Advertisement

Familial Amyotrophic Lateral Sclerosis and Alzheimer’s Disease

Transgenic Models
  • Philip C. Wong
  • David R. Borchelt
  • Michael K. Lee
  • Carlos A. Pardo
  • Gopal Thinakaran
  • Lee J. Martin
  • Sangram S. Sisodia
  • Donald L. Price
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 446)

Abstract

Amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD) are two classical neurodegenerative disorders. These age-related, chronic, progressive diseases are accompanied by clinical signs that reflect the vulnerability and death of specific populations of neurons. Unfortunately, there are no satisfactory treatments for these diseases. Both ALS and AD may be inherited in an autosomal dominant fashion: some cases of familial ALS (FALS) are linked to mutations in Superoxide dismutase 1 (SOD1); and some individuals with familial AD (FAD) have mutations in genes encoding the amyloid precursor protein (APP) or presenilins (PS1 and PS2). Products of these mutant genes, thought to be associated with the formation of improperly folded or processed proteins, impact upon specific subsets of neural cells and cause characteristic clinical manifestations. For example, in ALS, damage to upper and lower motor neurons results in spasticity and weakness/muscle atrophy, respectively; in AD, the involvement of a variety of brain regions/neuronal populations is reflected in loss of memory, cognitive/behavioral impairments, and, eventually, profound dementia.

Keywords

Amyotrophic Lateral Sclerosis Motor Neuron Alzheimer Disease Amyloid Precursor Protein Motor Neuron Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alzheimer’s Disease Collaborative Group (1995) The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nature Genetics 11, 219–222.Google Scholar
  2. Anderson, J.P., F.S. Esch, P.S. Keim. K. Sambamurti, I. Lieberburg and N.K. Robakis (1991) Exact cleavage site of Alzheimer amyloid precursor in neuronal PC-12 cells, Neurosci. Lett. 128. 126–128.PubMedGoogle Scholar
  3. Arnold, S.E., B.T. Hyman. J. Flory. A.R. Damasio and G.W. Van Hoesen (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease, Cereb. Cortex 1, 103–116.PubMedGoogle Scholar
  4. Bading, H., M.M. Segal. N.J. Sucher, H. Dudek, S.A. Lipton and M.E. Greenberg (1995) N-methyl-D-aspartate receptors are critical for mediating the effects of glutamate on intracellular calcium concentration and immediate early gene expression in cultured hippocampal neurons. Neuroscience 64, 653–664.PubMedGoogle Scholar
  5. Beckman. J.S., M. Carson, C.D. Smith and W.H. Koppenol (1993) ALS, SOD and peroxynitrite, Nature 364, 584PubMedGoogle Scholar
  6. Bird, T.D. (1994) Clinical genetics of familial Alzheimer disease, in: in Alzheimer Disease, (R.D. Terry, R. Katzman and K.L. Bick, eds), pp. 65–74, Raven Press, New York.Google Scholar
  7. Bondi, M.W., D.P. Salmon and N.M. Butters (1994) Neuropsychological features of memory disorders in Alzheimer disease. in: in Alzheimer Disease, (R.D. Terry, R. Katzman and K.L. Bick, eds), pp. 41–63, Raven Press, New York.Google Scholar
  8. Borchelt, D.R., M.K. Lee, H.H. Slunt, M. Guarnieri, Z.-S. Xu, P.C. Wong, R.H. Brown,Jr., D.L. Price, S.S. Sisodia and D.W. Cleveland (1994) Superoxide dismutase I with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity, Proc. Natl Acad. Sci. USA 91, 8292–8296.PubMedGoogle Scholar
  9. Borchelt, D.R., M. Guarnieri, P.C. Wong, M.K. Lee, H.S. Slunt, Z. Xu. S.S. Sisodia, D.L. Price and D.W. Cleveland (1995) Superoxide dismutase 1 subunits with mutations linked to familial amyotrophic lateral sclerosis do not affect wild-type subunit function, J. Biol. Chem. 270, 3234–3238.PubMedGoogle Scholar
  10. Borchelt, D.R., G. Thinakaran. C.B. Eckman, M.K. Lee. F. Davenport, T. Ratovitsky, C.-M. Prada, G. Kim, S. Seekins, D. Yager, H.H. Slunt, R. Wang, M. Seeger, A.I. Levey, S.E. Gandy, N.G. Copeland, N.A. Jenkins, D.L. Price, S.G. Younkin and S.S. Sisodia (1996a) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aß1-42/1–40 ratio in vitro and in vivo, Neuron 17, 1005–1013.PubMedGoogle Scholar
  11. Borchelt. D.R., P.C. Wong, M.W. Becher, C.A. Pardo, M.K. Lee, Z.-S. Xu, G. Thinakaran, N.A. Jenkins, N.G. Copeland, S.S. Sisodia, D.W. Cleveland, D.L. Price and P.N. Hoffman (1996b) Early axonal abnormalities and axonal transport of mutant Superoxide dismutase 1 in a transgenic model of familial amyotrophic lateral sclerosis. J. Neurosci. Google Scholar
  12. Braak, H. and E. Braak (1994) Pathology of Alzheimer’s disease, in: in Neurodegenerative Diseases, (D.B. Calne, ed), pp. 585–613, W.B. Saunders, Philadelphia.Google Scholar
  13. Bradley, W.G., P. Good, C.G. Rasool and L.S. Adelman (1983) Morphometric and biochemical studies of peripheral nerves in amyotrophic lateral sclerosis. Ann. Neurol. 14. 267–277.PubMedGoogle Scholar
  14. Burdick, D., B. Soreghan, M. Kwon, J. Kosmoski, M. Knauer, A. Henschen, J. Yates, C. Cotman and C. Glabe (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/ß amyloid peptide analogs, J. Biol. Chem. 267. 546–554.PubMedGoogle Scholar
  15. Busciglio, J., A. Lorenzo, J. Yeh and B.A. Yankner (1995) ß-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14, 879–888.PubMedGoogle Scholar
  16. Cai. X.-D., T.E. Golde and S.G. Younkin (1993) Release of excess amyloid ß protein from a mutant amyloid ß protein precursor, Science 259, 514–516.PubMedGoogle Scholar
  17. Carpenter, S. (1968) Proximal axonal enlargement in motor neuron disease. Neurology 18, 841–851.PubMedGoogle Scholar
  18. Chartier-Harlin, M.-C., F. Crawford, H. Houlden, A. Warren, D. Hughes, L. Fidani, A. Goate, M, Rossor. P. Roques. J. Hardy and M. Mullan (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the ß-amyloid precursor protein gene, Nature 353, 844–846.PubMedGoogle Scholar
  19. Chou, S.M. (1992) Pathology-light microscopy of amyotrophic lateral sclerosis, in: in Handbook of Amyotrophic Lateral Sclerosis, (R.A. Smith, ed), pp. 133–181. Marcel Dekker, New York.Google Scholar
  20. Citron, M., T. Oltersdorf, C. Haass, L. McConlogue, A.Y. Hung, P. Seubert, C. Vigo-Pelfrey, l. Lieberburg and D.J. Selkoe (1992) Mutation of the ß-amyloid precursor protein in familial Alzheimer’s disease increases ß-pro-tein production, Nature 360, 672–674.PubMedGoogle Scholar
  21. Cotman, C.W. and C.J. Pike (1994) ß-amyloid and its contributions to neurodegeneration in Alzheimer disease, in: in Alzheimer Disease, (R.D. Terry, R. Katzman and K.L. Bick, eds), pp. 305–315, Raven Press, New York.Google Scholar
  22. Dal Canto, M.C. and M.E. Gurney (1994a) The development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis, Am. J. Pathol. 145, 1–9.Google Scholar
  23. Dal Canto, M.C. and M.E. Gurney (1994b) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am. J. Pathol. 145, 1271–1280.Google Scholar
  24. Deng, H.X., A. Hentati, J.A. Tainer, Z. Iqbal, A. Cayabyab, W.-Y. Hung, E.D. Getzoff, P. Hu, B. Herzfeldt, R.P. Roos, C. Warner, G. Deng, E. Soriano, C. Smyth, H.E. Parge, A. Ahmed, A.D. Roses, R.A. Hallewell, M.A. Pericak-Vance and T. Siddique (1993) Amyotrophic lateral sclerosis and structural defects in Cu,Zn super-oxide dismutase. Science 261, 1047–1051.PubMedGoogle Scholar
  25. Doan, A., G. Thinakaran, D.R. Borchelt, H.H. Slum, T. Ratovitsky, M. Podlisny, DJ. Selkoe. M. Seeger, S.E. Gandy, D.L. Price and S.S. Sisodia (1996a) Protein topology of presenilin 1, Neuron 17, 1023–1030.PubMedGoogle Scholar
  26. Doan, A., G. Thinakaran, A. Lanahan, D.L. Price, S.S. Sisodia and P.E. Worley (1996b) Identification and characterization of a presenilin 1 interacting protein, Soc. Neurosci. Abstr. 22, 728Google Scholar
  27. Duff, K., C. Eckman, C. Zehr, X. Yu, C.-M. Prada, J. Perez-Tur, M. Hutton, L. Buee, Y. Harigaya, D. Yager, D. Morgan, M.N. Gordon, L. Holcomb, L. Refolo, B. Zenk, J. Hardy and S. Younkin (1996) Increased amy-Ioid-ß42(43) in brains of mice expressing mutant presenilin 1, Nature 383, 710–713.PubMedGoogle Scholar
  28. Ernst, R.L. and J.W. Hay (1994) The US economic and social costs of Alzheimer’s disease revisited, Am. J. Public Health 84, 1261–1264.PubMedGoogle Scholar
  29. Esch. F.S., P.S. Keim. E.G. Beattie, R.W. Blacher, A.R. Culwell, T. Oltersdorf, D. McClure and P.J. Ward (1990) Cleavage of amyloid ß peptide during constitutive processing of its precursor, Science 248, 1122–1124.PubMedGoogle Scholar
  30. Evans, D.A., H.H. Funkenstein, M.S. Albert, P.A. Scherr, N.R. Cook, MJ. Chown. L.E. Hebert, C.H. Hennekens and J.O. Taylor (1989) Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported, JAMA 262, 2551–2556.PubMedGoogle Scholar
  31. Fischer, M., T. Rül icke, A. Raeber, A. Sailer, M. Moser, B. Oesch, S. Brandner, A. Aguzzi and C. Weissmann (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie, EMBO J. 15, 1255–1264.PubMedGoogle Scholar
  32. Fridovich, I. (1986) Superoxide dismutases, Adv. Enzymol. Relat. Areas Mol. Biol. 58, 61–97.PubMedGoogle Scholar
  33. Games, D., D. Adams, R. Alessandrini, R. Barbour. P. Berthelette, C. Blackwell, T. Carr. J. Clemens, T. Donaldson, F. Gillespie, T. Guido. S. Hagopian, K. Johnson-Wood, K. Khan, M. Lee, P. Leibowitz, I. Lieberburg, S. Little, E. Masliah, L. McConlogue, M. Montoya-Zavala, L. Mucke, L. Paganini, E. Penniman, M. Power, D. Schenk, P. Seubert, B. Snyder. F. Soriano, H. Tan, J. Vitale, S. Wadsworth. B. Wolozin and J. Zhao (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F ß-amyloid precursor protein, Nature 373, 523–527.PubMedGoogle Scholar
  34. Glenner, G.G. and C.W. Wong (1984a) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys. Res. Commun. 120, 885–890.PubMedGoogle Scholar
  35. Glenner, G.G. and C.W. Wong (1984b) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein, Biochem. Biophys. Res. Commun. 122, 1131–1135.PubMedGoogle Scholar
  36. Goate, A., M.-C. Chartier-Harlin, M. Mullan, J. Brown, F. Crawford, L. Fidani, L. Giuffra, A. Haynes, N. Irving, L. James, R. Mant, P. Newton, K. Rooke, P. Roques, C. Talbot, M. Pericak-Vance, A. Roses, R. Williamson, M. Rossor, M. Owen and J. Hardy (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706.PubMedGoogle Scholar
  37. Goedert, M., R. Jakes, M.G. Spillantini, M. Hasegawa, MJ. Smith and R.A. Crowther (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans, Nature 383, 550–553.PubMedGoogle Scholar
  38. Goldgaber, D., M.I. Lerman, O.W. McBride, U. Saffiotti and D.C. Gajdusek (1987) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease, Science 235, 877–880.PubMedGoogle Scholar
  39. Gonatas. N.K., A. Stieber, Z. Mourelatos, Y. Chen, J.O. Gonatas, S.H. Appel, A.P. Hays, W.F. Hickey and J.-J. Hauw (1992) Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis, Am. J. Pathol. 140, 731–737.PubMedGoogle Scholar
  40. Gurney, M.E., H. Pu, A.Y. Chiu, M.C. Dal Canto, C.Y. Polchow, D.D. Alexander, J. Caliendo, A. Hentati, Y.W. Kwon, H.-X. Deng, W. Chen, P. Zhai, R.L. Sufit and T. Siddique (1994) Motor neuron degeneration in mice that express a human Cu,Zn Superoxide dismutase mutation, Science 264, 1772–1775.PubMedGoogle Scholar
  41. Gurney, M.E., F.B. Cuttings, P. Zhai, A. Doble. C.P. Taylor, P.K. Andrus and E.D. Hall (1996) Benefit of vitamin E. riluzole. and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis, Ann. Neurol. 39, 147–157.PubMedGoogle Scholar
  42. Haass, C., E.H. Koo, A. Mellon, A.Y Hung and D.J. Selkoe (1992) Targeting of cell-surface ß-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments, Nature 357, 500–503.PubMedGoogle Scholar
  43. Hendricks, L., C.M. van Duijn, P. Cras, M. Cruts, W. Van Hul, F. van Harskamp, A. Warren, M.G. Mclnnis, S.E. Antonarakis, J.-J. Martin, A. Hofman and C. Van Broeckhoven (1992) Presenile dementia and cerebal haemorrhage linked to a mutation at codon 692 of the ß-amyloid precursor protein gene, Nature Genetics 1, 218–221.Google Scholar
  44. Higgins, L.S., D.M. Holtzman, J. Rabin, W.C. Mobley and B. Cordell (1994) Transgenic mouse brain histopathol-ogy resembles early Alzheimer’s disease, Ann. Neurol. 35, 598–607.PubMedGoogle Scholar
  45. Hirano, A., N. Malamud, L.T. Kurland and H.M. Zimmerman (1969) A review of the pathologic findings in amyotrophic lateral sclerosis, in: in Motor Neuron Diseases. Research on Amyotrophic Lateral Sclerosis and Other Disorders, (F.H. Norris and L.T. Kurland, eds), pp. 51–60, Grune & Stratton, New York.Google Scholar
  46. Hirano, A. and S. Kato (1992) Fine structural study of sporadic and familial amyotrophic lateral sclerosis, in: in Handbook of Amyotrophic Lateral Sclerosis, (R.A. Smith, ed), pp. 183–192, Marcel Dekker, New York.Google Scholar
  47. Howland, D.S., M.J. Savage, F.A. Huntress, R.E. Wallace, D.A. Schwartz, T. Loh, R.H. Melloni,Jr., L.J. DeGen-naro, B.D. Greenberg, R. Siman, M.E. Swanson and R.W. Scott (1995) Mutant and native human ß-amy-loid precursor proteins in transgenic mouse brain, Neurobiol. Aging 16, 685–699.PubMedGoogle Scholar
  48. Hsiao, K., P. Chapman. S. Nilsen, C. Eckman, Y. Harigaya, S. Younkin, F. Yang and G. Cole (1996) Correlative memory deficts, Aß elevation and amyloid plaques in transgenic mice, Science 274. 99–102.PubMedGoogle Scholar
  49. Hsiao, K.K., D. Groth, M. Scott, S.-L. Yang, H. Serban, D. Rapp, D. Foster, M. Torchia, SJ. DeArmond and S.B. Prusiner (1994) Serial transmission in rodents in neurodegeneration from transgenic mice expressing mutant prion proteins, Proc. Natl. Acad. Sci. USA 91, 9126–9130.PubMedGoogle Scholar
  50. Hsiao, K.K., D.R. Borchelt, K. Olson, R. Johannsdottir, C. Kitt, W. Yunis, S. Xu, C. Eckman, S. Younkin, D. Price, C. ladecola, H.B. Clark and G. Carlson (1995) Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins, Neuron 15, 1203–1218.PubMedGoogle Scholar
  51. Iwatsubo, T., A. Odaka, N. Suzuki, H. Mizusawa, N. Nukina and Y. Ihara (1994) Visualization of Aß42(43)-posi-tive and Aß40-positive senile plaques with end-specific Aß-monoclonal antibodies: evidence that an initially deposited Aß species is Aß 1-42(43), Neuron 13, 45–53.PubMedGoogle Scholar
  52. Iwatsubo, T., D.M.A. Mann, A. Odaka, N. Suzuki and Y. Ihara (1995) Amyloid ß protein (Aß) deposition: Aß42(43) preceds Aß40 in Down syndrome. Ann. Neurol. 37. 294–299.PubMedGoogle Scholar
  53. Jarrett, J.T., E.P. Berger and P.T. Lansbury, Jr. (1993) The carboxy terminus of the ß amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease, Biochemistry 32, 4693–4697.PubMedGoogle Scholar
  54. Jarrett, J.T. and P.T. Lansbury, Jr. (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73, 1055–1058.PubMedGoogle Scholar
  55. Kang, J., H.-G. Lemaire, A. Unterbeck, J.M. Salbaum, C.L. Masters, K.-H. Grzeschik. G. Multhaup, K. Beyreuther and B. Müller-Hill (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor, Nature 325, 733–736.PubMedGoogle Scholar
  56. Kitaguchi, N., Y. Takahashi, Y. Tokushima, S. Shiojiri and H. Ito (1988) Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature 331, 530–532.PubMedGoogle Scholar
  57. Koo, E.H. and S.L. Squazzo (1994) Evidence that production and release of amyloid ß-protein involves the endo-cytic pathway.J. Biol. Chem. 269. 17386–17389.Google Scholar
  58. Kovacs. D.M., H.J. Fausett, K.J. Page, T.-W. Kim, R.D. Moir, D.E. Merriam, R.D. Hollister, O.G. Hallmark, R. Mancini, K.M. Felsenstein, B.T. Hyman, R.E. Tanzi and W. Wasco (1996) Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells, Nature Med. 2, 224–229.PubMedGoogle Scholar
  59. LaFerla, F.M., B.T. Tinkle, C.J. Bieberich, C.C. Haudenschild and G. Jay (1995) The Alzheimer’s Aß peptide induces neurodegeneration and apoptotic cell death in transgenic mice, Nature Genetics 9. 21–30.PubMedGoogle Scholar
  60. Lee, M.K., H.H. Slum, L.J. Martin, G. Thinakaran, G. Kim, S.E. Gandy, M. Seeger, E. Koo, D.L. Price and S.S. Sisodia (1996) Expression of presenilin 1 and 2 (PS1 and PS2) in human and murine tissues, J. Neurosci. 16, 7513–7525.PubMedGoogle Scholar
  61. Lee, V.M.-Y (1995) Disruption of the cytoskeleton in Alzheimer’s disease, Curt: Opin. Neurobiol. 5, 663–668.Google Scholar
  62. Lemere, C.A., J.K. Blusztajn, H. Yamaguchi, T. Wisniewski, T.C. Saido and D.J. Selkoe (1996a) Sequence of deposition of heterogeneous amyloid ß-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation, Neurobiol. Dis. 3, 16–32.PubMedGoogle Scholar
  63. Lemere, C.A., F. Lopera, K.S. Kosik, C.L. Lendon, J. Ossa, T.C. Saido, H. Yamaguchi, A. Ruiz, A. Martinez, L. Madrigal, L. Hincapie, J.C.L. Arango, D.C. Anthony, E.H. Koo, A.M. Goate, D.J. Selkoe and J.C.V Arango (1996b) The E280A presenilin 1 Alzheimer mutation produces increased Aß42 deposition and severe cerebellar pathology, Nature Med. 2, 1146–1150.PubMedGoogle Scholar
  64. Levitan, D. and I. Greenwald (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene, Nature 311, 351–354.Google Scholar
  65. Levy-Lahad, E., W. Wasco, P. Poorkaj, D.M. Romano, J. Oshima, W.H. Pettingell, C.-E. Yu, P.D. Jondro, S.D. Schmidt, K. Wang. A.C. Crowley, Y.-H. Fu, S.Y Guenette, D. Galas, E. Nemens, E.M. Wijsman, T.D. Bird. G.D. Schellenberg and R.E. Tanzi (1995a) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269, 973–977.PubMedGoogle Scholar
  66. Levy-Lahad, E., E.M. Wijsman, E. Nemens, L. Anderson, K.A.B. Goddard, J.L. Weber, T.D. Bird and G.D. Schellenberg (1995b) A familial Alzheimer’s disease locus on chromosome 1, Science 269, 970–973.PubMedGoogle Scholar
  67. Li, J., J. Ma and H. Potter (1995) Identification and expression analysis of a potential familial Alzheimer disease gene on chromosome 1 related to AD3, Proc. Natl. Acad. Sci. USA 92, 12180–12184.PubMedGoogle Scholar
  68. Liu, X.F. and V. Cizewski Culotta (1994) The requirement for yeast Superoxide dismutase is bypassed through mutations in BSD2, a novel metal homeostasis gene, Mol. Cell. Biol. 14, 7037–7045.PubMedGoogle Scholar
  69. Masters, C.L., G. Multhaup, G. Simms, J. Pottgiesser, R.N. Martins and K. Beyreuther (1985a) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels, EMBO J. 4, 2757–2763.PubMedGoogle Scholar
  70. Masters, C.L., G. Simms, N.A. Weinman, G. Multhaup, B.L. McDonald and K. Beyreuther (1985b) Amyloid plaque core protein in Alzheimer disease and Down syndrome, Proc. Natl. Acad. Sci. USA 82, 4245–4249.PubMedGoogle Scholar
  71. Matsumoto, S., H. Kusaka, N. Murakami, Y. Hashizume, H. Okazaki and A. Hirano (1992) Basophilic inclusions in sporadic juvenile amyotrophic lateral sclerosis: an immunocytochemical and ultrastructural study. Acta Neuropathol. 83, 579–583.PubMedGoogle Scholar
  72. Moran, P.M., L.S. Higgins, B. Cordell and P.C. Moser (1995) Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human ß-amyloid precursor protein, Proc. Natl. Acad. Sci. USA 92, 5341–5345.PubMedGoogle Scholar
  73. Morrison, B.M., J.W. Gordon, M.E. Ripps and J.H. Morrison (1996) Quantitative immunocytochemical analysis of the spinal cord in G86R Superoxide dismutase transgenic mice: neurochemical correlates of selective vulnerability, J. Comp. Neural. 373, 619–631.Google Scholar
  74. Mourelatos, Z., N.K. Gonatas. A. Stieber. M.E. Gurney and M.C. Dal Canto (1996) The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu,Zn Superoxide dismutase becomes fragmented in early, preclinical stages of the disease. Proc. Natl. Acad. Sci. USA 93, 5472–5477.PubMedGoogle Scholar
  75. Mullan, M., F. Crawford, K. Axelman, H. Houlden, L. Lillius, B. Winblad and L. Lannfelt (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of ß-amyloid. Nature Genetics 1,345–347.PubMedGoogle Scholar
  76. Naruse, S., S. Igarashi, H. Kobayashi, K. Aoki, T. Inuzuka, K. Kaneko, T. Shimizu, K. Iihara, T. Kojima, T. Miyatake and S. Tsuji (1991) Mis-sense mutation Val→Ile in exon 17 of amyloid precursor protein gene in Japanese familial Alzheimer’s disease, Lancet 337, 978–979.PubMedGoogle Scholar
  77. Oster-Granite, M.L., D.L. McPhie, J. Greenan and R.L. Neve (1996) Age-dependent neuronal and synaptic degeneration in mice transgenic for the C terminus of the amyloid precursor protein, J. Neurosci. 16, 6732–6741.PubMedGoogle Scholar
  78. Pardo. CA., Z. Xu. D.R. Borchelt., D.L. Price., S.S. Sisodia and D.W. Cleveland (1995) Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons, Proc. Natl. Acad. Sci. USA 92, 954–958.PubMedGoogle Scholar
  79. Pike. C.J., D. Burdick, A.J. Walencewicz, C.G. Glabe and C.W. Cotman (1993) Neurodegeneration induced by ß-amyloid peptides in vitro: the role of peptide assembly state, J. Neurosci. 13, 1676–1687.PubMedGoogle Scholar
  80. Ponte, P., P. Gonzalez-DeWhitt, J. Schilling, J. Miller, D. Hsu, B. Greenberg, K. Davis, W. Wallace, I. Lieberburg, F. Fuller and B. Cordell (1988) A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors, Nature 331, 525–532.PubMedGoogle Scholar
  81. Price, D.L., C.H. Kavvas and S.S. Sisodia (1996) Aging of the brain and dementia of the Alzheimer’s type, in: in Principles of Neural Science, (E.R. Kandel, J.H. Schwartz and T.M. Jessell, eds), Elsevier, New York.Google Scholar
  82. Price, D.L. and S.S. Sisodia (1994) Cellular and molecular biology of Alzheimer’s disease and animal models, Annu. Rev. Med. 45, 435–446.PubMedGoogle Scholar
  83. Rabizadeh, S., E. Butler Gralla, D.R. Borchelt, R. Gwinn, J. Selverstone Valentine, S. Sisodia, P. Wong, M. Lee, H. Hahn and D.E. Bredesen (1995) Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells, Proc. Natl Acad. Sci. USA 92, 3024–3028.PubMedGoogle Scholar
  84. Reaume, A.G., J.L. Elliott, E.K. Hoffman, N.W. Kowall, R.J. Ferrante, D.F. Siwek, H.M. Wilcox, D.G. Flood, M.F. Beal, R.H. Brown Jr., R.W. Scott and W.D. Snider (1996) Motor neurons in Cu/Zn Superoxide dismu-tase-deficient mice develop normally but exhibit enhanced cell death after axonal injury, Nature Genetics 13,43–47.PubMedGoogle Scholar
  85. Ripps, M.E., G.W. Huntley, P.R. Hof, J.H. Morrison and J.W. Gordon (1995) Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis, Proc. Natl. Acad. Sci. USA 92, 689–693.PubMedGoogle Scholar
  86. Robakis, N.K., N. Ramakrishna, G. Wolfe and H.M. Wisniewski (1987) Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides, Proc. Natl. Acad. Sci. USA 84, 4190–4194.PubMedGoogle Scholar
  87. Rockenstein, E.M., L. McConlogue., H. Tan, M. Power, E. Masliah and L. Mucke (1995) Levels and alternative splicing of amyloid ß protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease, J. Biol. Chem. 270, 28257–28267.PubMedGoogle Scholar
  88. Rogaev, E.I., R. Sherrington, E.A. Rogaeva, G. Levesque, M. Ikeda, Y. Liang, H. Chi, C. Lin. K. Holman, T. Tsuda, L. Man S. Sorbi, B. Nacmias, S. Piacentini, L. Amaducci, I. Chumakov, D. Cohen, L. Lannfelt, P.E. Fraser, J.M. Rommens and P.H. St George-Hyslop (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene, Nature 376. 775–778.PubMedGoogle Scholar
  89. Rosen. D.R., T. Siddique, D. Patterson, D.A. Figlevvicz, P. Sapp, A. Hentati, D. Donaldson, J. Goto, J.P. O’Regan, H.-X. Deng, Z. Rahmani, A. Krizus, D. McKenna-Yasek, A. Cayabyab, S.M. Gaston, R. Berger, R.E. Tanzi, J.J. Halperin, B. Herzfeldt, R. Van den Bergh, W.-Y. Hung, T. Bird, G. Deng, D.W. Mulder. C. Smyth, N.G. Laing, E. Soriano, M.A. Pericak-Vance, J. Haines, G.A. Rouleau. J.S. Gusella, H.R. Horvitz and R.H. Brownjr. (1993) Mutations in Cu/Zn Superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature 362, 59–62.PubMedGoogle Scholar
  90. Roses, A.D. (1995) Apolipoprotein E genotyping in the differential diagnosis, not prediction, of Alzheimer’s disease, Ann. Nenrol. 38, 6–14.Google Scholar
  91. Rouleau, G.A., A.W. Clark, K. Rooke, A. Pramatarova, A. Krizus, O. Suchowersky, J.-P. Julien and D. Figlewicz (1996) SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis, Ann. Neurol. 39, 128–131.PubMedGoogle Scholar
  92. Schellenberg, G.D. (1995) Progress in Alzheimer’s disease genetics, Curr. Opin. Neurol. 8, 262–267.PubMedGoogle Scholar
  93. Scheuner, D., C. Eckman, M. Jensen, X. Song, M. Citron, N. Suzuki, T.D. Bird, J. Hardy, M. Hutton, W. Kukull, E. Larson, E. Levy-Lahad, M. Viitanen, E. Peskind, P. Poorkaj, G. Schellenberg, R. Tanzi, W. Wasco, L. Lannfelt, D. Selkoe and S. Younkin (1996) Secreted amyloid ß-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease, Nature Med. 2, 864–872.PubMedGoogle Scholar
  94. Scott, M., D. Foster, C. Mirenda, D. Serban, F. Coufal, M. Wäl chli, M. Torchia, D. Groth, G. Carlson, SJ. DeAr-mond, D. Westaway and S.B. Prusiner (1989) Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques, Cell 59, 847–857.PubMedGoogle Scholar
  95. Scott, M.R., R. Köhler, D. Foster and S.B. Prusiner (1992) Chimeric prion protein expression in cultured cells and transgenic mice. Protein Sci. 1, 986–997.PubMedGoogle Scholar
  96. Sherrington, R., E.I. Rogaev, Y. Liang, E.A. Rogaeva, G. Levesque, M. Ikeda, H. Chi, C. Lin, G. Li, K. Holman, T. Tsuda. L. Mar, J.-F. Foncin, A.C. Bruni, M.P. Montesi, S. Sorbi, I. Rainero, L. Pinessi, L. Nee, I. Chumakov, D. Pollen, A. Brookes, P. Sanseau, R.J. Polinsky, W. Wasco. H.A.R. Da Silva, J.L. Haines, M.A. Pericak-Vance, R.E. Tanzi. A.D. Roses. P.E. Fraser, J.M. Rommens and P.H. St George-Hyslop (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease, Nature 375, 754–760.PubMedGoogle Scholar
  97. Shibata, N., M. Hirano and K. Kobayashi (1993) Immunohistochemical demonstration of Cu/Zn Superoxide dismutase in the spinal cord of patients with familial amyotrophic lateral sclerosis, Acta Histochem. Cytochem. 26, 619–622.Google Scholar
  98. Shibata, N., A. Hirano, M. Kobayashi, T. Siddique, H.-X. Deng, W.-Y. Hung, T. Kato and K. Asayama (1996) Intense Superoxide dismutase-1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement, J. Neuropathol. Exp. Neurol. 55, 481–490.PubMedGoogle Scholar
  99. Shinkai, Y., M. Yoshimura, Y. Ito, A. Odaka, N. Suzuki, K. Yanagisawa and Y. Ihara (1995) Amyloid ß-proteins 1-40 and 1-42(43) in the soluble fraction of extra-and intracranial blood vessels, Ann. Neurol. 38, 421–428.PubMedGoogle Scholar
  100. Siddique, T., D.A. Figlewicz, M.A. Pericak-Vance, J.L. Haines, G. Rouleau. A.J. Jeffers, P. Sapp. W.-Y. Hung. J. Bebout. D. McKenna-Yasek. G. Deng, H.B. Horvitz, J.F. Gusella, R.H. Brownjr., A.D. Roses. R.P. Roos, D.B. Williams, D.W. Mulder, P.C. Watkins, R. Noore, G. Nicholson, R. Reed, B.R. Brooks, B. Festoff, J.P. Antel, R. Tandan, T.L. Munsat, N.G. Laing, J.J. Halperin. F.H. Norris, R. Van den Bergh, L. Swerts, R.E. Tanzi, B. Jubelt, K.D. Mathews and E.P. Bosch (1991) Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity, N. Engl. J. Med. 324, 1381–1384.PubMedGoogle Scholar
  101. Simmons. L.K., P.C. May, K.J. Tomaselli, R.E. Rydel, K.S. Fuson, E.F. Brigham, S. Wright, I. Lieberburg, G.W. Becker, D.N. Brems and et al (1994) Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro. Mol. Pharmacol. 45. 373–379.PubMedGoogle Scholar
  102. Sisodia, S.S., E.H. Koo, K. Beyreuther, A. Unterbeck and D.L. Price (1990) Evidence that ß-amyloid protein in Alzheimer’s disease is not derived by normal processing, Science 248, 492–495.PubMedGoogle Scholar
  103. Sisodia, S.S. (1992) ß-amyloid precursor protein cleavage by a membrane-bound protease, Proc. Natl. Acad. Sci. USA 89, 6075–6079.PubMedGoogle Scholar
  104. St George-Hyslop, P.H., P. Haines, E. Rogaev, M. Mortilla, G. Vaula, M. Pericak-Vance, J.-F. Foncin, M. Montesi, A. Bruni, S. Sorbi, I. Rainero, L. Pinessi, D. Pollen, R. Polinsky, L. Nee, J. Kennedy, F. Macciardi, E. Rogaeva, Y. Liang, N. Alexandrova, W. Lukiw, K. Schlumpf, R. Tanzi, T. Tsuda, L. Farrer, J.-M. Cantu, R. Duara, L. Amaducci, L. Bergamini, J. Gusella, A. Roses and D. Crapper McLachlan (1992) Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14, Nature Genetics 2, 330–334.PubMedGoogle Scholar
  105. Su. J.H., A.J. Anderson, B.J. Cummings and C.W. Cotman (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease, Neuroreport 5, 2529–2533.PubMedGoogle Scholar
  106. Suzuki, N., T.T. Cheung, X.-D. Cai, A. Odaka, L. Otvos, Jr., C. Eckman, T.E. Golde and S.G. Younkin (1994) An increased percentage of long amyloid ß protein secreted by familial amyloid ß protein precursor (ßAPP717) mutants. Science 264, 1336–1340.PubMedGoogle Scholar
  107. Tanzi. R.E., A.I. McClatchey, E.D. Lampert, L. Villa-Komaroff, J.F. Gusella and R.L. Neve (1988) Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease, Na-ture 331, 528–530.Google Scholar
  108. Thinakaran, G., D.R. Borchelt, M.K. Lee, H.H. Slunt, L. Spitzer, G. Kim, T. Ratovitski, F. Davenport, C. Nordstedt. M. Seeger, J. Hardy, A.I. Levey, S.E. Gandy, N. Jenkins, N. Copeland, D.L. Price and S.S. Sisodia (1996a) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo, Neuron 17, 181–190.PubMedGoogle Scholar
  109. Thinakaran, G., L.J. Martin, D.R. Borchelt, S.E. Gandy, S.S. Sisodia and D.L. Price (1996b) Studies of Aß amy-loidogenesis in model systems of Alzheimer’s disease, in: in The Dementias, Association for Research in Nervous and Mental Disease, American Psychiatric Press, Washington, D.C.Google Scholar
  110. Thinakaran, G., D.B. Teplow, R. Siman, B. Greenberg and S.S. Sisodia (1996c) Metabolism of the APP variant in Neuro2A (N2a) cells: evidence that cleavage at the “ß-secretase” site occurs in the Golgi apparatus, J. Biol. Chem. 271,9390–9397.PubMedGoogle Scholar
  111. Troncoso, J.C., R.R. Sukhov, C.H. Kawas and V.E. Koliatsos (1996) In situ labeling of dying cortical neurons in normal aging and in Alzheimer’s disease: correlations with senile plaques and disease progression, J. Neuropathol. Exp. Neurol. 55, 1134–1142.PubMedGoogle Scholar
  112. Tu, P.-H., P. Raju, K.A. Robinson, M.E. Gurney, J.Q. Trojanowski and V.M.-Y. Lee (1996) Transgenic mice carrying a human mutant Superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions, Proc. Natl. Acad. Sci. USA 93, 3155–3160.PubMedGoogle Scholar
  113. Wang, R., J.F. Meschia, R.J. Cotter and S.S. Sisodia (1991) Secretion of the ß/A4 amyloid precursor protein. Identification of a cleavage site in cultured mammalian cells, J. Biol. Chem. 266, 16960–16964.PubMedGoogle Scholar
  114. Weidemann, A., G. Kön ig, D. Bunke, P. Fischer, J.M. Salbaum, C.L. Masters and K. Beyreuther (1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein, Cell 57, 115–126.PubMedGoogle Scholar
  115. Wiedau-Pazos, M., J.J. Goto, S. Rabizadeh, E.B. Gralla, J.A. Roe, M.K. Lee, J.S. Valentine and D.E. Bredesen (1996) Altered reactivity of Superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271, 515–518.PubMedGoogle Scholar
  116. Wong. P.C., C.A. Pardo, D.R. Borchelt, M.K. Lee, N.G. Copeland, N.A. Jenkins, S.S. Sisodia, D.W. Cleveland and D.L. Price (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria, Neuron 14, 1105–1116.PubMedGoogle Scholar
  117. Yankner. B.A. (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease, Neuron 16, 921–932.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Philip C. Wong
    • 1
    • 2
  • David R. Borchelt
    • 1
    • 2
  • Michael K. Lee
    • 1
    • 2
  • Carlos A. Pardo
    • 1
    • 2
  • Gopal Thinakaran
    • 1
    • 2
  • Lee J. Martin
    • 1
    • 2
    • 3
  • Sangram S. Sisodia
    • 1
    • 2
    • 3
  • Donald L. Price
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of PathologyBaltimoreUSA
  2. 2.Neuropathology LaboratoryBaltimoreUSA
  3. 3.Department of NeuroscienceBaltimoreUSA
  4. 4.Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Neuropathology LaboratoryThe Johns Hopkins University School of MedicineUSA

Personalised recommendations