The Arterivirus Replicase

The Road from RNA to Protein(s), and Back Again
  • Eric J. Snijder
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 440)


About seven years ago, the identification of arteriviruses (den Boon et al., 1991) and toroviruses (Snijder et al., 1990) as distant relatives of “traditional” coronaviruses incited a discussion on the taxonomic position of these three virus groups (Cavanagh et al., 1994). As a first result, the genus torovirus was included in the Coronaviridae family (Cavanagh et al., 1993). The taxonomic debate ended at the 1996 International Congress of Virology in Jerusalem with the establishment of the Arteriviridae family and the order of the Ni–dovirales, containing the Coronaviridae and Arteriviridae families (Cavanagh, 1997). These re–classifications acknowledged both the many unique properties of arteriviruses and coronaviruses as well as their intriguing ancestral relationship at the level of replicase genes, genome organization, and replication strategy (Snijder and Horzinek, 1993; Snijder and Spaan, 1995; Cavanagh, 1997; de Vries et al., 1997; Snijder and Meulenberg, 1998).


Mouse Hepatitis Virus Equine Arteritis Virus Infectious cDNA Clone Murine Coronavirus Nucleocapsid Protein Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baker, S. C., Yokomori, K., Dong, S., Carlisle, R., Gorbalenya, A. E., Koonin, E. V., andLai, M. M., 1993, Identification of the catalytic sites of a papain–like cysteine proteinase of murine Coronavirus, J. Virol. 67:6056–6063.PubMedGoogle Scholar
  2. Bazan, J. F., and Fletterick, R. J., 1988, Viral cysteine proteases are homologous to the trypsin–like family of serine proteases: structural and functional implications, Proc. Natl. Acad. Sei. USA 85:7872–7876.CrossRefGoogle Scholar
  3. Bazan, J. F., and Fletterick, R. J., 1990, Structural and catalytic models of trypsin–like viral proteases, Semin. Virol. 1:311–322.Google Scholar
  4. Bonilla, P. J., Gorbalenya, A. E., and Weiss, S. R., 1994, Mouse hepatitis virus strain A59 RNA polymerase gene ORF la: heterogeneity among MHV strains, Virology 198:736–740.PubMedCrossRefGoogle Scholar
  5. Bonilla, P. J., Hughes, S. A., Pinon, J. D., and Weiss, S. R., 1995, Characterization of the leader papain-like proteinase of MHV A–59: identification of a new in vitro cleavage site, Virology 209:489–497.PubMedCrossRefGoogle Scholar
  6. Bordier, C, 1981, Phase separation of integral membrane proteins in Triton X-114 solution, J. Biol. Chem. 256:1604–1607.PubMedGoogle Scholar
  7. Boyer, J. C. and Haenni, A. L., 1994, Infectious transcripts and cDNA clones of RNA viruses, Virology 198:415–426.PubMedCrossRefGoogle Scholar
  8. Bredenbeek, P. J., and Rice, C. M., 1992, Animal RNA virus expression systems, Semin. Virol. 3:297–310.Google Scholar
  9. Breese, S. S.,Jr. and McCollum, W. H., 1970, Proceedings of the 2nd International Conference on Equine Infectious Diseases (Bryans, J. T. and Gerber, H. Eds.) S. Karger, Basel, pp. 133–139.Google Scholar
  10. Brierley, I., 1995, Ribosomal frameshifting on viral RNAs, J Gen. Virol. 76:1885–1892.PubMedCrossRefGoogle Scholar
  11. Brown, T. D. K., and Bri-erley, I., 1995, The Coronaviridae (Siddell, S. G. Ed.) Plenum Press, New York. pp. 191–217.Google Scholar
  12. Cavanagh, D., 1997, Nidovirales: a new order comprising Coronaviridae and Arteriviridae, Arch. Virol. 142:629–633.PubMedGoogle Scholar
  13. Cavanagh, D., Brian, D. A., Brinton, M. A., Enjuanes, L., Holmes, K. V, Horzinek, M. C, Lai, M. M. C., Laude, H., Plagemann, P. G. W., Siddell, S. G., Spaan, W. J. M., Taguchi, F., and Talbot, P. J., 1993, The coronaviridae now comprises two genera, Coronavirus and torovirus: report of the coronaviridae study group, Adv. Exp. Med. Biol. 342:255–257.PubMedCrossRefGoogle Scholar
  14. Cavanagh, D., Brian, D. A., Brinton, M. A., Enjuanes, L., Holmes, K. V., Horzinek, M. C., Lai, M. M. C., Laude, H., Plagemann, P. G. W., Siddell, S. G., Spaan, W. J. M., Taguchi, F., and Talbot, P. J., 1994, Revision of the taxonomy of the Coronavirus, Torovirus, and Arterivirus genera, Arch. Virol. 135:227–237.CrossRefGoogle Scholar
  15. de Groot, R. J., Hardy, W. R., Shirako, Y., and Strauss, J. H., 1990, Cleavage-site preferences of Sindbis virus polyproteins containing the non–structural proteinase. Evidence for temporal regulation of polyprotein processing in vivo, EMBO J. 9:2631–2638.PubMedGoogle Scholar
  16. de Vries, A. A. F., Horzinek, M. C, Rottier, P. J. M., and de Groot, R. J., 1997, The genome organization of the Ni-dovirales: similarities and differences between arteri-, toro-, and coronaviruses, Semin. Virol, in press.Google Scholar
  17. den Boon, J. A., Snijder, E. J., Chirnside, E. D., de Vries, A. A. F., Horzinek, M. C, and Spaan, W. J. M., 1991, Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily, J. Virol. 65:2910–2920.Google Scholar
  18. den Boon, J. A., Faaberg, K. S., Meulenberg, J. J. M., Wassenaar, A. L. M., Plagemann, P. G. W., Gorbalenya, A. E., and Snijder, E. J., 1995a, Processing and evolution of the N-terminal region of the arterivirus replicase ORF la protein: identification of two papainlike cysteine proteases, J. Virol. 69:4500–4505.Google Scholar
  19. den Boon, J. A., Spaan, W. J. M., and Snijder, E. J., 1995b, Equine arteritis virus subgenomic RNA transcription: UV inactivation and translation inhibition studies, Virology 213:364–372.CrossRefGoogle Scholar
  20. den Boon, J. A., Kleijnen, M. F., Spaan, W. J. M., and Snijder, E. J, 1996, Equine arteritis virus subgenomic mRNA synthesis: analysis of leader-body junctions and replicative-form RNAs, J. Virol. 70:4291–4298.Google Scholar
  21. Dougherty, W. G., and Semler, B. L., 1993, Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes, Microbiol. Rev. 57:781–822.PubMedGoogle Scholar
  22. Fujiki, Y, Hubbard, A. L., Fowler, S., and Lazarow, P. B., 1982, Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum, J. Cell Biol. 93:97–102.PubMedCrossRefGoogle Scholar
  23. Gao, H. Q., Schiller, J. J., and Baker, S. C., 1996, Identification of the polymerase polyprotein products p72 and p65 of the murine Coronavirus MHV JHM, Virus Res. 45:101–109.PubMedCrossRefGoogle Scholar
  24. Godeny, E. K., Chen, L., Kumar, S. N., Methven, S. L., Koonin, E. V., and Brinton, M. A., 1993, Complete genomic sequence and phylogenetic analysis of the lactate dehydrogenase–elevating virus (LDV), Virology 194:585–596.PubMedCrossRefGoogle Scholar
  25. Gorbalenya, A. E., and Snijder, E. J., 1996, Viral cysteine proteases, Perspect. Drug Discov. Design 6:64–86.CrossRefGoogle Scholar
  26. Gorbalenya, A. E., Donchenko, A. P., Blinov, V. M., and Koonin, E. V., 1989a, Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold, FEBS Lett. 243:103–114.PubMedCrossRefGoogle Scholar
  27. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P., and Blinov, V. M., 1989b, Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis, Nucleic Acids Res. 17:4847–4861.PubMedCrossRefGoogle Scholar
  28. Gorbalenya, A. E., Koonin, E. V., and Lai, M. M., 1991, Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses, FEBS Lett. 288:201–205.PubMedCrossRefGoogle Scholar
  29. Jacks, T., Madhani, H. D., Masiarz, F. R., and Varmus, H. E., 1988, Signals for ribosomal frameshifting in the Rous sarcoma virus gagpol region, Cell 55:447–458.PubMedCrossRefGoogle Scholar
  30. Jore, J., De Geus, B., Jackson, R. J., Pouwels, P. H., and Enger Valk, B. E., 1988, Poliovirus protein 3CD is the active protease for processing of the precursor protein Pl in vitro, J. Gen. Virol. 69:1627–1636.PubMedCrossRefGoogle Scholar
  31. Lee, H. J., Shieh, C. K., Gorbalenya, A. E., Koonin, E. V., La Monica, N., Tuler, J., Bagdzhadzhyan, A., and Lai, M. M. C., 1991, The complete sequence (22 kilobases) of murine Coronavirus gene 1 encoding the putative proteases and RNA polymerase, Virology 180: 567–582.PubMedCrossRefGoogle Scholar
  32. Lemm, J. A., and Rice, C. M., 1993a, Roles of nonstructural polyproteins and cleavage products in regulating Sindbis virus RNA replication and transcription, J. Virol. 67: 1916– 1926.PubMedGoogle Scholar
  33. Lemm, J. A., and Rice, C. M., 1993b, Assembly of functional Sindbis virus RNA replication complexes: requirement for coexpression of p 123 and p34, J. Virol. 67:1905–1915.PubMedGoogle Scholar
  34. Lemm, J. A., Rumenapf, T., Strauss, E. G., Strauss, J. H., and Rice, C. M., 1994, Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of minus-and plus-strand RNA synthesis, EMBO J. 13:2925–2934PubMedGoogle Scholar
  35. Liu, D. X. and Brown, T. D. K., 1995, Characterisation and mutational analysis of an ORF la-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus la/lb polyprotein, Virology 209:420–427.PubMedCrossRefGoogle Scholar
  36. Lu, Y., Lu, X., and Denison, M. R., 1995, Identification and characterization of a serine-like proteinase of the murine Coronavirus MHV-A59, J. Virol. 69:3554–3559.PubMedGoogle Scholar
  37. Meulenberg, J. J. M., Hulst, M. M., de Meijer, E. J., Moonen, P. L., den Besten, A., de Kluyver, E. P., Wensvoort, G., and Moormann, R. J. M., 1993, Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV, Virology 192:62–72.PubMedCrossRefGoogle Scholar
  38. Meulenberg, J. J. M., Bos-de Ruijter, J. N. A., Wensvoort, G., and Moormann, R. J. M., 1997, Infectious transcripts from cloned genome-length cDNA of porcine reproductive respiratory syndrome virus, J. Virol., submitted.Google Scholar
  39. Pol, J. M., Wagenaar, F., and Reus, J. E. G., 1997, Comparative morphogenesis of three PRRS virus strains, Vet. Microbiol 55:203–208.PubMedCrossRefGoogle Scholar
  40. Shirako, Y., and Strauss, J. H., 1994, Regulation of Sindbis virus RNA replication: uncleaved PI23 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from PI23 are required for efficient plus-strand RNA synthesis, J. Virol 68:1874–1885.PubMedGoogle Scholar
  41. Snijder, E. J., and Meulenberg, J. J. M., 1998, The molecular biology of arteriviruses, J. Gen. Virol., submitted.Google Scholar
  42. Snijder, E. J., and Spaan, W. J. M., 1995, The Coronaviridae (Siddell, S. G. Ed.) Plenum Press, New York. pp. 239–255.Google Scholar
  43. Snijder, E. J., den Boon, J. A., Bredenbeek, P. J., Horzinek, M. C., Rijnbrand, R., and Spaan, W. J., 1990, The car-boxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related, Nucleic Acids Res 18:4535–4542.PubMedCrossRefGoogle Scholar
  44. Snijder, E. J., Wassenaar, A. L. M, and Spaan, W. J. M, 1992, The 5’ end of the equine arteritis virus replicase gene encodes a papainlike cysteine protease, J. Virol. 66:7040–7048.PubMedGoogle Scholar
  45. Snijder, E. J., Wassenaar, A. L. M., and Spaan, W. J. M., 1994, Proteolytic processing of the replicase ORF la protein of equine arteritis virus, J. Virol. 68:5755–5764.PubMedGoogle Scholar
  46. Snijder, E. J., Wassenaar, A. L. M., Spaan, W. J. M., and Gorbalenya, A. E., 1995, The arterivirus nsp2 protease, an unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases, J. Biol Chem. 270:16671–16676.PubMedCrossRefGoogle Scholar
  47. Snijder, E. J., Wassenaar, A. L. M., van Dinten, L. C., Spaan, W J. M., and Gorbalenya, A. E. 1996. The arterivirus nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine proteases, J. Biol. Chem. 271:4864–4871.PubMedCrossRefGoogle Scholar
  48. Snijder, E. J. and Horzinek, M. C., 1993, Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily, J. Gen. Virol 74:2305–2316.PubMedCrossRefGoogle Scholar
  49. Stueckemann, J. A., Holth, M., Swart, W. J., Kowalchyk, K., Smith, M. S., Wolstenholme, A. J., Cafruny, W. A., and Plagemann, P. G. W., 1982, Replication of lactate dehydrogenase-elevating virus in macrophages. 2. mechanism of persistent infection in mice and cell culture, J. Gen. Virol 59:263–272.PubMedCrossRefGoogle Scholar
  50. van Dinten, L. C., Wassenaar, A. L. M., Gorbalenya, A. E., Spaan, W. J. M., and Snijder, E. J., 1996, Processing of the equine arteritis virus replicase ORF lb protein: identification of cleavage products containing the putative viral polymerase and helicase domains, J. Virol. 70:6625–6633.PubMedGoogle Scholar
  51. van Dinten, L. C., den Boon, J. A., Wassenaar, A. L. M., Spaan, W. J. M., and Snijder, E. J., 1997, An infectious arterivirus cDNA clone: identification of a replicase point mutation which abolishes discontinuous mRNA transcription, Proc. Natl Acad. Sci. USA 94:991–996.PubMedCrossRefGoogle Scholar
  52. Wassenaar, A. L. M., Spaan, W. J. M., Gorbalenya, A. E., and Snijder, E. J., 1997, Alternative proteolytic processing of the arterivirus ORFla polyprotein: evidence that nsp2 acts as a cofactor for the nsp4 serine protease, J. Virol., submitted.Google Scholar
  53. Wood, O., Tauraso, N. M., and Liebhaber, H. 1970. Electron microscopic study of tissue cultures infected with simian haemorrhagic fever virus, J. Gen. Virol 7:129–136.PubMedCrossRefGoogle Scholar
  54. Ypma-Wong, M. F., Dewalt, P. G., Johnson, V. H., Lamb, J. G., and Semler, B. L,. 1988, Protein 3CD is the major poliovirus proteinase responsible for cleavage of the PI capsid precursor, Virology 166:265–270.PubMedCrossRefGoogle Scholar
  55. Ziebuhr, J., Herold, J., and Siddell, S. G., 1995, Characterization of a human Coronavirus (strain 229E) 3C-like proteinase activity, J. Virol. 69:4331–4338.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Eric J. Snijder
    • 1
  1. 1.Department of VirologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations