cancer; 69: 144–151.PubMedCrossRefGoogle Scholar
  16. Löhr M, Trautmann B, Peters S, Zauner I, Liebe S, Klöppel G, Kreuser ED (1995): Expression and function of integrins in human pancreatic adenocarcinoma. Pancreas; 12: 248–259.CrossRefGoogle Scholar
  17. Löhr M 1996: Zell- und Molekularbiologie der Bindegewebsreaktion bei Pankreatitis und Pankreaskarzinom. Solvay, Hannover.Google Scholar
  18. Löhr M, Müller P, Karle P, Stange J, Mitzner S, Nizze H, Liebe S, Salmons B, Günzburg WH (1997): Targeted chemotherapy by encapsulating cells engineered to deliver CYP2B1, an ifosfamide activating cytochrome P450 gene. Gene Therapy; submitted Google Scholar
  19. McClane SJ, Hamilton TE, DeMatteo RP, Burke C and Raper SE(1997): Effect of adenoviral early genes and the host immune system on in vivo pancreatic gene transfer in the mouse. Pancreas; 75: 236–245.CrossRefGoogle Scholar
  20. Pear WS, Nolan GP, Scott ML, Baltimore D (1993): Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci (USA); 90: 8392–8396.CrossRefGoogle Scholar
  21. Reyes G, Villanueva A, Garciá C, Sancho FJ, Piulats J, Lluis F, Capellâ G (1996): Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice. Cancer Res; 56: 5713–5719.PubMedGoogle Scholar
  22. Rosewicz S, Wiedenmann B (1997): Pancreatic carcinoma. Lancet; 349: 485–489.PubMedCrossRefGoogle Scholar
  23. Sailer RM, Stange J, Mitzner S, Heinzmann U, Salmons B, Günzburg WH (1997): Encapsulated cells producing retroviral vectors for in vivo gene therapy. Submitted.Google Scholar
  24. Stange J, Mitzner S, Dautzenberg H, Ramlow W, Knippel M, Steiner M, Ernst B, Schmidt R, Klinkmann H (1993): Prolonged biochemical and morphological stability of encapsulated liver cells—a new method. Biomat Art Cells & Immob Biotech; 21: 343–352.Google Scholar
  25. Takeuchi Y, Porter CD, Strahan KM, Preece AF, Gustafsson K, Cosset FL, Weiss RA, Collins MK (1996): Sensitization of cells and retroviruses to human serum by (alpha 1–3) galactosyl transferase. Nature; 379: 85–88.PubMedCrossRefGoogle Scholar
  26. WHO (1979): WHO handbook for reporting results of cancer treatment. WHO, Geneva.Google Scholar
  27. Wright J, Tretyakov O, Ayash L, Elias A, Rosowsky A and Frei EI (1995): Analysis of 4-hydroxycyclophos-phamide in human blood. Analyt Biochem; 224: 154–158.PubMedCrossRefGoogle Scholar
  28. Zheng JJ, Chan KK, Muggia F (1994): Preclinical pharmacokinetics and stability of isophosphoramide mustard. Cancer Chemother Pharmacol; 33: 391–398.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Peter Karle
    • 1
  • Petra Müller
    • 2
    • 3
  • Renate Renz
    • 2
  • Ralf Jesnowski
    • 3
  • Robert Saller
    • 2
  • Kerstin von Rombs
    • 2
  • Horst Nizze
    • 4
  • Stefan Liebe
    • 3
  • Walter H. Günzburg
    • 1
  • Brian Salmons
    • 2
  • Matthias Löhr
    • 3
  1. 1.Institute of VirologyUniversity of Veterinary SciencesViennaAustria
  2. 2.Bavarian Nordic Research InstituteMunichGermany
  3. 3.Department of MedicineUniversity of RostockGermany
  4. 4.Department of PathologyUniversity of RostockGermany

Personalised recommendations