Molecular Basis of Genetic Variability in RNA Viruses

  • Jozef J. Bujarski


The variability of genome organization, so essential for RNA virus evolution, among more than 900 plant RNA viruses (56 genera) is enormous (Gibbs et al., 1997). In fact, the potential for variation of the RNA genome is so large, that a term of quasispecies was proposed to reflect the nature of RNA virus populations (Domingo et al., 1995, Eigen, 1993, 1996; Holland et al., 1992; Moya and Garcia-Arenal, 1995). This concept predicts that a single virus isolate is not a single RNA sequence but rather a mixture of mutant sequences averaging around a consensus sequence. The biological selection acts upon the quasispecies to allow variants with greatly improved fitness to arise and predominate in the population. When the host or other characteristics of the environment change, such shifts in selection pressure can be easily overcome by changing the predominant sequences of the RNA genome. The biological implications of the quasispecies nature of plant RNA viruses are profoundly instrumental for rapid viral adaptation to new environments.


Plant Virus Alfalfa Mosaic Virus Brome Mosaic Virus Cowpea Chlorotic Mottle Virus Defective Interfere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allison, R. C., Thompson, C., and Ahlquist, P. (1990). Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection. Proc. Natl. Acad. Sci. USA 87, 1820–1824.PubMedGoogle Scholar
  2. Allison, R., Janda, M., and Ahlquist, P. (1988). Infectious in vitro transcripts from cowpea chlorotic mottle virus cDNA clones and exchange of individual components with brome mosaic virus. J. Virol. 62, 3581–3588.PubMedGoogle Scholar
  3. Bancroft, J. B., and Lane, L. C. (1973). Genetic analysis of cowpea chlorotic mottle virus and brome mosaic virus. J. Gen. Virol. 19, 381–389.Google Scholar
  4. Beachy, R. N. (1993). Transgenic resistance to plant viruses. Semin. Virol. 4, 327–331.Google Scholar
  5. Bertholet, C. E., van Meir, B., Heggeler-Bordier, T., and Wittek, R. (1987). Vaccinia virus produces late mRNAs by discontinuous synthesis. Cell 50, 153–162.PubMedGoogle Scholar
  6. Boccard, F., and Baulcombe, D. C. (1993). Mutational analysis of cis-acting sequences and gene function in RNA3 of cucumber mosaic virus. Virology 193, 563–578.PubMedGoogle Scholar
  7. Bouzoubaa, S., Niesbach-Klosgen, U., Jupin, I., Guilley, H., Richards, K. and Jonard, G. (1991). Shortened forms of beet necrotic yellow vien virus RNA3 and -4: Internal deletions and subgenomisc RNA. JGen. Viral. 72, 259–266Google Scholar
  8. Boyer, J. C., and Haenni, A. L. (1994). Infectious transcripts and cDNA clones of RNA viruses. Virology 198, 415–426.PubMedGoogle Scholar
  9. Bujarski, J. J., and Kaesberg, P. (1986). Genetic recombination in a multipartite plant virus. Nature 321, 528–531.PubMedGoogle Scholar
  10. Bujarski, J. J., and Dzianott, A. M. (1991). Generation and analysis of nonhomologous RNA-RNA recombinants in brome mosaic virus: Sequence complementarities at crossover sites. J Virol. 65, 4153–4159.PubMedGoogle Scholar
  11. Bujarski, J. J., Nagy, P. D., and Flasinski, S. (1994). Molecular studies of genetic RNA-RNA recombination in brome mosaic virus. Adv. Vir. Res. 43, 275–302.Google Scholar
  12. Bujarski, J. J., and Nagy, P. D. (1994). Genetic RNA-RNA recombination in positive-stranded RNA viruses of plants. In “Homologous Recombination in Plants” (J. Paszkowski, Ed.), pp. 1–24. Kluwer Academic Publisher, Dordrecht.Google Scholar
  13. Burgyan, J., Grieco, F., and Russo, M. (1989). A defective interfering RNA molecule in cymbidium ringspot virus infections. J. Gen. Virol. 70, 235–239.Google Scholar
  14. Cascone, P. J., Carpenter, C. D., Li, X. H., and Simon A. E.. (1990). Recombination between satellite RNAs of turnip crinkle virus. EMBO J. 9, 1709–1715.PubMedGoogle Scholar
  15. Cascone, P. J., Haydar, T. F., and Simon, A. E. (1993). Sequences and structures required for recombination between virus-associated RNAs. Science 260, 801–805.PubMedGoogle Scholar
  16. Cattaneo, R. (1991). Different types of messenger RNA editing. Annu. Rev. Genet. 25, 71–88.PubMedGoogle Scholar
  17. Chapman, S. G., Hills, J., Watts, A., and Baulcombe, D. (1992). Mutational analysis of the coat protein gene of potato virus X: Effects on virion morphology and viral pathogenicity. Virology 191, 223–230.PubMedGoogle Scholar
  18. Chen, J., MacFarlane, S. S., and Wilson, T. M. A. (1994). Detection and sequence analysis of a spontaneous deletion mutant of soil-borne wheat mosaic virus RNA2 associated with increased symptom severity. Virology 202, 921–929.PubMedGoogle Scholar
  19. Clay, K., and Kover, P. X. (1996). The red queen hypothesis and plant/pathogen interactions. Annu. Rev. Phytopathol. 34, 29–50.PubMedGoogle Scholar
  20. Dawson, W. O., Bubrick, P., and Grantham, G. L. (1988). Modifications of tobacco mosaic virus Coat protein gene affecting replication, movement and symptomatology. Phytopathology 78, 783–789.Google Scholar
  21. Dawson, W. O., Lewandowski, D. J., Hilf, M. E., Bubrick, P., Raffo, A. J., Shaw, J. J., Grantham, G. L., and Desjardins, P. R. (1989). A tobacco mosaic virus-hybrid expresses and loses an added gene. Virology 172, 285–292.PubMedGoogle Scholar
  22. De Jong, W., and Ahlquist, P. (1991). Bromovirus host specificity and systemic infection. Semin. Virol. 2, 97–105.Google Scholar
  23. Deom, C. M., and He, X. Z. (1997). Second-site reversion of a dysfunctional mutation in a conserved region of the tobacco mosaic tobamovirus movement protein. Virology 232, 13–18.PubMedGoogle Scholar
  24. Dolja, V. V., and Carrington, J. C. (1992). Evolution of postive-strand RNA viruses. Semin. Virol. 3, 315–26Google Scholar
  25. Dolja, V. V., Haldeman, R., Robertson, N. L., Dougherty, W. G., and Carrington, J. (1994). Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBOJ. 13, 1482–1491.Google Scholar
  26. Dolja, V. V., Haldeman-Cahill, R., Montgomery, A. E., Vandenbosch, K. A., and Carrington, J. C. (1995). Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206, 1007–1016.PubMedGoogle Scholar
  27. Domingo, E., Holland, J., Biebricher, C., and Eigen, M. (1995). Quasi-species: the concept and the word. In “Molecular Basis of Virus Evolution” (A. J. Gibbs, C. H. Calisher, and F. Garcia-Arenal, Eds.), pp. 181–91. Cambridge University Press, Cambridge.Google Scholar
  28. Durbin, R. K., and Stollar, V. (1986). Sequence analysis of the E2 gene of a hyperglycosylated, host restricted mutant of Sindbis virus and estimation of mutation rate from frequency of revertants. Virology 154, 135–43PubMedGoogle Scholar
  29. Edwards, M. C., Petty, I. T. D., and Jackson, A. O. (1992). RNA recombination in the genome of barley stripe mosaic virus. Virology 189, 389–392.PubMedGoogle Scholar
  30. Eigen, M. (1993). Viral quasispecies. Sci. Am. July,42–49.Google Scholar
  31. Eigen, M. (1996). On the nature of virus quasispecies. Trends Microbial. 4, 16–17.Google Scholar
  32. Figlerowicz, M., Nagy, P. D., and Bujarski, J. J. (1997). A mutation in the putative RNA polymerase gene inhibits nonhomologous, but not homologous, genetic recombination in an RNA virus. Proc. Natl. Acad. Sci. USA 94, 2073–2078.PubMedGoogle Scholar
  33. Figlerowicz, M., Nagy, P. D., Tang, N., Kao, C. C., and Bujarski, J. J. (1998). Mutations in the N-terminus of the brome mosaic virus polymerase affect genetic RNA-RNA recombination. J. Virol., in press.Google Scholar
  34. Flasinski, S., Dzianott, A., Pratt, S., and Bujarski, J. J. (1995). Mutational analysis of the coat protein gene of brome mosaic virus: Effects on replication and movement in barley and in Chenopodium hybridum. Mol. Plant-Microbe Interact. 8, 23–31.PubMedGoogle Scholar
  35. Gibbs,A.(1987).Molecular evolution of viruses; “trees”, “clocks”, and “modules”.J. Cell Sci. Suppl7,319–337.PubMedGoogle Scholar
  36. Gibbs, M. (1995). The luteovirus super-group: Rampart recombination and persistent partnerships. In “Molecular Basis of Virus Evolution”, pp. 351–368. Cambridge University Press, Cambridge.Google Scholar
  37. Gibbs, M., Armrstrong, J., Weiller, G. F., and Gibbs, A. J. (1997). Virus evolution; the past, a window on the future? In “ Virus-Resistant Transgenic Plants: Potential Ecological Impact, (M. Tepfer and E. Balazs, Eds.). pp. 1–17. Springer -Verlag, Berlin.Google Scholar
  38. Goldbach, R. (1986). Molecular evolution of plant RNA viruses. Annu. Rev. Phytopathol. 24, 289–310.Google Scholar
  39. Goldbach, R, and Peters, D. (1994). Possible causes of the emergence of tospovirus diseases. Semin. Virol. 5, 113–120.Google Scholar
  40. Graves, M. G., and Roosinck, M. J. (1995). Characterization of defective RNAs derived from RNA 3 of the Fny strain of cucumber mosaic cucumovirus. J. Virol. 69, 4746–4751.PubMedGoogle Scholar
  41. Graves, M. V., Pogany, J., and Romero, J. (1996). Defective interfering RNAs and defective viruses associated with multipartite RNA viruses of plants. Semin. Virol. 7, 399–408.Google Scholar
  42. Hacker, D. L., Petty, I. T. D., Wei, N., and Morris, T. J. (1992). Turnip crinkle virus genes required for RNA replication and virus movement. Virology 186, 1–8.PubMedGoogle Scholar
  43. Hillman, B. I., Carrington, J. C., and Morris, T. J. (1987). A defective interfering RNA that contains a mosaic of a plant virus genome. Cell 51, 427–433.PubMedGoogle Scholar
  44. Hodgman, T. C., and Zimmern, D. (1987). Evolution of RNA viruses. In “RNA Genetics” (J. J. Holland, E. Domingo, and P. Ahlquist, Eds). CRC Press, Boca Raton, Fla.Google Scholar
  45. Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., and Van de Pol, S. (1982). Rapid evolution of RNA genomes. Science 215, 1577–1585.PubMedGoogle Scholar
  46. Hilf, M. E., and Dawson, W. O. (1993). The tobamovirus capsid protein functions as a host-specific determinant of long-distance movement. Virology 193, 106–114.PubMedGoogle Scholar
  47. Hillman, B. I., Carrington, J. C., and Morris, T. J. (1987). A defective interfering RNA that contains a mosaic of a plant virus genome. Cell 51, 427–433.PubMedGoogle Scholar
  48. Holland, J. J. (1991). Generation and replication of defective viral genomes. In “Virology” (B.N. Fields, Ed.), 2nd Edition. Raven Press, New York.Google Scholar
  49. Holland, J. J., DeLaTorre, J. C., and Steinhauer, D. A. (1992). RNA virus populations as quasispecies. In “Genetic Diversity of RNA Viruses” (J. J. Holland, Ed.), pp. 1–20. Springer Verlag, Berlin.Google Scholar
  50. Huisman, M. J., Cornelissen, B. J. C., Groenendijk, C. F. M., Bol, J. F., and van Vloten-Doting, L. (1989). Alfalfa mosaic virus temperature-sensitive mutants. V. The nucleotide sequence of TBS 7 RNA 3 shows limited nucleotide changes and evidence for heterologous recombination. Virology 171, 409–416.PubMedGoogle Scholar
  51. Hull, R. (1991). The movement of viruses within plants. Semin. Virol. 2, 89–95.Google Scholar
  52. Ingham, D.J., and Lazarowitz, S. (1993), A single mutation in the BR1 movement protein alters the host range of the squash leaf curl geminivirus. Virology 196, 694–702.PubMedGoogle Scholar
  53. Ismail, I. D., and Milner, J. J. (1988). Isolation of defective interfering particles of sonchus yellow net virus from chronicallyy infcted plants. J. Gen. Virol. 69, 999–1006.Google Scholar
  54. Jacques, J. P., Hausmann, A., and Kolakofsky, D. (1994). Paramyxovirus mRNA editing leads to G deletion as well as insertions EMBO J, 13, 5496–5503.PubMedGoogle Scholar
  55. Jakab, G., Vaistij, F. E., Depz, E., and Malone, P. (1997). Transgenic plants expressing viral sequences create a favourable environment for recombination between viral sequences. In “Virus-Resistant Transgenic Plants: Potential Ecological Impact”. (M. Tepfer, and E. Balai, Eds.), pp. 45–51. Springer Verlag, Berlin.Google Scholar
  56. Knorr, D. A., and Dawson, W. O. (1988). A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proc. Natl. Acad. Sci. USA 85, 170–174.Google Scholar
  57. Kuhn, C. W., and Wyatt, S. D. (1979). A variant of cowpea chlorotic mottle virus obtained by passage through beans. Phytopathology 69, 621–624.Google Scholar
  58. Kurath, G., and Dodds, J. A. (1994). Satellite tobacco mosaic virus sequence variants with only five nucleootide differences can interfere with each other in a cross-protection-like phenomenon in plants. Virlolgy 202, 1065–1969.Google Scholar
  59. Kurath, G., and Palukaitis, P. (1989). RNA sequence heterogeneity iin natural populations of three satellite RNAs of cucumber mosaic viurs. Virology 173, 231–240.PubMedGoogle Scholar
  60. Lai, M. M. C. (1992). RNA recombination in animal and plant viruses. Microbiol. Rev. 56, 61–79.PubMedGoogle Scholar
  61. Levin, B. (1997).Genes VI. Oxford University Press.Google Scholar
  62. Li, X. H., Heaton, L. A., Morris, T. J., and Simon, A. E. (1989). Tumip crinkle virus defective interfering RNAs intensify viral symptoms and are generated de novo. Proc. Natl. Acad. Sci. USA 86, 9173–9177.PubMedGoogle Scholar
  63. Lomonossoff, G. P. (1995). Pathogen-derived resistance to plant viruses. Annu. Rev. Phytopathol. 33, 323–343.PubMedGoogle Scholar
  64. MacFarlane, S. A. (1997). Natural recombination among plant virus genomes: Evidence from tobraviruses. Semin. Viral. 8, 25–31.Google Scholar
  65. Mais, E., Varrelmann, M., DiFonzo, C., and Raccah, B. (1997). Risk assessment of transgenic plants expressing the coat protein gene of plum pox potyvirus (PPV). In “Virus-Resistant Transgenic Plants: Potential Ecological Impact”. (M. Tepfer, and E. Balazs, Eds.). pp. 85–93. Springer Verlag, Berlin.Google Scholar
  66. Marsh, L. E., Pogue, G. P., Connell, J. P., and Hall, T. C. (1991). Artificial defective interfering RNAs derived from brome mosaic virus. J. Gen. Virol. 72, 1787–1792.PubMedGoogle Scholar
  67. Maule, A. J. (1991). Virus movement in infected plants. Critical Rev. Plant Sci. 9, 457–473.Google Scholar
  68. Mayo, M. A.., and Jolly, C. A. (1991). The 5’ terminal sequence of potato leafroll virus RNA: evidence for recombination between virus and host RNA. J Gen. Virol. 72, 2591–2595.PubMedGoogle Scholar
  69. Miller, W. A., and Rasochova, L. (1997). Barley yellow dwarf viruses. Annu. Rev. Phytopathol., 35, 167–190.PubMedGoogle Scholar
  70. Mise, K., Allison, R. F., Janda, M., and Ahlquist, P. (1993). Bromovirus movement protein genes play a crucial role in host specificity. J. Virol. 67, 2815–2825.PubMedGoogle Scholar
  71. Manohar, S. K.., Guilley, H., Dollet, M., Richards, K., and Jonard, G. (1993). Nucleotide sequence and genetic organization of peanut clump virus RNA2 and partial characterization of deleted forms. Virology 195, 33–41.PubMedGoogle Scholar
  72. Moreno, I. M., Malpica, J. M., Rodriguez-Cerezo, E., and Garcia-Arenal, F. (1997). A mutation in tomato aspermy cucumovirus that abolishes cell-to-cell movement is maintained to high levels in the viral RNA population by complementation. J. Virol. 71, 9157–9162.PubMedGoogle Scholar
  73. Morozov, S. Y., Dolja, V. V., and Atabekov, J. G. (1989). Probable reassortment of genomic elements among elongated RNA-containing plant viruses. J. Mol. Evol. 29, 52–62PubMedGoogle Scholar
  74. Morse, S. S. (Ed.). (1994). “ The Evolutionary Biology of Viruses”. Raven Press, New York.Google Scholar
  75. Moya, A., and Garcia-Arenal, F. (1995). Population genetics of viruses: An introduction. In “Molecular Basis of Virus Evolution”. (A. J. Gibbs, C. H. Calisher, C. H. and Garcia-Arenal, F., Eds.) pp. 213–223. Cambridge Univ. Press, Cambridge.Google Scholar
  76. Nagy, P. D., and Bujarski, J. J. (1992). Genetic recombination in brome mosaic virus: Effect of sequence and replication of RNA on accumulation of recombinants. J. Virol. 66, 6824–6828PubMedGoogle Scholar
  77. Nagy, P. D., and Bujarski, J. J. (1993). Targeting the site of RNA-RNA recombination in brome mosaic virus with antisense sequences. Proc Nall Acad Sci USA 90, 6390–6394.Google Scholar
  78. Nagy, P. D., and Bujarski, J. J. (1995). Efficient system of homologous RNA recombination in brome mosaic virus: Sequence and structure requirements and accuracy of crossovers. J. Virol. 69, 131–140.PubMedGoogle Scholar
  79. Nagy, P. D., and Bujarski, J. J. (1996). Homologous RNA recombination in brome mosaic virus AU-rich sequences descrease the accuracy of crossovers. J. Virol. 70, 415–426.PubMedGoogle Scholar
  80. Nagy, P. D., and Bujarski, J. J. (1997). Engineering of homologous recombination hotspots with AU-rich sequences in brome mosaic virus. J. Virol. 71, 1294–1306.Google Scholar
  81. Nagy, P. D., and Simon, A. E. (1997). New insight into the mechanisms of RNA recombination. Virology, 235,1–9.PubMedGoogle Scholar
  82. Nagy, P. D., and Simon, A. E. (1998a).In vitro characterization of late steps of RNA recombination in turnip crinkle virus. I. Role of the motifl -hairpin structure, Virology, in press.Google Scholar
  83. Nagy, P. D., and Simon, A. E. (1998b).In vitro characterization of late steps of RNA recombination in turnip crinkle virus. Il. The role of the priming stem and flanking sequences. Virology, in press.Google Scholar
  84. Nagy, P. D., Dzianott, A., Ahlquist, P., and Bujarski, J. J. (1995). Mutations in the helicase-like domain of protein la alter the sites of RNA-RNA recombination in brome mosaic virus. J. Virol. 69, 2547–2556.PubMedGoogle Scholar
  85. Nagy, P. D., Ogiela, C., and Bujarski, J.J. (1998a). Mapping sequences active in homologous RNA recombination in brome mosaic virus: prediction of recombination hot-spots. Virology, in press.Google Scholar
  86. Nagy, P. D., Zhang, C., and Simon, A. E. (1998b). Disecting RNA recombination in vitro Role of RNA sequences and the viral replicase. EMBO J. 17, 2392–2403Google Scholar
  87. Neeleman, L., van der Kuyl, A., and Bol, J. F. (1991). Role of alfalfa mosaic virus coat protein gene in symptom formation. Virology 181, 687–693.PubMedGoogle Scholar
  88. Parvin, J. D., Moscona, A., Pan, W. T., Leider, J. M., and Palese, P. (1986). Measurement of the mutation rates of animal viruses: influenza A virus and poliovirus type I. J. Viroi. 59, 377–383.Google Scholar
  89. Pilipenko, E. V., Gmyl, A. P., and Agol, V. I. (1995). A model for rearrangements in RNA genomes. Nucleic Acids Res. 23, 1870–1875PubMedGoogle Scholar
  90. Pogany, J., Huang, Q., Romero, J., Nagy, P., and Bujarski, J. J. (1994). Infections transcripts from PCR-amplified broad bean mottle bromovirus eDNA clones and variable nature of leader regions in RNA3 segment. J. Gen.Virol. 75, 693–699.PubMedGoogle Scholar
  91. Pogany, J., Romero, J., and Bujarski, J. J. (1997). Effect of 5’ and 3’ terminal sequences, overall length and coding capacity on the accumulation of defective-like RNAs associated with broad bean mottle virus. Virology 228, 236–243.PubMedGoogle Scholar
  92. Rao, A. L. N., and Grantham, G. L. (1995). A spontaneous mutation in the movement protein gene of brome mosaic virus modulates symptom phenotype in Nicotiana benthamiana. J. Virol. 69, 2689–2691.Google Scholar
  93. Rao, A. L. N., and Hall, T. C. (1993). Recombination and polymerase error facilitate resotration of infectivity in brome mosaic virus. J. Viroi. 67, 969–979.Google Scholar
  94. Rao, A. L. N., Sullivan, B. P., and Hall, T. C. (1990). Use of Chenopodium hybridum facilitataes isolation of brome mosaic virus RNA recombinants. J Gen. Virol. 71, 1403–407.PubMedGoogle Scholar
  95. Resende, R. O., de Haan, P., de Avila, A. C., Kitajima, E. W., Kormelink, R., Goldbach, R., and Peters, D. (1991). Generation of envelope and defective interfering RNA mutants of tomato spotted wilt virus by mechanical passage. J. Gen. Viroi. 72, 2375–2383.Google Scholar
  96. Robinson, D. J, Hamilton, W. D. O., Harrison, B. D., and Baulcombe, D. C. (1987). Two anomalous tobravirus isolates: Evidence for RNA recombination in nature. J. Gen. Viroi. 68, 2551–2561Google Scholar
  97. Rodriguez-Cerezo, E., Moya, E., and Garcia-Arenal, F. (1991). High genetic stability in natural populations of the plant RNA virus tobacco mild green mosaic virus. J. Mol. Evol. 32, 328–332.Google Scholar
  98. Romero, J., Huang, Q., Pogany, J., and Bujarski, J. J. (1993). Characterization of defective interfering RNA components that increase symptom severity of broad bean mottle virus infections. Virology 194, 576–584.PubMedGoogle Scholar
  99. Roossinck, M. (1997). Mechanisms of plant virus evolution. Annu. Rev. Phytopathol. 35, 191–209.PubMedGoogle Scholar
  100. Rott, M. E., Tremaine, J. H., and Rochon, D. M. (1991). Comparison of the 5’ and 3’ termini of tomato ringspot virus RNA1 and RNA2: evidence for RNA recombination. Virology 185, 468–472.PubMedGoogle Scholar
  101. Roux, L., Simon, A. E., and Holland, J. J. (1991). Effects of defective-interfering viruses on virus replication and pathogenesis in vitro and in vivo. Adv. Virus Res. 40, 181–211.PubMedGoogle Scholar
  102. Sacher, R., and Ahlquist, P. (1989). Effects of deletions in the N- terminal basic arm of brome mosaic virus coat protein on RNA packaging and systemic infection. J. Viroi. 63, 4545–4552.Google Scholar
  103. Saito, T., Meshi, T., Takamatsu, N., and Okada, Y. (1987). Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant. Proc. Natl. Acad. Sci. USA 84, 6074–6077.PubMedGoogle Scholar
  104. Shang, H., and Bujarski, J. J. (1993). Systemic spread and symptom formation of cowpea chlorotic mottle virus in soybean and cowpea plants map to the RNA3 component. Mol. Plant-Microbe Interact. 6, 755–763.PubMedGoogle Scholar
  105. Shirako, Y., and Brakke, M. K. (1984). Spontaneous deletion mutation of soil-borne wheat mosaic virus, II. J. Gen. Viroi. 65, 855–858.Google Scholar
  106. Simon, A. E., and Bujarski, J. J. (1994). RNA-RNA recombination and evolution in virus-infected plants. Annu. Rev. Phytopathol. 32, 337–362.Google Scholar
  107. Simon, A. E., and Nagy, P. D. (1996). RNA recombination in tumip crinkle virus: Its role in formation of chimeric RNAs, multimers and 3’-end repair. Semin. Virol. 7, 373–379.Google Scholar
  108. Smith, D. B., and Inglis, S. C. (1987). The mutation rate and variability of eukaryatic viruses: an analytical review. J. Gen. Virol. 68, 2729–2740.PubMedGoogle Scholar
  109. Steinhauer, D. A., and Holland, J. J. (1987). Rapid evolution of RNA viruses. Ann. Rev. Microbiol. 41, 409–433.Google Scholar
  110. Strauss, E. G., and Strauss, J. H. (1983). Replication strategies of the single-stranded RNA viruses of eucaryotes. Curr. Top. Microbiol. Immunol. 105, 2–98.Google Scholar
  111. Strauss, J. H., and Strauss, E. G. (1988). Evolution of RNA viruses. Annu. Rev. Microbiol. 42, 657–683.PubMedGoogle Scholar
  112. Suzuki, M., Kuwata, S., Kataoka, J., Masuta, M., Nitta, N., and Takanami, T. (1991). Functional analysis of deletion mutants of cucumber mosaic virus RNA 3 using an in vitro transcription system. Virology 83, 106–113.Google Scholar
  113. Taliansky, M. E., and Garcia-Arenal, F. (1995). Role of cucumovirus capsid protein in long-distance movement within the infected plant. J. Virol. 69, 916–922.PubMedGoogle Scholar
  114. Thomas, L. C., Perbal, C., and Maule, A. J. (1993). A mutation of cauliflower mosaic virus gene I interferes with virus movement but not virus replication. Virology 192, 415–421.PubMedGoogle Scholar
  115. White, K. A., and Morris, T. J. (1994a). Nonhomologous RNA recombination in tombusviruses: Generation and evolution of defective interfering RNAs by stepwise deletions. J Virol. 68, 14–24.Google Scholar
  116. White, K. A., and Morris, T. J. (1994b). Recombination between defective tombusvirus RNAs generates functional hybrid genomes. Proc Natl. Acad. Sci. USA. 91, 3642–3646.Google Scholar
  117. White, K. A., Bancroft, J. B., and Mackie, G. A. (1991). Defective RNAs of clover yellow mosaic virus encode nonstructural/coat protein fusion products. Virology 183, 479–486.PubMedGoogle Scholar
  118. Zaccomer, B., Haenni, A-L., and Macaya, G. (1995). The remarkable variety of plant RNA virus genomes. J. Gen. Virol. 76, 231–247.PubMedGoogle Scholar
  119. Zhang, C., Cascone, P. J., and Simon, A. E. (1991). Recombination between satellite and genomic RNAs of turnip crinkle virus. Virology 184, 791–794.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Jozef J. Bujarski

There are no affiliations available

Personalised recommendations