Advertisement

Immunity and Prenatal Alcohol Exposure

A Pilot Study in Human Adolescents
  • Dorothy R. Oleson
  • Ronald M. Magee
  • Robert M. Donahoe
  • Arthur Falek
  • Claire D. Coles
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 437)

Abstract

Alcohol has been recognized as a teratogen for over 150 years.1 In 1968, a constellation of birth defects which would become known as the Fetal Alcohol Syndrome (FAS) was described in France,2 and confirmed shortly thereafter in the United States.3 An explosion of case reports ensued, and a number of clinical and animal investigations were initiated.4 A general consensus from these studies is that in uteroalcohol exposure produces a continuum of alcohol-related birth defects, also known as fetal alcohol effects (FAE), and that FAS represents the severe end of that spectrum. To date, only limited human studies have been conducted on the immune status of children with FAS,5-7 and none have been done on alcohol-exposed children without the full-blown syndrome. The present study is aimed at filling these gaps in knowledge.

Keywords

Allergic Rhinitis Fetal Alcohol Syndrome Absolute Lymphocyte Count Absolute Count Prenatal Alcohol Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Streissguth A., Landesman-Dwyer S., Martin J., and Smith D. Teratogenic effects of alcohol in humans and laboratory animals. Science 209: 353–361, 1980.PubMedCrossRefGoogle Scholar
  2. 2.
    Lemoine P., Harouseau H., Borteryu J., and Menuet JC. Les enfants des parents alcooliques. Anomalies observees apropos de 127 cas. Ouest Medical 21: 476–482, 1968.Google Scholar
  3. 3.
    Jones K., and Smith D. Recognition of the fetal alcohol syndrome in early infancy. Lancet 2: 999–1001, 1973.CrossRefGoogle Scholar
  4. 4.
    Eighth Special Report to the U.S. Congress on Alcohol and Health. NIH, National Institute on Alcohol Abuse and Alcoholism. 1993.Google Scholar
  5. 5.
    Johnson S., Knight R., Marmer D., and Steele R. Immune deficiency in fetal alcohol syndrome. Pediatr Res 15: 908–911, 1981.PubMedCrossRefGoogle Scholar
  6. 6.
    Ammann A., Wara D., Cowan M., Barrett D., and Stiehm R. The DiGeorge syndrome and the fetal alcohol syndrome. Am J Dis Child 136: 906–908, 1982.PubMedGoogle Scholar
  7. 7.
    Calvani Mario, Ghirelli D., Calvani M., Fortuna C., Lalli F., and Marcolini P. La sindrome feto-alcolica: follow-up clinico-metabolico-immunitario di 14 casi. Minerva Ped. 37: 77–88, 1985.Google Scholar
  8. 8.
    Ewald S., and Waiden S. Flow cytometric and histological analysis of mouse thymus in fetal alcohol syndrome. J Leukocyte Biol 44: 434–440, 1988.PubMedGoogle Scholar
  9. 9.
    Weinberg J., and Jerrells T. Suppression of immune responsiveness: sex differences in prenatal ethanol effects. Alcoholism: Clin Exp Res 15: 525–531, 1991.CrossRefGoogle Scholar
  10. 10.
    Chang M-R, Yamaguchi D., Yeh M., Taylor A., and Norman D. Mechanism of the impaired T-cell proliferation in adult rates exposed to alcohol in utero. Int J Immunopharmacol 16: 345–357, 1994.PubMedCrossRefGoogle Scholar
  11. 11.
    Gottesfeld Z., Christie R., Feiten D., and LeGrue S. Prenatal ethanol exposure alters immune capacity and noradrenergic synaptic transmission in lymphoid organs of the adult mouse. Neurosci 35: 185–194, 1990.CrossRefGoogle Scholar
  12. 12.
    Clausing P., Ali S., Taylor L., Newport G., Rybak S., and Paule M. Central and peripheral neurochemical alterations and immune effects of prenatal ethanol exposure in rats. Int J Devl Neuroscience 14: 461–469, 1996.CrossRefGoogle Scholar
  13. 13.
    Wolcott M., Jennings S., and Chervenak R. In utero exposure to ethanol affects postnatal development of T-and B-lymphocytes, but not natural killer cells. Alcohol Clin Exp Res 19: 170–176. 1995.PubMedCrossRefGoogle Scholar
  14. 14.
    Grossmann A., Astley S., Liggitt D., Clarren S., Shiota E, Kennedy B., Thouless M., and Maggio-Price L. Immune function in offspring of nonhuman primates (Macaca nemestrina) exposed weekly to 1.8 g/kg ethanol during pregnancy: preliminary observations. Alcoholism: Clin Exp Res 17: 822–827, 1993.CrossRefGoogle Scholar
  15. 15.
    Streissguth A., Clarren S., and Jones K. Natural history of the fetal alcohol syndrome: A 10-year follow-up of eleven patients. Lancet 2: 85–91, 1985.PubMedCrossRefGoogle Scholar
  16. 16.
    Steinhausen, HC, Nestler, V., and Spohr, HL. Development and psychopathology of children with the fetal alcohol syndrome. Devi Behavior Pediatr 3: 49–54, 1982CrossRefGoogle Scholar
  17. 17.
    Spohr, HL., Willms J., and Steinhausen HC. The fetal alcohol syndrome in adolescence. Acta Paediatr 404: 19–26, 1994.CrossRefGoogle Scholar
  18. 18.
    Streissguth A., Aase J., Clarren S., Randels S., LaDue R., and Smith D. Fetal alcohol syndrome in adolescents and adults. JAMA 265: 1961–1967, 1991.PubMedCrossRefGoogle Scholar
  19. 19.
    Coles C., Smith I., Fernhoff P., and Falek A. Neonatal ethanol withdrawal: characteristics in clinically normal, nondysmorphic neonates. J Pediatr 105: 445–451, 1984.PubMedCrossRefGoogle Scholar
  20. 20.
    Coles C. Impact of prenatal alcohol exposure on the newborn and the child. Clin Obstetr Gyn 36: 255–266, 1993.CrossRefGoogle Scholar
  21. 21.
    Coles C., Brown R., Smith I., Platzman K., Erickson S., and Falek A. Effects of prenatal alcohol exposure at school age. I. Physical and cognitive development. Neurotoxicol Teratol 13: 357–367, 1991.PubMedCrossRefGoogle Scholar
  22. 22.
    Brown R., Coles C., Smith I., Platzman K., Silverstein J., Erickson S., and Falek A. Effects of prenatal alcohol exposure at school age. II. Attention and behavior. Neurotoxicol Teratol 13: 369–376, 1991.PubMedCrossRefGoogle Scholar
  23. 23.
    Petersen A., Crockett L., Richards M., and Boxer A. A self-report measure of pubertal status: reliability, validity, and initial norms. J Youth Adoles 17: 117–133, 1988.CrossRefGoogle Scholar
  24. 24.
    Vital and health statistics. Questionnaires from the National Health Interview Survey, 1985-1989. Hyattsville, MD. DHHS Publication No. (PHS) 93-1307. 1993.Google Scholar
  25. 25.
    Burney P.G.J., Laitinen L.A., Perdizet S., et al. Validity and repeatability of the IUATLD (1984) Bronchial symptoms questionnaire: an international comparison. Eur Respir J 2: 940–945, 1989.PubMedGoogle Scholar
  26. 26.
    Todd N. At-risk populations for hearing impairment in infants and young children. Int J Pediatr Otorhinolaryn 29: 11–21, 1994.CrossRefGoogle Scholar
  27. 27.
    Church M., and Gerkin K. Hearing disorders in children with fetal alcohol syndrome: findings from case reports. Pediatr 82: 147–154, 1988.Google Scholar
  28. 28.
    Crain E., Weiss K., Bijur P., Hersh M., Westbrook L., and Stein R. An estimate of the prevalence of asthma and wheezing among inner-city children. Pediatr 94: 356–362, 1994.Google Scholar
  29. 29.
    Weitzman M., Gortmaker S., Walker D., and Sobol A. Maternal smoking and childhood asthma. Pediatr 85: 505–511, 1990.Google Scholar
  30. 30.
    Hoffman-Goetz L., and Pedersen B. Exercise and the immune system: a model of the stress response? Immunol Today 15: 382–386, 1994.PubMedCrossRefGoogle Scholar
  31. 31.
    Brosschot J., Benschop R., Godaert G., De Smet M., Olff M., Heijnen C., and Ballieux R. Effects of experimental psychological stress on distribution and function of peripheral blood cells. Psychosomatic Med 54: 394–406, 1992.Google Scholar
  32. 32.
    Palm S., Hinrichsen H., Barth J., Halabi A., Ferstl R., Tolk J., Kirsten R., and Kirch W. Modulation of lymphocyte subsets due to psychological stress in patients with rheumatoid arthritis. Eur J Clin Invest 22: Suppl 1, 26–29, 1992.PubMedGoogle Scholar
  33. 33.
    Benschop R., Nieuwenhuis E., Tromp E., Godaert G., Ballieux R., and van Doornen L. Effects of β-adren-ergic blockade on immunologic and cardiovascular changes induced by mental stress. Circulation 89: 762–769, 1994.PubMedCrossRefGoogle Scholar
  34. 34.
    Sgoutas-Emch S., Cacioppo J., Uchino B., Malarkey W., Pearl D., Kiecolt-Glaser J., and Glaser R. The effects of an acute psychological Stressor on cardiovascular, endocrine, and cellular immune response: A prospective study of individuals high and low in heart rate reactivity. Psychophysiol 31: 264–271, 1994.CrossRefGoogle Scholar
  35. 35.
    Hinrichsen H., Barth J., Rückemann M., Ferstl R., and Kirch W. Influence of prolonged neuropsychological testing on immunoregulatory cells and hormonal parameters in patients with systemic lupus erythematosus. Rheumatol Int 12: 47–51, 1992.PubMedCrossRefGoogle Scholar
  36. 36.
    Cacioppo J., Malarkey W., Kiecolt-Glaser J., Uchino B., Sgoutas-Emch S., Sheridan J., Berntson G., and Glaser R. Heterogeneity in neuroendocrine and immune responses to brief psychological Stressors as a function of autonomic cardiac activation. Psychosomatic Med 57: 154–164, 1995.Google Scholar
  37. 37.
    Bachen E., Manuck S., Marsland A., Cohen S., Malkoff S., Muldoon M., and Rabin B. Lymphocyte subset and cellular immune responses to a brief experimental Stressor. Psychosomatic Med 54: 673–679, 1992.Google Scholar
  38. 38.
    Crary B., Hauser S., Borysenko M., Jutz I., Hoban C., Ault K., Weiner H, and Benson H., Epinephrine-induced changes in the distribution of lymphocyte subsets of peripheral blood of humans. J Immunol 131: 1178–1181, 1983.PubMedGoogle Scholar
  39. 39.
    Fukuda R., Ichikawa Y., Takaya M., Ogawa Y., and Masumoto A. Orcadian variations and prednisoloneinduced alterations of circulating lymphocyte subsets in man. Intern Med 33: 733–738, 1994.PubMedCrossRefGoogle Scholar
  40. 40.
    Maisel A., Fowler P., Rearden A., Motulsky H., and Michel M. A new method for isolation of human lymphocyte subsets reveals differential regulation of β-adrenergic receptors by terbutaline treatment. Clin Pharmacol Ther 46: 429–439, 1989.PubMedCrossRefGoogle Scholar
  41. 41.
    Ottaway C., and Husband A. Central nervous system influences on lymphocyte migration. Brain Behav Immunity 6: 97–116, 1992.CrossRefGoogle Scholar
  42. 42.
    Taylor A., Branch B., Liu S., and Kokka N. Long-term effects of fetal ethanol exposure on pituitary-adrenal response to stress. Pharm Biochem Behav 16: 585–589, 1982.CrossRefGoogle Scholar
  43. 43.
    Weinberg J. Neuroendocrine effects of prenatal alcohol exposure. Ann NY Acad Sci 697: 86–96, 1993.PubMedCrossRefGoogle Scholar
  44. 44.
    Weinberg J., Taylor A., and Gianoulakis C. Fetal ethanol exposure: hypothalamic-pituitary-adrenal and β-endorphin responses to repeated stress. Alcohol: Clin Exp Res 20: 122–131, 1996.CrossRefGoogle Scholar
  45. 45.
    Lee S., and Rivier C. Gender differences in the effect of prenatal alcohol exposure on the hypothalamic-pituitary-adrenal axis response to immune signals. Psychoneuroendocrinology 21:145–155, 1996.PubMedCrossRefGoogle Scholar
  46. 46.
    Ladd C., Owens M., and Nemerofif C. Persistent changes in corticotropin-releasing factor neuronal systems induced by maternal deprivation. Endocrinology 137: 1212–1218, 1996.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Dorothy R. Oleson
    • 1
  • Ronald M. Magee
    • 1
  • Robert M. Donahoe
    • 1
  • Arthur Falek
    • 1
  • Claire D. Coles
    • 1
  1. 1.Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaUSA

Personalised recommendations