Advertisement

Polydnavirus Biology, Genome Structure, and Evolution

  • Bruce A. Webb
Part of the The Viruses book series (VIRS)

Abstract

Polydnaviruses are an unusual group of insect viruses that have an obligate mutualistic association with certain parasitic wasps. Polydnaviruses are unique both in terms of their association with parasitic Hymenoptera and because of their profusely segmented DNA genomes. These viruses are named on the basis of their unique polydisperse DNA genomes (i.e., poly -DNA-viruses), but their life cycles are equally distinctive (Stoltz et al., 1995). In this chapter, a general overview of polydnaviruses is provided but is biased by the preponderance of molecular studies performed in a single species, the Campoletis sonorensis polydnavirus (CsPDV). CsPDV is the type species member of the ichnoviruses, one of the two major polydnavirus groups. Bracoviruses, which comprise the other major group, have distinctive morphologies and appear to be evolutionarily unrelated to the ichnoviruses (Whitfield, 1997), making it likely that significant differences will continue to be found in the organization and function of the two polydnavirus genera. While attempting to provide comprehensive coverage of the field, I have deliberately focused on more recent work. For more comprehensive consideration of earlier developments, the reader should consult reviews by Stoltz and Vinson (1979a), Fleming (1992), Stoltz and Whitfield (1992), Beckage (1993), Fleming and Krell (1993), Strand and Pech (1995a), and Lavine and Beckage (1996).

Keywords

Host Insect Parasitic Wasp Ovarian Protein Viruslike Particle Lepidopteran Host 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, A., Wyler, T., Pfister-Wilhelm, R., Heiniger, P., Hurt, E., Gruber, A., Schumperli, D., and Lanzrein, B., 1994, Polydnavirus of the parasitic wasp Chelonus inanitus (Braconidae): Characterization, genome organization and time point of replication, J. Gen. Virol. 75: 3353.PubMedCrossRefGoogle Scholar
  2. Asgari, S., and Schmidt, O., 1994, Passive protection of eggs from the parasitoid Cotesia rubecula, in the host Pieris rapae, J. Insect Physiol. 40: 789.CrossRefGoogle Scholar
  3. Asgari, S., Hellers, M., and Schmidt, O., 1996, Host haemocyte inactivation by an insect parasitoid: Transient expression of a polydnavirus gene, J. Gen. Virol. 77: 2653.PubMedCrossRefGoogle Scholar
  4. Beckage, N. E., 1993, Games parasites play: The dynamic roles of proteins and peptides in the relationship between parasite and host, in: Parasites and Pathogens of Insects, vol. 1, Parasites (N. E. Beckage, S. N. Thompson, and B. A. Federici, eds.), pp. 167–187, Academic Press, New York.Google Scholar
  5. Backage, N. E., 1996, Interactions of viruses with invertebrate cells, in: New Directions in Invertebrate Immunology (K. Soderhall, S. Iwanage, and G. R. Vasta, eds.), pp. 375–399, SOS Publications, Fair Haven, NJ.Google Scholar
  6. Beckage, N. E., Templeton, T. J., Nielsen, B. D., Cook, D. I., and Stoltz, D. B., 1987, Parasitism-induced haemolymph polypeptides in Manduca sexta (L.) larvae parasitized by the braconid wasp Cotesia congregata (Say), Insect Biochem. 20: 285.Google Scholar
  7. Beckage, N. E., Tan, F. E., Schleifer, K. W., Lane, R. D., and Churubin, L. L., 1994, Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco horn-worm, Manduca sexta, Arch. Insect Biochem. Physiol. 26: 165.CrossRefGoogle Scholar
  8. Berg, R., Schuchmann-Feddersen, I., and Schmidt, O., 1988, Bacterial infection induces a moth protein with antigenic similarity to virus-like particles of a parasitoid wasp, J. Insect Physiol. 34: 473.CrossRefGoogle Scholar
  9. Bigot, Y., Drezen, J.-M. G., Sizaret, P.-Y., Hamelin, M.-H., and Periquet, G., 1995, The genome segments of DpRV, a commensal reovirus of the wasp Diadomus pulchellus (Hymenoptera), Virology 210: 109.PubMedCrossRefGoogle Scholar
  10. Bigot, Y., Rabouille, A., Sizaret, P.-Y., Hamelin, M.-H., and Periquet, G., 1997, Particle and genomic characteristics of a new member of the Ascoviridae: Diadromus pulchellus ascovirus, J. Gen. Virol. 78: 1139.PubMedGoogle Scholar
  11. Blissard, G. W., Vinson, S. B., and Summers, M. D., 1986, Identification, mapping and in vitro translation of Campoletis sonorensis virus mRNAs from parasitized Heliothis virescens larvae, J. Virol. 57: 318.PubMedGoogle Scholar
  12. Blissard, G. W., Smith, O. P., and Summers, M. D., 1987, Two related viral genes are located on a single superhelical DNA segment of the multipartite Campoletis sonorensis virus genome, Virology 160: 120.PubMedCrossRefGoogle Scholar
  13. Blissard, G. W., Theilmann, D. A., and Summers, M. D., 1989, Segment W of the Campoletis sonorensis virus: Expression, gene products, and organization, Virology 169: 78.PubMedCrossRefGoogle Scholar
  14. Chambers, T. J., Hahn, C. S., Galler, R., and Rice, C. M., 1990, Flavivirus genome organization, expression and replication, Annu. Rev. Microbiol. 44: 649.PubMedCrossRefGoogle Scholar
  15. Cook, D., and Stoltz, D. B., 1983, Comparative serology of viruses isolated in Ichneumonid parasitoids, Virology 130: 215.PubMedCrossRefGoogle Scholar
  16. Cook, D. L., Stoltz, D. B., and Vinson, S. B., 1984, Induction of a new haemolymph glycoprotein in larvae of permissive hosts parasitized by Campoletis sonorensis, Insect Biochem. 14: 45.CrossRefGoogle Scholar
  17. Cui, L., and Webb, B. A., 1996, Isolation and characterization of a member of the cysteine-rich gene family from Campoletis sonorensis polydnavirus, J. Gen. Virol. 77: 797.PubMedCrossRefGoogle Scholar
  18. Cui, L., and Webb, B. A., 1997a, Homologous sequences in the Campoletis sonorensis polydnavirus genome are implicated in replication and nesting of the W segment family, J. Virol. 71: 8504.Google Scholar
  19. Cui, L., and Webb, B. A., 1997b, Promoter analysis of a Campoletis sonorensis polydnavirus gene Whv1.0, J. Gen. Virol. 78: 1807.Google Scholar
  20. Cui, L., Soldevila, A. I., and Webb, B. A., 1997, Expression and hemocyte-targeting of a Campoletis sonorensis polydnavirus cysteine-rich gene in Heliothis virescens larvae, Arch. Insect Physiol. Biochem. 36: 251.CrossRefGoogle Scholar
  21. Dahlman, D. L., and Vinson, S. B., 1993, Teratocytes: Developmental and biochemical characteristics, in: Parasites and Pathogens of Insects, vol. 1, Parasites (N. E. Beckage, S. N. Thompson, and B. A. Federici, eds.), pp. 145–166, Academic Press, New York.Google Scholar
  22. Davies, D. H., and Vinson, S. B., 1986, Passive evasion by eggs of braconid parasitoid Cardiochiles nigriceps of encapsulation in vitro by haemocytes of host Heliothis virescens. Possible role for fibrous layer in immunity, J. Insect Physiol. 32: 1003.CrossRefGoogle Scholar
  23. Davies, D. H., Strand, M. R., and Vinson, S. B., 1987, Changes in the differential haemocyte count and in vitro behavior of plasmatocytes from host Heliothis virescens caused by Campoletis sonorensis polydnavirus, J. Insect Physiol. 33: 143.CrossRefGoogle Scholar
  24. deBuron, I., and Beckage, N. E., 1992, Characterization of a polydnavirus (PDV) and virus-like filamentous particle (VLFP) in the braconid wasp Cotesia congregata (Hymenoptera: Braconidae), J. Invertebr. Pathol. 59: 315.CrossRefGoogle Scholar
  25. Deng, L., 1997, Structural proteins of the Campoletis sonorensis polydnavirus, Ph.D. dissertation, University of Kentucky, Lexington, KY.Google Scholar
  26. Deng, L., Stoltz, D. B., and Webb, B. A., 1998, A polydnavirus virion protein resides in the genome of its associated wasp host, Virology (submitted).Google Scholar
  27. Dib-Hajj, S. D., Webb, B. A., and Summers, M. D., 1993, Structure and evolutionary implications of a “cysteine-rich” Campoletis sonorensis polydnavirus gene family, Proc. Natl. Acad. Sci. USA 90: 3765.PubMedCrossRefGoogle Scholar
  28. Dover, B. A., Davies, D. H., and Vinson, S. B., 1988, Degeneration of last instar Heliothis virescens prothoracic glands by Campoletis sonorensis polydnavirus, J. Invertebr. Pathol. 51: 80.CrossRefGoogle Scholar
  29. Dushay, M. S., and Beckage, N. E., 1993, Dose-dependent separation of Cotesia congregata effects on Manduca sexta larval development and immunity, J. Insect Physiol. 33: 1029.CrossRefGoogle Scholar
  30. Edson, K. M., Vinson, S. B., Stoltz, D. B., and Summers, M. D., 1981, Virus in a parasitoid wasp: Suppression of the cellular immune response in the parasitoid’s host, Science 211: 582.PubMedCrossRefGoogle Scholar
  31. Elliott, R. M., Schmaljohn, C. S., and Collet, M. S., 1990, Bunyaviridae genome structure and gene expression, Curr. Top. Microbiol. Immunol. : 91.Google Scholar
  32. Engelhard, E. K., Kam-Morgan, L. N. W., Washburn, J. E., and Volkman, L. E., 1994, The insect tracheal system: A conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus, Proc. Natl. Acad. Sci. USA 91: 3224.PubMedCrossRefGoogle Scholar
  33. Fathpour, H., and Dahlman, D. L., 1995, Polydnavirus of Microplitis croceipes prolongs the larval period and changes hemolymph protein content of the host, Heliothis virescens, Arch. Insect Biochem. Physiol 28: 33.CrossRefGoogle Scholar
  34. Fedderson, I., Sander, K., and Schmidt, O., 1986, Virus-like particles with host protein-like antigenic determinants protect an insect parasitoid from encapsulation, Experientia 42: 401.Google Scholar
  35. Federici, B. A., 1993, Viral pathobiology in relation to insect control, in: Parasites and Pathogens of Insects, vol. 1, Parasites (N. E. Beckage, S. N. Thompson, and B. A. Federici, eds.), pp. 80–101, Academic Press, New York.Google Scholar
  36. Federici, B. A., Hamm, J. J., and Styer, E. L., 1991, Ascoviridae, in: Atlas of Invertebrate Viruses (J. R. Adams and J. R. Bonam, eds.), pp. 339–349, CRC Press, Boca Raton, FL.Google Scholar
  37. Finnegan, D. J., 1990, Transposable elements and DNA transposition in eukaryotes, Curr. Opin. Cell Biol. 2: 471.PubMedCrossRefGoogle Scholar
  38. Fleming, J. G. W., 1992, Polydnaviruses: Mutualists and pathogens, Annu. Rev. Entomol. 37: 401.PubMedCrossRefGoogle Scholar
  39. Fleming, J. G. W., and Krell, P. J., 1993, Polydnavirus genome organization, in: Parasites and Pathogens of Insects, vol. 1, Parasites (N. E. Beckage, S. N. Thompson, and B. A. Federici, eds.), pp. 189–225, Academic Press, New York.Google Scholar
  40. Fleming, J. G. W., and Summers, M. D., 1986, Campoletis sonorensis endoparasitic wasps contain forms of C. sonorensis virus DNA suggestive of integrated and extrachromosomal polydnavirus DNAs, J. Virol. 57: 552.PubMedGoogle Scholar
  41. Fleming, J. G. W., and Summers, M. D., 1991, Polydnavirus DNA is integrated in the DNA of its parasitoid wasp host, Proc. Natl. Acad. Sci. USA 88: 9770.PubMedCrossRefGoogle Scholar
  42. Gruber, A., Heiniger, P., Schumperli, D., and Lanzrein, B., 1996, Polydnavirus DNA of the braconid wasp Chelonus inanitus is integrated into the wasp genome and excised in the females at late stages of pupal stages of the female, J. Gen. Virol. 77: 2873.PubMedCrossRefGoogle Scholar
  43. Guzo, D., and Stoltz, D. B., 1987, Observations on cellular immunity and parasitism in the tussock moth, J. Insect Physiol. 33: 19.CrossRefGoogle Scholar
  44. Hamm, J. J., Nordlund, D. A., and Marti, O. G., 1985, Effect of a nonoccluded virus of Spodoptera frugiperda (Lepidoptera: Noctuidae) on the development of a parasitoid, Cotesia marginiventris (Hymenoptera: Braconidae), Environ. Entomol. 14: 258.Google Scholar
  45. Hamm, J. J., Styer, E. L., and Lewis, W. J., 1988, A baculovirus pathogenic to the parasitoid Microplitis croceipes (Hymenoptera: Braconidae), J. Invertebr. Pathol. 52: 189.CrossRefGoogle Scholar
  46. Hamm, J. J., Styer, E. L., and Lewis, W. J., 1990, Comparative virogenesis of filamentous virus and polydnavirus in the female reproductive tract of Cotesia marginiventris (Hymenoptera: Braconidae), J. Invertebr. Pathol. 55: 357.CrossRefGoogle Scholar
  47. Harwood, S. H., and Beckage, N. E., 1994a, An abundantly expressed hemolymph glycoprotein isolated from newly parasitized Manduca sexta larvae is a polydnavirus gene product, Virology 205: 381.CrossRefGoogle Scholar
  48. Harwood, S. H., and Beckage, N. E., 1994b, Purification and characterization of an early-expressed polydnavirus-induced protein from the hemolymph of Manduca sexta larvae parasitized by Cotesia congregata, Insect Biochem. Mol. Biol. 24: 685.CrossRefGoogle Scholar
  49. Kayakawa, Y., 1995, Growth blocking peptide: An insect biogenic peptide that prevents the onset of metamorphosis, J. Insect Physiol. 41: 1.CrossRefGoogle Scholar
  50. Hayakawa, Y., Yazaki, A., and Tanaka, T., 1994, Expression of polydnavirus genes from the parasitoid wasp Cotesia kariyai in two noctuid hosts, Insect Mol. Biol. 3: 97.PubMedCrossRefGoogle Scholar
  51. Jones, D., and Coudron, T., 1993, Venoms of parasitic hymenoptera as investigatory tools, in: Parasites and Pathogens of Insects, vol. 1, Parasites (N. E. Beckage, S. N. Thompson, and B. A. Federici, eds.), pp. 227–244, Academic Press, New York.Google Scholar
  52. Kim, M., Sisson, G., and Stoltz, D. B., 1996, Ichnovirus infection of an established gypsy moth cell line, J. Gen. Virol. 77: 2321.PubMedCrossRefGoogle Scholar
  53. Kitano, H., 1982, Effect of the venom of the gregarious parasitoid Apanteles glomeratus on its hemocytic encapsulation by its host, Pieris, J. Invertebr. Pathol. 40: 61.CrossRefGoogle Scholar
  54. Kitano, H., 1986, The role of the Apanteles glomeratus venom in the defensive response of its host Pieris rapae crucivora, J. Insect Physiol. 32: 369.CrossRefGoogle Scholar
  55. Krell, P., and Stoltz, D. B., 1979, Unusual baculovirus of the parasitoid wasp Apanteles melanoscelus: Isolation and preliminary characterization, J. Virol. 29: 1118.PubMedGoogle Scholar
  56. Krell, P. J., and Stoltz, D. B., 1980, Virus-like particles in the ovary of an Ichneumoind wasp: Purification and preliminary characterization, Virology 101: 408.PubMedCrossRefGoogle Scholar
  57. Krell, P J, Summers, M. D., and Vinson, S. B., 1982, Virus with a multipartite superhelical DNA genome from the ichneumonid parasitoid Campoletis sonorensis, J. Virol. 43: 859.PubMedGoogle Scholar
  58. Lavine, M. D., and Beckage, N. E., 1996, Polydnaviruses: Potent mediators of host insect immune dysfunction, Parasitol. Today 11: 368.CrossRefGoogle Scholar
  59. Lawrence, P. O., and Akin, D., 1990, Virus-like particles from the poison glands of the parasite wasp Biosteres longicaudatus (Hymenoptera: Braconidae), Can. J. Zool. 68: 539.CrossRefGoogle Scholar
  60. Long, E. O., and Dawid, I. B., 1980, Repeated genes in eukaryotes, Annu. Rev. Biochem. 49: 727.PubMedCrossRefGoogle Scholar
  61. Löwer, R., Löwer, J., and Kurth, R., 1996, The viruses in all of us: Characterization and biological significance of human endogenous retrovirus sequences, Proc. Natl. Acad. Sci. USA 93: 5177.PubMedCrossRefGoogle Scholar
  62. Luckhart, S., and Webb, B. A., 1994, Characterization of immunologically cross-reactive polydnavirus, venom and ovarian proteins from Campoletis sonorensis (Hymenoptera: Ichneumonidae), Arch. Insect Physiol. Biochem. 26: 147.CrossRefGoogle Scholar
  63. Luckhart, S., and Webb, B. A., 1996, Interaction of a wasp ovarian protein and polydnavirus in host immune suppression, Dev. Comp. Immunol. 20: 1.PubMedCrossRefGoogle Scholar
  64. Mackauer, M., and Sequeira, R., 1993, Patterns of development in insect parasites, in: Parasites and Pathogens of Insects, vol. 1, Parasites (N. E. Beckage, S. N. Thompson, and B. A. Federici, eds.), pp. 1–24, Academic Press, New York.Google Scholar
  65. McFadden, G., 1995, Viroceptors, Virokines and Related Immune Modulators Encoded by DNA Viruses, R. G. Landes, Austin, TX.Google Scholar
  66. McKelvey, T. A., Lynn, D. W., Gundersen-Rindal, Guzo, D., Stoltz, D., Guthrie, K. P., Taylor, P. B., and Dougherty, E. M., 1996, Transformation of gypsy moth (Lymantria dispar) cell lines by infection with Glyptapanteles indiensis polydnavirus, Biochem. Biophys. Res. Commun. 225: 76.CrossRefGoogle Scholar
  67. Moore, C. A., Beckmann, M., and Morse, M. P., 1992, Cytoskeletal structure of diseased and normal hemocytes of Mya arenaria, J. Invertebr. Pathol. 60: 141.CrossRefGoogle Scholar
  68. Murphy, F. A., Fauquet, C. M., Bishop, D. H. L., Ghabrial, S. A., Jarvis, A. W., Martelli, G. P., Mayo, M. A., and Summers, M. D., 1995, Virus Taxonomy, Springer-Verlag, Wein, New York.Google Scholar
  69. Norton, W. N., and Vinson, S. B., 1977, Encapsulation of a parasitoid egg within its natural host: An ultrastructural investigation, J. Invertebr. Pathol. 30: 55.CrossRefGoogle Scholar
  70. Norton, W. N., and Vinson, S. B., 1983, Correlating the initiation of virus replication with a specific pupal developmental phase of an ichneumonid parasitoid, Cell Tissue Res. 231: 387.PubMedCrossRefGoogle Scholar
  71. Norton, W. N., Vinson, S. B., and Stoltz, D. B., 1975, Nuclear secretory particles associated with the calyx cells of the ichneumonid parasitoid Campoletis sonorensis (Cameron), Cell Tissue Res. 162: 195.PubMedCrossRefGoogle Scholar
  72. Rotheram, S. M., 1973, The surface of the egg of a parasitic insect I. The surface of the egg and first instar larva of Nemertis, Proc. R. Soc. Lond. (Biol.) 183: 179.CrossRefGoogle Scholar
  73. Schimke, R. T., 1984, Gene amplification in cultured animal cells, Cell 37: 705.PubMedCrossRefGoogle Scholar
  74. Shelby, K. S., and Webb, B. A., 1994, Polydnavirus infection inhibits synthesis of an insect plasma protein, arylphorin, J. Gen. Virol. 75: 2285.PubMedCrossRefGoogle Scholar
  75. Shelby, K. S., and Webb, B. A., 1997, Polydnavirus infection inhibits translation of specific growth-associated host proteins, Insect Biochem. Mol. Biol. 27: 263.PubMedCrossRefGoogle Scholar
  76. Soldevila, A. I., and Jones, D., 1991, Immunoanalysis of unique protein in Trichoplusia ni larvae parasitized by the braconid wasp, Chelonus near curvimaculatus, Insect Biochem. 21: 845.CrossRefGoogle Scholar
  77. Soldevila, A. I., and Webb, B. A., 1996, Expression of polydnavirus genes under polydnaviruspromoter regulation in vaculovirus recombinants, J. Gen. Virol. 77: 1379.PubMedCrossRefGoogle Scholar
  78. Soldevila, A. I., Heuston, S., and Webb, B. A., 1997, Purification and analysis of a polydnavirus gene product expressed using a poly-histidine baculovirus vector, Insect Biochem. Mol. Biol. 27: 201.PubMedCrossRefGoogle Scholar
  79. Soller, M., and Lanzrein, B., 1996, Polydnavirus and venom of the egg-larval parasitoid Chelonus inanitus (Braconidae) induced developmental arrest in the prepupa of its host Spodoptera littoralis (Noctuidae), J. Insect Physiol. 42: 471.CrossRefGoogle Scholar
  80. Spradling, A. C., and Mahowald, A. P., 1980, Amplification of genes for chorion proteins during oogenesis in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 77: 1069.CrossRefGoogle Scholar
  81. Stark, G. R., and Wahl, G. M., 1984, Gene amplification, Annu. Rev. Biochem. 53: 447.PubMedCrossRefGoogle Scholar
  82. Stoltz, D. B., 1981, A putative baculovirus in the ichneumonid parasitoid, Mesoleius tenthredinis, Can. J. Microbiol. 27: 116.PubMedCrossRefGoogle Scholar
  83. Stoltz, D. B., 1993, The polydnavirus life cycle, in: Parasites and Pathogens of Insects, vol. 1, Parasites (N. E. Beckage, S. N. Thompson, and B. A. Federici, eds.), pp. 80–101, Academic Press, New York.Google Scholar
  84. Stoltz, D. B, and Vinson, S. B, 1977, Baculovirus-like particles in the reproductive tract of female parasitoid wasps II: The genus Apanteles, Can. J. Microbiol. 23: 38.CrossRefGoogle Scholar
  85. Stoltz, D. B., and Vinson, S. B, 1979a, Viruses and parasitism in insects, Adv. Virus Res. 183: 195.Google Scholar
  86. Stoltz, D. B., and Vinson, S. B., 1979b, Penetration into caterpillar cells of virus-like particles injected during oviposition by parasitoid ichneumonid wasps, Can J. Microbiol. 25: 207.CrossRefGoogle Scholar
  87. Stoltz, D. B., and Whitfield, J. B., 1992, Viruses and virus-like entities in the parasite Hymenoptera, J. Hym. Res. 1: 125.Google Scholar
  88. Stoltz, D. B., and Xu, D., 1990, Polymorphisms in polydnavirus genomes, Can. J. Microbiol. 36: 538.PubMedCrossRefGoogle Scholar
  89. Stoltz, D. B., Guzo, D., and Cook, D., 1986, Studies on polydnavirus transmission, Virology 155: 120.PubMedCrossRefGoogle Scholar
  90. Stoltz, D. B., Guzo, D., Belland, E. R., Lucarotto, C. J., and MacKinnon, E. A., 1988, Venom promotes uncoating in vitro and persistence in vivo of DNA from a braconid polydnavirus, J. Gen. Virol. 69: 903.CrossRefGoogle Scholar
  91. Stoltz, D. B., Beckage, N. E., Blissard, G. W., Fleming, J. G. W., Krell, P. J., Theilmann, D. A., Summers, M. D., and Webb, B. A., 1995, Polydnaviridae, in: Virus Taxonomy (F. A. Murphy, C. M. Fauquet, D. H. L. Bishop, S. A. Ghabrial, A. W. Jarvis, G. P. Martelli, M. A. Mayo, and M. D. Summers, eds.), pp. 143–147, Springer-Verlag, Wein, New York.Google Scholar
  92. Strand, M. R., 1994, Microplitis demolitor polydnavirus infects and expresses in specific morphotypes of Pseudoplusia includens haemocytes, J. Gen. Virol. 75: 3007.PubMedCrossRefGoogle Scholar
  93. Strand, M. R., and Dover, B. A., 1991, Developmental disruption of Pseudoplusia includens and Heliothis virescens larvae by the calyx fluid and venom of Microplitis demolitor, Arch. Insect Physiol. Biochem. 14: 131.CrossRefGoogle Scholar
  94. Strand, M. R., and Pech, L. L., 1995a, Immunological basis for compatibility in parasitoid-host relationships, Annu. Rev. Entomol. 40: 31.CrossRefGoogle Scholar
  95. Strand, M. R., and Pech, L. L., 1995b, Microplitis demolitor polydnavirus induces apoptosis of a specific hemocyte morphotype in Pseudoplusia includens, J. Gen. Virol. 76: 283.CrossRefGoogle Scholar
  96. Strand, M. R., and Wong, E. A., 1991, The growth and role of Microplitis demolitor teratocytes in parasitism of Pseudoplusia includens, J. Insect Physiol. 37: 503.CrossRefGoogle Scholar
  97. Strand, M. R., McKenzie, D. I., Grassl, V., Dover, B. A., and Aiken, J. M., 1992, Persistence and expression of Microplitis demolitor polydnavirus in Pseudoplusia includens, J. Gen. Virol. 73: 1627.PubMedCrossRefGoogle Scholar
  98. Strand, M. R., Johnson, J. A., Noda, T., and Dover, B. A., 1994, Development and partial characterization of monoclonal antibodies to venom of the parasitoid Microplitis demolitor, Arch. Insect Biochem. Physiol. 26: 123.PubMedCrossRefGoogle Scholar
  99. Strand, M. R., Witherell, A. R., and Trudeau, D., 1997, Two Microplitis demolitor polydnavirus mRNAs expressed in hemocytes of Pseudoplusia includens contain a common cysteine-rich domain, J. Virol. 71: 2146.PubMedGoogle Scholar
  100. Summers, M. D., and Dib-Hajj, S. D., 1995, Polydnavirus-facilitated endoparasite protection against host immune defenses, Proc. Natl. Acad. Sci. USA 92: 29.PubMedCrossRefGoogle Scholar
  101. Tanaka, T., 1987a, Calyx and venom fluids of Apanteles karyai (Hymenoptera: Braconidae) as factors that prolong larval period of the host, Pseudoletia separata (Lepidopteran: Noctuidae), Ann. Entomol. Soc. Am. 80: 530.Google Scholar
  102. Tanaka, T., 1987b, Effect of the venom of the endoparasitoid, Apanteles kariyai, on the cellular defense reaction of the host Pseudalatia separata Walker, J. Insect Physiol. 33: 413.CrossRefGoogle Scholar
  103. Tanaka, T., and Vinson, S. B., 1991, Interactions of venoms with the calyx fluids of three parasitoids, Cardiochiles nigriceps, Microplitis croceipes (Hymenoptera: Braconidae) and Campoletis sonorensis (Hymenoptera: Ichneumonidae) in effecting a delay in pupation of Heliothis virescens (Lepidopteran: Noctuidae), Ann. Entomol. Soc. Am. 84: 87.Google Scholar
  104. Theilmann, D. A., and Summers, M. D., 1986, Molecular analysis of Campoletis sonorensis virus DNA in the lepidopteran host Heliothis virescens, J. Gen. Viral. 67: 1961.CrossRefGoogle Scholar
  105. Theilmann, D. A., and Summers, M. D., 1987, Physical analysis of the Campoletis sonorensis virus multipartite genome and identification of a family of tandemly repeated elements, J. Virol. 61: 2589.PubMedGoogle Scholar
  106. Theilmann, D. A., and Summers, M. D., 1988, Identification and comparison of Campoletis sonorensis virus transcripts expressed from four genomic segments in the insect hosts Campoletis sonorensis and Heliothis virescens, Virology 167: 329.PubMedGoogle Scholar
  107. Volkoff, A., Ravallec, M., Bossy, J., Cerutti, P., Rocher, J., Cerutti, M., and Devauchelle, G., 1995, The replication of Hyposoter didymator polydnavirus: Cytopathology of the calyx cells in the parasitoid, Biol. Cell 83: 1.CrossRefGoogle Scholar
  108. Wago, H., and Tanaka, T., 1989, Synergistic effects of calyx fluid and venom of Apanteles kariyai Watanabe (Hymenoptera: Braconidae) on the granular cells of Pseudoletia separata Walker (Lepidopteran Noctuidiae), Zool. Sci. 6: 691.Google Scholar
  109. Washburn, J. O., Kirkpatrick, B. A., and Volkman, L. E., 1996, Insect protection against viruses, Nature 383: 767.CrossRefGoogle Scholar
  110. Webb, B. A., and Cui, L., 1998, Relationships between polydnavirus genomes and viral gene expression, J. Insect Physiol. (in press).Google Scholar
  111. Webb, B. A., and Luckhart, S., 1994, Evidence for an early immunosuppressive role for related Campoletis sonorensis venom and ovarian proteins in Heliothis virescens, Arch. Insect Biochem. Physiol. 26: 147.PubMedCrossRefGoogle Scholar
  112. Webb, B. A., and Luckhart, S., 1996, Factors mediating short-term and long-term immunosuppression in a parasitized insect, J. Insect Physiol. 42: 33.CrossRefGoogle Scholar
  113. Webb, B. A., and Summers, M. D., 1990, Venom and viral expression products of the endoparasitic wasp Campoletis sonorensis share epitopes and related sequences, Proc. Natl. Acad. Sci. USA 87: 4961.PubMedCrossRefGoogle Scholar
  114. Webb, B. A., and Summers, M. D., 1992, Stimulation of polydnavirus replication by 20-hydroxyecdysone, Experientia 48: 1018.PubMedCrossRefGoogle Scholar
  115. Whitfield, J. B., 1990, Parasitoids, polydnaviruses and endosymbiosis, Parasitol. Today 6: 381.PubMedCrossRefGoogle Scholar
  116. Whitfield, J. B., 1997, Molecular and morphological data suggest a single origin of the polydnaviruses among braconid wasps, Naturwissenschaften 84: 502.CrossRefGoogle Scholar
  117. Whitfield, J. B., and Mason, W. R. M., 1994, Mendesellinae, a new subfamily of braconid wasps (Hymenoptera, Braconidae) with a review of relationships within the microgastoid assemblage, Syst. Entomol. 19: 61.CrossRefGoogle Scholar
  118. Xu, D., and Stoltz, D. B., 1991, Evidence for chromosomal location of polydnavirus DNA in the ichneumonid parasitoid Hyposoter fugitivis, J. Virol. 65: 6693.PubMedGoogle Scholar
  119. Xu, D., and Stoltz, D. B., 1993, Polydnavirus genome segment families in the ichneumonid parasitoid Hyposoter fugitivis, J. Virol. 67: 1340.PubMedGoogle Scholar
  120. Yamanaka, A., Hayakawa, Y., Noda, H., Nakashima, N., and Watanabe, H., 1996, Characterization of polydnavirus-encoded RNA in parasitized armyworm larvae, Insect Biochem. Mol. Biol. 5: 529.CrossRefGoogle Scholar
  121. Zhang, D., and Dahlman, D. L., 1989, Microplitis croceipes teratocytes cause developmental arrest of Heliothis virescens larvae, Arch. Insect Biochem. Physiol. 12: 51.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Bruce A. Webb
    • 1
  1. 1.Department of EntomologyUniversity of KentuckyLexingtonUSA

Personalised recommendations