Advertisement

The Spike Protein of Transmissible Gastroenteritis Coronavirus Controls the Tropism of Pseudorecombinant Virions Engineered Using Synthetic Minigenomes

  • A. Izeta
  • C. M. Sanchez
  • C. Smerdou
  • A. Mendez
  • S. Alonso
  • M. Balasch
  • J. Plana-Durán
  • L. Enjuanes
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 440)

Abstract

The minimum sequence required for the replication and packaging of transmissible gastroenteritis virus (TGEV)-derived minigenomes has been determined. To this end, cDNAs encoding defective RNAs have been cloned and used to express heterologous spike proteins, to determine the influence of the peplomer protein in the control of TGEV tropism.

A TGEV defective interfering RNA of 9.7 kb (DI-C) was isolated, and a cDNA complementary to DI-C RNA was cloned under the control of T7 promoter. In vitro transcribed DI-C RNA was replicated in trans upon transfection of helper virus-infected cells. A collection of DI-C deletion mutants (TGEV minigenomes) was generated and tested for their ability to be replicated and packaged. The size of the smallest minigenome replicated in trans was 3.3 kb. The rescue system was used to express the spike protein of an enteric TGEV isolate (Cll) using as helper virus a TGEV strain (C8) that replicates very little in the gut. A mixture of two pseudorecombinant viruses containing either the helper virus genome or the minigenome was obtained. These pseudorecombinants display in the surface the S proteins from the enteric and the attenuated virus, and showed 104-fold increase in their gut replication levels as compared to the helper isolate (C8). In addition, the pseudorecombinant virus increased its enteric pathogenicity as compared to the C8 isolate.

Keywords

Infectious Bronchitis Virus Hepatitis Delta Virus Helper Virus Mouse Hepatitis Virus Spike Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ballesteros, M. L., Sanchez, C. M., and Enjuanes, L., 1997, Two amino acid changes at the N-terminus of transmissible gastroenteritis Coronavirus spike protein result in the loss of enteric tropism, Virology 227: 378–388.PubMedCrossRefGoogle Scholar
  2. Eleouet, J. F., Rasschaert, D., Lambert, P., Levy, L., Vende, P., and Laude, H., 1995, Complete sequence (20 kilo-bases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus, Virology 206: 817–822.PubMedCrossRefGoogle Scholar
  3. Enjuanes, L., and Van der Zeijst, B. A. M., 1995, Molecular basis of transmissible gastroenteritis Coronavirus epidemiology, in: The Coronaviridae (S. G. Siddell, Ed.), Plenum Press, New York, pp. 337–376.Google Scholar
  4. Lai, M. M. C, and Cavanagh, D., 1997, The molecular biology of coronaviruses, Adv. Vir. Res. 48: 1–100.CrossRefGoogle Scholar
  5. Liao, C.-L., and Lai, M. M. C, 1994, Requirement of 5’-end genomic sequence as an upstream cis-acting element for Coronavirus subgenomic mRNA transcription, J. Virol. 68(8): 4727–4737.PubMedGoogle Scholar
  6. Liao, C.-L., Zhang, X., and Lai, M. M. C, 1995, Coronavirus defective-interfering RNA as an expression vector: the generation of a pseudorecombinant mouse hepatitis virus expressing hemagglutinin-esterase, Virology 208:319–327.PubMedCrossRefGoogle Scholar
  7. Lin, Y. J., and Lai, M. M. C, 1993, Deletion mapping of a mouse hepatitis virus defective interfering RNA reveals the requirement of an internal and discontiguous sequence for replication, J. Virol. 67: 6110–6118.PubMedGoogle Scholar
  8. Lunney, J. K., Pescovitz, M. D., and Sachs, D. H., 1986, The swine major histocompatibility complex: its structure and function, in: Swine in biomedical research (M. E. Tumbleson, Ed.), Plenum Press, New York, pp. 1821–1836.Google Scholar
  9. McClurkin, A. W., and Norman, J. O., 1966, Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis, Can. J. Comp. Vet. Sci. 30: 190–198.Google Scholar
  10. Mendez, A., Smerdou, C, Izeta, A., Gebauer, F., and Enjuanes, L., 1996, Molecular characterization of transmissible gastroenteritis Coronavirus defective interfering genomes: Packaging and heterogeneity, Virology 217: 495–507.PubMedCrossRefGoogle Scholar
  11. Pattnaik, A. K., Ball, L. A., LeGrone, A. W., and Wertz, G.W., 1992, Infectious defective interfering particles of VSV from transcripts of a cDNA clone, Cell 69: 1011–1020.PubMedCrossRefGoogle Scholar
  12. Penzes, Z., Wroe, C, Brown, T. D. K., Britton, P., and Cavanagh, D., 1996, Replication and packaging of Coronavirus infectious bronchitis virus defective RNAs lacking a long open reading frame, J. Virol. 70: 8660–8668.PubMedGoogle Scholar
  13. Sachs, D., Leight, G., Cone, J., Schwarz, S., Stuart, L., and Rosemberg, S., 1976, Transplantation in miniature swine. I. Fixation of the major histocompatibility complex, Transplantation 22: 559–567.PubMedCrossRefGoogle Scholar
  14. Sambrook, J., Fritsch, E. F., and Maniatis, T., 1989, Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  15. Sanchez, C. M., Jiménez, G., Laviada, M. D., Correa, I., Suñé, C, Bullido, M. J., Gebauer, F., Smerdou, C, Callebaut, P., Escribano, J. M., and Enjuanes, L., 1990, Antigenic homology among coronaviruses related to transmissible gastroenteritis virus, Virology 174: 410–417.PubMedCrossRefGoogle Scholar
  16. Sanchez, C. M., Gebauer, F., Suñé, C, Mendez, A., Dopazo, J., and Enjuanes, L., 1992, Genetic evolution and tropism of transmissible gastroenteritis coronaviruses, Virology 190: 92–105.PubMedCrossRefGoogle Scholar
  17. Sanchez, C. M., Ballesteros, M. L., and Enjuanes, L., 1997, Tropism, virulence and primary genome structure in a cluster of transmissible gastroenteritis Coronavirus derived from the Purdue isolate, Submitted for publication.Google Scholar
  18. Zhang, X., Hinton, D. R., Cua, D. J., Stohlman, S. A., and Lai, M. M. C, 1997, Expression of interferon-γ by a Coronavirus defective-interfering RNA vector and its effect on viral replication, spread, and pathogenicity, Virology 233: 327–338.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • A. Izeta
    • 1
  • C. M. Sanchez
    • 1
  • C. Smerdou
    • 1
  • A. Mendez
    • 1
  • S. Alonso
    • 1
  • M. Balasch
    • 2
  • J. Plana-Durán
    • 2
  • L. Enjuanes
    • 1
  1. 1.Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSICCampus Universidad Autónoma, Canto BlancoMadridSpain
  2. 2.Fort Dodge VeterinariaVall de BianyaGironaSpain

Personalised recommendations