Advertisement

Lactogenic Immunity in Transgenic Mice Producing Recombinant Antibodies Neutralizing Coronavirus

  • J. Castilla
  • I. Sola
  • B. Pintado
  • J. M. Sánchez-Morgado
  • L. Enjuanes
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 440)

Abstract

Protection against coronavirus infections can be provided by the oral administration of virus neutralizing antibodies. To provide lactogenic immunity, eighteen lines of transgenic mice secreting a recombinant IgG, monoclonal antibody (rIgG1) and ten lines of transgenic mice secreting recombinant IgA monoclonal antibodies (rIgA) neutralizing transmissible gastroenteritis coronavirus (TGEV) into the milk were generated. Genes encoding the light and heavy chains of monoclonal antibody (MAb) 6A.C3 were expressed under the control of regulatory sequences derived from the mouse genomic DNA encoding the whey acidic protein (WAP) and beta-lactoglobulin (BLG), which are highly abundant milk proteins. The MAb 6A.C3 binds to a highly conserved epitope present in coronaviruses of several species. This MAb does not allow the selection of neutralization escaping virus mutants. The antibody was expressed in the milk of transgenic mice with titers of one million as determined by RIA, and neutralized TGEV infectivity by one million fold corresponding to immunoglobulin concentrations of 5 to 6 mg per ml. Matrix attachment regions (MAR) sequences were not essential for rIgG1 transgene expression, but co-microinjection of MAR and antibody genes led to a twenty to ten thousand-fold increase in the antibody titer in 50% of the rIgG1 transgenic animals generated. Co-microinjection of the genomic BLG gene with rIgA light and heavy chain genes led to the generation of transgenic mice carrying the three transgenes. The highest antibody titers were produced by transgenic mice that had integrated the antibody and BLG genes, although the number of transgenic animals generated does not allow a definitive conclusion on the enhancing effect of BLG co-integration. Antibody expression levels were transgene copy number independent and integration site dependent. The generation of transgenic animals producing virus neutralizing antibodies in the milk could be a general approach to provide protection against neonatal infections of the enteric tract.

Keywords

Transgenic Mouse Expression Cassette Recombinant Antibody Immunoglobulin Gene Whey Acidic Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bonifer, C., Vidal, M., Grosveld, F., and Sippel, A. E., 1990, Tissue specific and protein position independent expression of the complete gene domain for chicken lysozyme in transgenic mice, EMBO J. 9: 2843–2848.PubMedGoogle Scholar
  2. Castilla, J., Pintado, B., Sola, I., Sánchez-Morgado, J. M., Hennighausen, L., and Enjuanes, L., 1998, Engineering lactogenic immunity in transgenic mice secreting virus neutralizing antibodies in the milk, Nat. Biotech. 16: 349–353.CrossRefGoogle Scholar
  3. Castilla, J., Sola, I., and Enjuanes, L., 1997, Interference of coronavirus infection by expression of immunoglobulin G (IgG) or IgA virus-neutralizing antibodies, J. Virol. 71: 5251–5258.PubMedGoogle Scholar
  4. Clark, A. J., Archibald, A. L., McClenaghan, M., Simons, J. P., Wallace, R., and Whitelaw, C. B. A., 1993, Enhancing the efficiency of transgene expression, Transg. Res. Soc. Lond. 339: 225–232.CrossRefGoogle Scholar
  5. Clark, A. J., Cowper, A., Wallace, R., Wright, G., and Simons, J. P., 1992, Rescuing transgene expression by co-integration, Biotechnology 10: 1450–1454.PubMedCrossRefGoogle Scholar
  6. Correa, I., Gebauer, F., Bullido, M. J., Suñé, C., Baay, M. F. D., Zwaagstra, K. A., Posthumus, W. P. A., Lenstra, J. A., and Enjuanes, L., 1990, Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus, J. Gen. Virol. 71: 271–279.PubMedCrossRefGoogle Scholar
  7. Correa, I., Jiménez, G., Suñé, C., Bullido, M. J., and Enjuanes, L., 1988, Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus, Virus. Res. 10: 77–94.PubMedCrossRefGoogle Scholar
  8. Delmas, B., and Laude, H., 1990, Assembly of coronavirus spike protein into trimers and its role in epitope expression, J. Virol. 64: 5367–5375.PubMedGoogle Scholar
  9. Enjuanes, L., and Van der Zeijst, B. A. M., 1995, Molecular basis of transmissible gastroenteritis coronavirus epidemiology. In “The Coronaviridae” (S. G. Siddell, Ed.), pp. 337–376. Plenum Press, New York.Google Scholar
  10. Gebauer, F., Posthumus, W. A. P., Correa, I., Suñé, C., Sánchez, C. M., Smerdou, C., Lenstra, J. A., Meloen, R., and Enjuanes, L., 1991, Residues involved in the formation of the antigenic sites of the S protein of transmissible gastroenteritis coronavirus, Virology 183: 225–238.PubMedCrossRefGoogle Scholar
  11. Hennighausen, L. G., and Sippel, A. E., 1982, Mouse whey acidic protein is a novel member of the family of four-disulfide core proteins, Nuc. Acid. Res. 10: 2677–2684.CrossRefGoogle Scholar
  12. Jiménez, G., Correa, I., Melgosa, M. P., Bullido, M. J., and Enjuanes, L., 1986, Critical epitopes in transmissible gastroenteritis virus neutralization, J. Virol. 60: 131–139.PubMedGoogle Scholar
  13. Mazanec, M. B., Huang, Y. T., Pimplikar, S. W., and Lamm, M. E., 1996, Mechanisms of inactivation of respiratory viruses by IgA, including intraepithelial neutralization, Sem. Virol. 7: 285–292.CrossRefGoogle Scholar
  14. Saif, L. J., and Wesley, R. D., 1992, Transmissible gastroenteritis. Seventh ed. In “Diseases of Swine” (A. D. Leman, B. E. Straw, W. L. Mengeling, S. D’Allaire, and D. J. Taylor, Eds.), pp. 362–386. Wolfe Publishing Ltd, Ames. Iowa.Google Scholar
  15. Sanchez, C. M., Gebauer, F., Suñé, C., Méndez, A., Dopazo, J., and Enjuanes, L., 1992, Genetic evolution and tropism of transmissible gastroenteritis coronaviruses, Virology 190: 92–105.PubMedCrossRefGoogle Scholar
  16. Sanchez, C. M., Jiménez, G., Laviada, M. D., Correa, I., Suñé, C., Bullido, M. J., Gebauer, F., Smerdou, C., Callebaut, P., Escribano, J. M., and Enjuanes, L., 1990, Antigenic homology among coronaviruses related to transmissible gastroenteritis virus, Virology 174: 410–417.PubMedCrossRefGoogle Scholar
  17. Sola, I., Castilla, J., Pintado, B., Sánchez-Morgado, J. M., Whitelaw, B., Clark, J., and Enjuanes, L., 1998, Transgenic mice secreting coronavirus neutralizing antibodies into the milk, J. Virol. 72: 3762–3772.PubMedGoogle Scholar
  18. Torres, J. M., Sánchez, C. M., Suñé, C., Smerdou, C., Prevec, L., Graham, F., and Enjuanes, L., 1995, Induction of antibodies protecting against transmissible gastroenteritis coronavirus (TGEV) by recombinant adenovirus expressing TGEV spike protein, Virology 213: 503–516.PubMedCrossRefGoogle Scholar
  19. Whitelaw, C. B. A., Archibald, A. L., Harris, S., McClenaghan, M., Simons, L. P., and Clark, A. J., 1991, Targeting expression to the mammary gland: intronic sequences can enhance the efficiency of gene expression in transgenic mice, Transgenic Res. 1: 3–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • J. Castilla
    • 1
  • I. Sola
    • 1
  • B. Pintado
    • 2
  • J. M. Sánchez-Morgado
    • 1
  • L. Enjuanes
    • 1
  1. 1.Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSICCampus Universidad AutónomaMadridSpain
  2. 2.Department of Animal Reproduction, INIAMadridSpain

Personalised recommendations