Advertisement

Gene Expression in Positive Strand RNA Viruses: Conventional and Aberrant Strategies

  • Alexey Agranovsky
  • Sergey Morozov
Chapter

Abstract

The rapid evolution of RNA virus genomes, which is driven by high mutation rates in replication (Steinhauer and Holland, 1987) and recombinational reassortment (Gibbs, 1987; Zimmern, 1988; Morozov et al.,1989), must conciliate two opposite factors: the necessity of acquiring new genes for adaptation, and the limitations on the genome size imposed by packaging and replication constraints (Dolja et al.,1994; Agranovsky, 1996). As a result, (+)RNA genomes of plant viruses rarely exceed the 10-kb size limit, some of them containing only the three genes that suffice for the basic functions of replication, cell-to-cell movement, and encapsidation. It is not uncommon that the plant virus genomes are ‘compressed’, i.e., contain extensively overlapping open reading frames (ORFs). To efficiently express their genomes, RNA viruses have developed mosaic strategies, of which some conform to the rules of eukaryotic mRNA translation, and some break these rules.

Keywords

Plant Virus Barley Yellow Dwarf Virus Beet Necrotic Yellow Vein Virus Barley Stripe Mosaic Virus Replicase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agranovsky, A. A. (1996). The principles of molecular organization, expression and evolution of closteroviruses: Over the barriers. Adv. Virus Res. 47, 119–158.PubMedGoogle Scholar
  2. Agranovsky, A. A. (1998). Closterovirus papain-like cysteine endopeptidases. In “Handbook of Proteolytic Enzymes” (A. J. Barrett, N. D. Rawlings and J. F. Woessner, Eds.). pp. 700–702. Academic Press, New York.Google Scholar
  3. Agranovsky, A. A., Boyko, V. P., Karasev, A. V., Lunina, N. A., Koonin, E. V., and Dolja, V. V. (1991). Nucleotide sequence of the 3’-terminal half of beet yellows closterovirus RNA genome: Unique arrangement of eight virus genes. J Gen. Virol. 72, 15–23.PubMedGoogle Scholar
  4. Agranovsky, A. A., Koonin, E. V., Boyko, V. P., Maiss, E., Frötschl, R., Lunina, N. A., and Atabekov, J. G. (1994a). Beet yellows closterovirus: complete genome structure and identification of a leader papain-like thiol proteinase. Virology 198, 311–324.Google Scholar
  5. Agranovsky, A. A., Koenig, R., Maiss, E., Boyko, V. P., Casper, R., and Atabekov, J. G. (1994b). Expression of the beet yellows closterovirus capsid protein and p24, a capsid protein homologue, in vitro and in vivo. J. Gen. Virol. 75, 1431–1439.Google Scholar
  6. Ahlquist, P. (1992). Bromovirus RNA replication and transcription. Curr. Opin. Gen. Dev. 2, 71–76.Google Scholar
  7. Angenent, G. C., Posthumus, E., Brederode, F.T., and Bol, J. F. (1989). Genome structure of tobacco rattle virus strain PLB: Further evidence on the occurrence of RNA recombination among tobraviruses. Virology 171, 271–274.PubMedGoogle Scholar
  8. Bahner, I., Lamb, J., Mayo, M. A., and Hay, R. T. (1990). Expression of the genome of potato leafroll virus: readthrough of the coat protein gene termination codon in vivo. J. Gen. Virol. 71, 2251–2256.PubMedGoogle Scholar
  9. Belsham, G. J., and Sonenberg, N. (1996). RNA protein interactions in regulation of picornavirus RNA translation. Microbiol. Rev. 60, 499–511.PubMedGoogle Scholar
  10. Bransom, K. L., and Dreher, T. W. (1994). Identification of the essential cysteine and histidine residues of the turnip yellow mosaic virus protease. Virology 198, 148–154.PubMedGoogle Scholar
  11. Brault, V., and Miller, W. A. (1992). Translational frameshifting mediated by a viral sequence in plant cells. Proc. Natl. Acad. Sci. USA 89, 2262–2266.PubMedGoogle Scholar
  12. Brown, C. M., Dinesh-Kumar, S. P., and Miller, W. A. (1996). Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J. Virol. 70, 5884–5892.PubMedGoogle Scholar
  13. Browning, K. S., Lax, S. R., Humphreys, J., Ravel, J. M., Jobling, S. A., and Gehrke, L. (1988). Evidence that the 5’-untranslated leader of mRNA affects the requirement for wheat germ initiation factors 4A, 4F, and 4G. J. Biol. Chem. 263, 9630–9634.PubMedGoogle Scholar
  14. Buck, K. W. (1996). Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv. Virus Res. 47, 159–251.PubMedGoogle Scholar
  15. Carrington, J. C., and Freed, D. D. (1990). Cap-independent enhancement of translation by a plant potyvirus 5’ nontranslated region. J. Virol. 64, 1590–1597.PubMedGoogle Scholar
  16. Dawson, W. O. (1992). Tobamovirus-plant interactions. Virology 186, 359–367.PubMedGoogle Scholar
  17. De Jong, W., Mise, K., Chu, A., and Ahlquist, P. (1997). Effects of coat protein mutations and reduced movement protein expression on infection spread by cowpea chlorotic mottle virus and its hybrid derivatives. Virology 232, 167–173.PubMedGoogle Scholar
  18. Dessens, J. T., and Lomonossoff, G. P. (1991). Mutational analysis of the putative catalytic triad of the cowpea mosaic virus 24K protease. Virology 184, 738–746.PubMedGoogle Scholar
  19. Devaney, M. A., Vakharia, V. N., Lloyd, R. E., Ehrenfeld, E., and Grugman, M. J. (1988). Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J. Viral. 62, 4407–4409.Google Scholar
  20. Dinesh-Kumar, S. P., Brault, V., and Miller, W. A. (1992). Precise mapping and in vitro translation of a trifunctional subgenomic RNA of barley yellow dwarf virus. Virology 187, 711–722.PubMedGoogle Scholar
  21. Dinesh-Kumar, S. P. and Miller, W. A. (1993). Control of start codon choice on a plant viral RNA encoding overlapping genes. Plant Cell 5, 679–692.PubMedGoogle Scholar
  22. Dolja, V. V., Karasev, A. V., and Koonin, E. V. (1994). Molecular biology and evolution of closteroviruses: Sophisticated build-up of large RNA genomes. Annu. Rev. Phytopathol. 32, 261–285.Google Scholar
  23. Donald, R. G. K., Zhou, H., and Jackson, A. O. (1993). Serological analysis of barley stripe mosaic virus-encoded proteins in infected barley. Virology 195, 659–668.PubMedGoogle Scholar
  24. Donze, O., and Spahr, P. F. (1992). Role of the open reading frames of Rous sarcoma virus leader RNA in translation and genome packaging. EMBO J. 11, 3747–3757.PubMedGoogle Scholar
  25. Dougherty, W. G., and Semler, B. L. (1993). Expression of virus-encoded proteinases: Functional and structural similarities with cellular enzymes. Microbial. Rev. 57, 781–822.Google Scholar
  26. Edwards, M. C., Zhang, Z., and Weiland, J. J. (1997). Oat blue dwarf marafivirus resembles the tymoviruses in sequence, genome organization, and expression strategy. Virology 232, 217–229.PubMedGoogle Scholar
  27. Farabaugh, P. J. (1993). Alternative readings of the genetic code. Cell 74, 591–596.PubMedGoogle Scholar
  28. Filichkin, S. A., Lister, R. M., McGrath, P. F., and Young, M. J. (1994). In vivo expression and mutational analysis of the barley yellow dwarf virus readthrough gene. Virology 205, 290–299.PubMedGoogle Scholar
  29. French, R., and Ahlquist, P. (1988). Characterization and engineering of sequences controlling in vivo synthesis of brome mosaic virus subgenomic RNA. J. Virol. 62, 2411–2420.PubMedGoogle Scholar
  30. Ftttterer, J., and Hohn, T. (1996). Translation in plants - rules and exceptions. Plant Mol. Biol. 32, 159–189.Google Scholar
  31. Gallie, D. R. (1991). The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Devel. 5, 2108–2116.PubMedGoogle Scholar
  32. Gallie, D. R. (1996). Translational control of cellular and viral mRNAs. Plant Mol. Biol. 32, 145–158.PubMedGoogle Scholar
  33. Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C., and Wilson, T. M. A. (1987). A comparison of eukaryotic viral 5’- leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res.15, 8693–8711.PubMedGoogle Scholar
  34. Gallie, D. R., Tanguay, R., and Leathers, V. (1995). The tobacco etch viral 5’ leader and poly(A) tail are functionally synergistic regulators of translation. Gene 165, 233.PubMedGoogle Scholar
  35. Garcia, A., van Duin, J., and Pleij, C. (1993). Differential response to frameshift signals in eukaryotic and prokaryotic translational systems. Nucleic Acids Res. 21, 401–406.PubMedGoogle Scholar
  36. Geballe, A. P., and Morris, D. R. (1994). Initiation codons within 5’-leaders of mRNAs as regulators of translation. Trends Biochem. Sci. 19, 159–164.Google Scholar
  37. Gibbs, A. (1987). A molecular evolution of viruses: ‘trees’, ‘clocks’, and ‘modules’. J Cell Sci. (Suppl.) 7, 319–337.Google Scholar
  38. Gorbalenya, A. E., Koonin, E. V., and Lai, M. M. C. (1991). Putative papain-related proteinases of positive-strand RNA viruses. FEBS Lett. 288, 201–205.PubMedGoogle Scholar
  39. Goulden, M. G., Lomonossoff, G. P., Davies, J. W., and Wood, K. R. (1990). The complete nucleotide sequence of PEBV RNA 2 reveals the presence of a novel open reading frame and provides insights into the structure of tobraviral subgenomic promoters. Nucleic Acids Res. 18, 4507–4512.PubMedGoogle Scholar
  40. Gramstadt, A., Prüfer, D., and Rohde, W. (1994). The nucleic acid-binding zinc finger protein of potato virus M is translated by internal initiation as well as by ribosomal frameshifting involving a stop codon and a novel mechanism of P-site slippage. Nucleic Acids Res. 22, 3911–3917.Google Scholar
  41. Gustafson, G. D., and Armour, S. L. (1986). The complete nucleotide sequence of RNA3 from the Type strain of barley stripe mosaic virus. Nucleic Acids Res. 14, 3895–3909.PubMedGoogle Scholar
  42. Gustafson, G. D., Armour, S. L., Gamboa, G. C., Burgett, S. G., and Shepherd, J. W. (1989). Nucleotide sequence of barley stripe mosaic virus RNAa: RNAa encodes a single polypeptide with homology to corresponding proteins from other viruses and to the BSMV Pb protein. Virology 170, 370–377.PubMedGoogle Scholar
  43. Haeberle, A.-M., Stussi-Garaud, C., Schmitt, C, Garaud, J.-C., Richards, K. E., Guilley, H. and Jonard, G. (1994). Detection by immunogold labelling of P75 readthrough protein near an extremity of beet necrotic yellow vein virus particles. Arch. Viroí. 134, 195–203.Google Scholar
  44. Hefferon, K. L., Khalilian, H., Xu, H., and AbouHaidar, M. G. (1997). Expression of the coat protein of potato virus X from a dicistronic mRNA in transgenic potato plants. J. Gen. Viroí. 78, 3051–3059.Google Scholar
  45. Hehn, A., Fritsch, C., Richards, K. E., Guilley, H., and Jonard, G. (1997). Evidence for in vitro and in vivo autocatalytic processing of the primary translation product of beet necrotic yellow vein virus RNA 1 by a papain-like proteinase. Arch. Viroí. 142, 1051–1058.Google Scholar
  46. Herzog, E., Guilley, H., Manohar, S. K., Dollet, M., Richards, K. E., Fritsch, C., and Jonard, G. (1994). Complete nucleotide sequence of peanut clump virus RNA 1 and relationships with other fungus-transmitted rod-shaped viruses. J. Gen. Viroí. 75, 3147–3155.Google Scholar
  47. Herzog, E., Guilley, H., and Fritsch, C. (1995). Translation of the second gene of peanut clump virus RNA 2 occurs by leaky scanning in vitro. Virology 208, 215–225.PubMedGoogle Scholar
  48. Ivanov, P. A., Karpova, O. V., Skulachev, M. V., Tomashevskaya, O. L., Rodionova, N. P., Dorokhov, Yu. L., and Atabekov, J. G. (1997). A tobamovirus genome that contains an internal ribosome entry site functional in vitro. Virology 232, 32–43.PubMedGoogle Scholar
  49. Jacks, T., Madhani, H. D., Masiarz, F. R., and Varmus, H. E. (1988). Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55, 447–458.PubMedGoogle Scholar
  50. Jackson, A. O., Petty, I. T. D., Jones, R. W., Edwards, M. C., and French, R. (1991). Analysis of barley stripe mosaic virus pathogenicity. Semin. Virol. 2, 107–119.Google Scholar
  51. Jelkmann, W., Maiss, E., and Martin, R. R. (1992). The nucleotide sequence and genome organization of strawberry mild yellow edge-associated potexvirus. J. Gen. Viroí. 73, 475–479.Google Scholar
  52. Jobling, S. A., and Gehrke, L. (1987). Enhanced translation of chimeric messenger RNAs containing a plant viral untranslated leader sequence. Nature 325, 622–625.PubMedGoogle Scholar
  53. Kamer, G., and Argos, P. (1984). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res. 12, 7269–7283.PubMedGoogle Scholar
  54. Kanyuka, K., Vishnichenko, V., Levay, K., Kondrikov, D., Ryabov, E., and Zavriev, S. K. (1992). Nucleotide sequence of shallot virus X RNA reveals a 5’-proximal cistron closely related to those of potexviruses and a unique arrangement of the 3’-proximal cistrons. J Gen. Viroí. 73, 2553–2560.Google Scholar
  55. Kashiwazaki, S., Scott, K. P., Reavy, B., and Harrison, B. D. (1995). Sequence analysis and gene content of potato mop-top virus RNA 3: Further evidence of heterogeneity in the genome organization of furoviruses. Virology 206, 701–706.PubMedGoogle Scholar
  56. Kim, K H., and Lommel, S. A. (1994). Identification and analysis of the site of -1 ribosomal frameshifting in red clover necrotic mosaic virus. Virology 200, 574–582.PubMedGoogle Scholar
  57. Klaassen, V. A., Boeshore, M., Koonin, E. V., and Falk, B. W. (1995). Genome structure and phylogenetic analysis of lettuce infectious yellows virus, a whitefly-transmitted, bipartite closterovirus. Virology 208, 99–110.PubMedGoogle Scholar
  58. Koenig, R., Commandeur, U., Loss, S., Beier, C., Kauffmann, A., and Lesemann, D. E. (1997). Beet soil-borne virus RNA 2: Similarities and dissimilarities to the coat protein gene-carrying RNAs of other furoviruses. J. Gen. Viroí. 78, 469–477.Google Scholar
  59. Koonin, E. V. (1991a). The phylogeny of RNA-dependent RNA-polymerases of positive-strand RNA viruses. J. Gen. Virol. 72, 2197–2206.Google Scholar
  60. Koonin, E. V. (1991b). Genome replication/expression strategies of positive-strand RNA viruses: A simple version of a combinatorial classification and prediction of new strategies. Virus Genes 5, 273–282.Google Scholar
  61. Koonin, E. V., and Dolja, V. V. (1993). Evolution and taxonomy of positive-strand RNA viruses: Implications of comparative analysis of amino acid sequences. CRC Crit. Rev. Biochem. Mol. Biol. 28, 375–430..Google Scholar
  62. Kozak, M. (1986). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292.PubMedGoogle Scholar
  63. Kozak, M. (1991). Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266, 19867–19870.PubMedGoogle Scholar
  64. Lawrence, D. M., Rozanov, M. N., and Hillman, B. I. (1995). Autocatalytic processing of the 223-kDa protein of blueberry scorch carlavirus by a papain-like proteinase. Virology 207, 127–135.PubMedGoogle Scholar
  65. Lehto, K., and Dawson, W. O. (1990). Changing the start codon context of the 30K gene of tobacco mosaic virus from “weak” to “strong” does not increase expression. Virology 174, 169–176.PubMedGoogle Scholar
  66. Lehto, K., Grantham, G. L., and Dawson, W. O. (1990). Insertion of sequences containing the coat protein subgenomic RNA promoter and leader in front of the tobacco mosaic virus 30K ORF delays its expression and causes defective cell-to-cell movement. Virology 174, 145–157.PubMedGoogle Scholar
  67. Lindsey, D., and Gallant, J. (1993). On the directional specificity of ribosome frameshifting at a “hungry” codon. Proc. Natl. Acad. Sci. USA 90, 5469–5473.Google Scholar
  68. Lovett, P. S., and Rogers, E. J. (1996). Ribosome regulation by the nascent peptide. Microbiol. Rev. 60, 366–385.PubMedGoogle Scholar
  69. Lütcke, H. A., Chow, K. C., Mickel, F. S., Moss, K. A., Kern, H. F., and Scheele, G. A. (1987). Selection of AUG codons differs in plants and animals. EMBO J. 6, 43–48.PubMedGoogle Scholar
  70. Mäkkinen, K., Naess, V., Tamm, T., Truve, E., Aaspôlu, A., and Saarma, M. (1995). The putative replicase of the cocksfoot mottle sobemovirus is translated as a part of the polyprotein by -1 ribosomal frameshift. Virology 207, 566–571.Google Scholar
  71. Manohar, S. K., Guilley, H., Dollet, M., Richards, K., and Jonard, G. (1993). Nucleotide sequence and genome organization of peanut clump virus RNA 2 and partial characterization of deleted forms. Virology 195, 33–41.PubMedGoogle Scholar
  72. Marsh, L. E., Dreher, T. W., and Hall, T. C. (1988). Mutational analysis of the core and modulator sequences of the BMV RNA3 subgenomic promoter. Nucleic Acids Res. 16, 981–995.PubMedGoogle Scholar
  73. Mawassi, M., Karasev, A. V., Mietkiewska, E., Gafny, R., Lee, R. F., Dawson, W. O., and Bar-Joseph, M. (1995). Defective RNA molecules associated with citrus tristeza virus. Virology 208, 383–387.PubMedGoogle Scholar
  74. Memelink, J., van der Vlugt, C. I. M., Linthorst, H. J. M., Derks, A. F. L. M., Asjes, C. J., and Bol, J. F. (1990). Homologies between the genomes of a carlavirus (lily simptomless virus) and a potexvirus (lily virus X) from lily plants. I Gen. Virol. 71, 917–924.Google Scholar
  75. Morozov, S. Yu., Dolja, V. V., and Atabekov, J. G. (1989). Probable reassortment of genomic elements among elongated RNA-containing viruses. J Mol. Evol. 29, 52–62.PubMedGoogle Scholar
  76. Morozov, S. Yu., and Rupasov, V. V. (1985). On the possibility of a common origin of the genes encoding the RNA polymerases of bacterial, plant, and animal positive-strand RNA viruses. Biol. Nauki 10, 19–24 (in Russian).PubMedGoogle Scholar
  77. Oh, C., and Carrington, J. C. (1989). Identification of essential residues in potyvirus proteinase HC-Pro by site-directed mutagenesis. Virology 173, 692–699.PubMedGoogle Scholar
  78. Pelham, H. R. B. (1978). Leaky UAG termination codon in tobacco mosaic virus RNA. Nature 272, 469–471.PubMedGoogle Scholar
  79. Peters, S. A., Voorhost, W. G. B., Wery, B., Wellink, J., and van Kammen, A. (1992). A regulatory role for the 32K protein in proteolytic processing of cowpea mosaic virus polyproteins. Virology 191, 81–89.PubMedGoogle Scholar
  80. Petty, I. T. D., and Jackson, A. O. (1990). Two forms of the major barley stripe mosaic virus nonstructural protein are synthesized in vivo from alternative initiation codons. Virology 177, 829–832.PubMedGoogle Scholar
  81. Prüfer, D., Tacke, E., Schimtz, J., Kull, B., Kaufmann, A., and Rohde, W. (1992). Ribosomal frameshifting in plants: a novel signal directs the -1 frameshift in the synthesis of the putative viral replicase of potato leafroll luteovirus. EMBO J. 11, 1111–1117.PubMedGoogle Scholar
  82. Rochon, D. M., and Johnston, J. C. (1991). Infectious transcripts from cloned cucumber necrosis virus eDNA: Evidence for a bifunctional subgenomic RNA. Virology 181, 656–665.PubMedGoogle Scholar
  83. Rohde, W., Gramstadt, A., Schimtz, J., Tacke, E., and Prüfer, D. (1994). Plant viruses as model systems for the study of non-canonical translation mechanisms in higher plants. I Gen. Virol. 75, 2141–2149.Google Scholar
  84. Ryabov, E. V., Krutov, A. A., Novikov, V. K., Zheleznikova, O. V., Morozov, S. Yu., and Zavriev, S. K. (1996). Nucleotide sequence of RNA from the sobemovirus found in infected cocksfoot shows a luteovirus-like arrangement of the putative replicase and protease genes. Phytopathology 86, 391–397.Google Scholar
  85. Sachs, A. B., Sarnow, P., and Hentze, M. W. (1997). Starting at the beginning, middle, and end: Translation initiation in eukaryotes. Cell 89, 831–838.PubMedGoogle Scholar
  86. Savenkov, E. I., Solovyev, A. G., and Morozov, S. Yu. (1998). Genome sequences of poa semilatent and lychnis ringspot hordeiviruses. Arch. Virol. 219, 9–18.Google Scholar
  87. Schmitt, C., Balmori, E., Jonard, G., Richards, K. E., and Guilley, H. (1992). In vitro mutagenesis of biologically active transcripts of beet necrotic yellow vein virus RNA 2: Evidence that a domain of the 75-kDa readthrough protein is important for efficient virus assembly. Proc. Natl. Acad. Sci. USA 89, 5715–5719.PubMedGoogle Scholar
  88. Schmitz, J., Prüfer, D., Rohde, W., and Tacke, E. (1996). Non-canonical translation mechanisms in plants: Efficient in vitro and in planta initiation at AUU codons of the tobacco mosaic virus translational enhancer. Nucleic Acids Res. 24, 257–263.PubMedGoogle Scholar
  89. Scholthof, K. G., Scholthof, H. B., and Jackson, A. O. (1995). The tomato bushy stunt virus replicase proteins are coordinately expressed and membrane associated. Virology 208, 365–369.PubMedGoogle Scholar
  90. Shen, P., Kaniewska, M., Smith, C., and Beachy, R. N. (1993). Nucleotide sequence and genomic organization of rice tungro spherical virus. Virology 193, 621–630.PubMedGoogle Scholar
  91. Shirako, Y. (1998). Non-AUG translation initiation in a plant RNA virus: A forty-amino-acid extension is added to the N terminus of the soil-borne wheat mosaic virus capsid protein. J. Virol. 72, 1677–1682.PubMedGoogle Scholar
  92. Shirako, Y., and Wilson, T. M. A. (1993). Complete nucleotide sequence and organization of the bipartite RNA genome of soil-borne wheat mosaic virus. Virology 195, 16–32.PubMedGoogle Scholar
  93. Siegel, R. W., Adkins, S., and Kao, C. C. (1997). Sequence-specific recognition of a subgenomic RNA promoter by a viral RNA polymerase. Proc. Natl. Acad. Sci. USA 94, 11238–11243.PubMedGoogle Scholar
  94. Sit, T. L., Vaewhongs, A. A., and Lommel, S. A. (1998). RNA-mediated trans-activation of transcription from a viral RNA. Science 281, 829–832.PubMedGoogle Scholar
  95. Sivakumaran, K., and Hacker, D. L. (1998). The 105-kDa polyprotein of southern bean mosaic virus is translated by scanning ribosomes. Virology 246, 34–44.PubMedGoogle Scholar
  96. Skuzeski, J. M., Nichols, L. M., Gesteland, R. F., and Atkins, J. F. (1991). The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J. Mol. Biol. 218, 365–373.PubMedGoogle Scholar
  97. Snijder, E. J., and Meulenberg, J. M. (1998). The molecular biology of arteriviruses. J. Gen. Virol. 79, 961–979.PubMedGoogle Scholar
  98. Steinhauer, D. A., and Holland, J. J. (1987). Rapid evolution of RNA viruses. Annu. Rev. Biochem. 41, 409–433.Google Scholar
  99. Strauss, J. H., and Strauss, E. G. (1994). The alphaviruses: Gene expression, replication and evolution. Microbiol. Rev. 58, 491–562.PubMedGoogle Scholar
  100. Tacke, E., Prüfer, D., Salamini, F., and Rohde, W. (1990). Characterization of a potato leafroll luteovirus subgenomic RNA: Differential expression by internal translation initiation and UAG suppression. J. Gen. Virol. 71, 2265–2272.PubMedGoogle Scholar
  101. ten Dam, E. B., Pleij, C. W. and Bosch, L. (1990). RNA pseudoknots: Translational frameshifting and readthrough on viral RNAs. Virus Genes, 4, 121–136.PubMedGoogle Scholar
  102. Timmer, R. T., Benkowski, L. A., Schodin, D., Lax, S. R., Metz, A. M., Ravel, J. M., and Browning, K. S. (1993). The 5’ and 3’ untranslated regions of satellite tobacco necrosis virus RNA affect translational efficiency and dependence on a 5’ cap structure. J. Biol.Chem. 268, 9504–9510.PubMedGoogle Scholar
  103. Tomashevskaya, O. L., Solovyev, A. G., Karpova, O. V., Fedorkin, O. N., Rodionova, N. P., Morozov, S. Yu., and Atabekov, J. G. (1993). Effects of sequence elements in the potato virus X RNA 5’ non-translated aß-leader on its translation enhancing activity. J. Gen. Virol. 74, 2717–2724.PubMedGoogle Scholar
  104. Tu, C., Tzeng, T.-H. and Bruenn, J. A. (1992). Ribosomal movement impeded at a pseudoknot required for frameshifting. Proc. Natl. Acad. Sci. USA 89, 8636–8640.PubMedGoogle Scholar
  105. Turnbull-Ross, A. D., Mayo, M. A., Reavy, B., and Murant, A. F. (1993). Sequence analysis of the parsnip yellow fleck virus polyprotein: Evidence of affinities with picornaviruses. J. Gen. Virol. 74, 555–561.PubMedGoogle Scholar
  106. Verchot, J., Koonin, E. V., and Carrington, J. C. (1991). The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology 185, 527–535.PubMedGoogle Scholar
  107. Verver, J., LeGall, O., van Kammen, A., and Wellink, J. (1991). The sequence between nucleotides 161 and 512 of cowpea mosaic virus M RNA is able to support internal initiation of translation in vitro. J. Gen. Virol. 72, 2339–2345.Google Scholar
  108. Wang, S., and Miller, W. A. (1995). A sequence located 4.5 to 5 kilobases from the 5’ end of the barley yellow dwarf virus (PAV) genome strongly stimulates translation of uncapped mRNA. J. Biol.Chem. 270, 13446–13452.PubMedGoogle Scholar
  109. Zaccomer, B., Haenni, A. L., and Macaya, G. (1995). Remarkable variety of plant virus RNA genomes. J Gen. Virol. 76, 231–247.PubMedGoogle Scholar
  110. Zelenina, D. A., Kulaeva, O. I., Smirnyagina, E. V., Solovyev, A. G., Miroshnichenko, N. A., Fedorkin, O. N., Rodionova, N. P., Morozov, S. Yu., and Atabekov, J. G. (1992). Translational enhancing properties of the 5’-leader of potato virus X RNA. FERS Lett. 296, 267–270.Google Scholar
  111. Zerfass, K., and Beier, H. (1992a). Pseudouridine in the anticodon G`PA of plant cytoplasmic tRNATY’ is required for UAG and UAA suppression in the TMV-specific context. Nucleic Acids Res. 20, 5911–5918.Google Scholar
  112. Zerfass, K., and Beier, H. (1992b). The leaky UGA termination codon of tobacco rattle virus RNA is suppressed by tobacco chloroplast and cytoplasmic tRNAT`P with CmCA anticodon. EMBO J. 11, 4167–4173.Google Scholar
  113. Zhou, H., and Jackson, A. O. (1996). Expression of the barley stripe mosaic virus RNA13 “Triple Gene Block”. Virology 216, 367–379.PubMedGoogle Scholar
  114. Ziegler, A., Natsuaki, T., Mayo, M. A., Jolly, C. A., and Murant, A. F. (1992). The nucleotide sequence of RNA-1 of raspberry bushy dwarf virus. J. Gen. Virol. 73, 3213–3218.PubMedGoogle Scholar
  115. Zimmern, D. (1988). Evolution of RNA viruses. In “RNA Genetics” (J. J. Holland, E.R. Domingo, and P. Ahlquist, Eds.). pp. 211–240. CRC Press, Boca Raton, Florida.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Alexey Agranovsky
  • Sergey Morozov

There are no affiliations available

Personalised recommendations