Nuclear Transcription Factors in Cytochrome c and Cytochrome Oxidase Expression

  • Richard C. Scarpulla


A distinctive feature of eukaryotes is the compartmentalization of genetic systems for the replication and expression of nuclear, mitochondrial, and chloroplast genes. In vertebrate mitochondria, the compact circular genome is dedicated to the synthesis of 13 polypeptide subunits of the electron transport and oxidative phosphorylation systems (Attardi and Schatz, 1988). The genes for these subunits are interspersed with those encoding the rRNAs and tRNAs required for translation within the mitochondrial matrix. The mammalian mitochondrial genome, with its absence of introns, the minimization of intergenic and untranslated regions, and the expression of polygenic transcripts, represents a striking departure from nuclear genome organization and expression. Divergent promoters within a regulatory region, termed the D-loop, direct the synthesis of polygenic transcripts from both DNA strands. These transcripts are subsequently cleaved to yield the individual functional RNAs. DNA replication is bidirectional, but initiation from each strand proceeds asymmetrically from separate origins located about two thirds of the genome apart (Clayton, 1991). By contrast, plants and unicellular eukaryotes, such as Sac- charomyces cerevisiae, have larger genomes as well as more complex gene structures and arrangements (Tracy and Stern, 1995). Nevertheless, the polypeptide contribution of mitochondrial genomes to the respiratory apparatus is very similar among eukaryotes (Wolstenholme, 1992).


Thyroid Hormone Cytochrome Oxidase Oxidase Subunit Nuclear Transcription Factor Cytochrome Oxidase Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, L. A., Zhao, X.-J., Caughey, W., and Poyton, R. O., 1995, Isoforms of yeast cytochrome c oxidase subunit V affect the binuclear reaction center and alter the kinetics of interaction with the isoforms of yeast cytochrome c, J. Biol. Chem. 270:110–118.PubMedCrossRefGoogle Scholar
  2. Anthony, G., Stroh, A., Lottspeich, F., and Kadenbach, B., 1990, Different isozymes of cytochrome c oxidase are expressed in bovine smooth muscle and skeletal or heart muscle, FEBS Lett. 277:97–100.PubMedCrossRefGoogle Scholar
  3. Anthony, G., Reimann, A., and Kadenbach, B., 1993, Tissue-specific regulation of bovine heart cytochrome-c oxidase activity by ADP via interaction with subunit VIa, Proc. Natl. Acad. Sci. USA 90:1652–1656.PubMedCrossRefGoogle Scholar
  4. Attardi, G., and Schatz, G., 1988, Biogenesis of mitochondria, Annu. Rev. Cell. Biol. 4:289–333.PubMedCrossRefGoogle Scholar
  5. Bachman, N. J., Lomax, M. I., and Grossman, L. I., 1987, Two bovine genes for cytochrome c oxidase subunit IV:a processed pseudogene and an expressed gene, Gene 55:219–229.PubMedCrossRefGoogle Scholar
  6. Bachman, N. J., Yang, T. L., Dasen, J. S., Ernst, R. E., and Lomax, M. I., 1996, Phylogenetic footprinting of the human cytochrome c oxidase subunit Vb promoter, Arch. Biochem. Biophys. 333:152–162.PubMedCrossRefGoogle Scholar
  7. Balasubramanian, B., Lowry, C. V., and Zitomer, R. S., 1993, The Roxl repressor of the Sac-charomyces cerevisiae hypoxic genes is a specific DNA-binding protein with a high-mobility-group motif, Mol. Cell. Biol. 13:6071–6078.PubMedGoogle Scholar
  8. Basu, A., and Avadhani, N. G., 1991, Structural organization of nuclear gene for subunit Vb of mouse mitochondrial cytochrome c oxidase, J. Biol. Chem. 266:15450–15456.PubMedGoogle Scholar
  9. Basu, A., Lenka, N., Mullick, J., and Avadhani, N. G., 1997, Regulation of murine cytochrome oxidase Vb gene expression in different tissues and during myogenesis—Role of a YY-1 factor-binding negative enhancer, J. Biol. Chem. 272:5899–5908.PubMedCrossRefGoogle Scholar
  10. Basu, A., Park, K., Atchison, M. L., Carter, R. S., and Avadhani, N. G., 1993, Identification of a transcriptional initiator element in the cytochrome c oxidase subunit Vb promoter which binds to transcription factors NF-E1 (YY-1, δ) and Spl, J. Biol. Chem. 268:4188–4196.PubMedGoogle Scholar
  11. Bhat, N. K., Fisher, R. J., Fujiwara, S., Ascione, R., and Papas, T. S., 1987, Temporal and tissue-specific expression of mouse ets genes, Proc. Natl. Acad. Sci. USA 84:3161–3165.PubMedCrossRefGoogle Scholar
  12. Booth, F. W., and Holloszy, J. O., 1975, Effect of thyroid hormone administration on synthesis and degradation of cytochrome c in rat liver, Arch. Biochem. Biophys. 167:674–677.PubMedCrossRefGoogle Scholar
  13. Braidotti, G., Borthwick, I. A., and May, B. K., 1993, Identification of regulatory sequences in the gene for 5-aminolevulinate synthase from rat, J. Biol. Chem. 268:1109–1117.PubMedGoogle Scholar
  14. Breen, G. A. M., Jordan, E. M., and Vander Zee, C. A., 1995, ATPF1 binding site, a positive cisacting regulatory element of the mammalian ATP synthase α-subunit gene, J. Biol. Chem. 269:6972–6977.Google Scholar
  15. Calzone, F. J., Hoog, C., Teplow, D. B., Cutting, A. E., Zeller, R. W., Britten, R. J., and Davidson, E. H., 1991, Gene regulatory factors of the sea urchin embryo. I. Purification by affinity chromatography and cloning of P3A2, a novel DNA binding protein, Development 112: 335–350.PubMedGoogle Scholar
  16. Carlson, M., and Laurent, B. C., 1994, The SNF/SWI family of global transcriptional activators, Curr. Opin. Cell Biol. 6:396–402.PubMedCrossRefGoogle Scholar
  17. Carter, R. S., and Avadhani, N. G., 1991, Cloning and characterization of the mouse cytochrome c oxidase subunit IV gene, Arch. Biochem. Biophys. 288:97–106.PubMedCrossRefGoogle Scholar
  18. Carter, R. S., Bhat, N. K., Basu, A., and Avadhani, N. G., 1992, The basal promoter elements of murine cytochrome c oxidase subunit IV gene consist of tandemly duplicated ets motifs that bind to GABP-related transcription factors, J. Biol. Chem. 267:23418–23426.PubMedGoogle Scholar
  19. Chang, D. D., and Clayton, D. A., 1989, Mouse RNase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate, Cell 56:131–139.PubMedCrossRefGoogle Scholar
  20. Chau, C. A., Evans, M. J., and Scarpulla, R. C., 1992, Nuclear respiratory factor 1 activation sites in genes encoding the gamma-subunit of ATP synthase, eukaryotic initiation factor 2a, and tyrosine aminotransferase. Specific interaction of purified NRF-1 with multiple target genes, J. Biol. Chem. 267:6999–7006.PubMedGoogle Scholar
  21. Chodosh, L. A, Olesen, J., Hahn, S., Baldwin, A. S., Guarente, L., and Sharp, P. A., 1988, A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable, Cell 53:25–35.PubMedCrossRefGoogle Scholar
  22. Clavilier, L., Pere, G., and Slonimski, P. P., 1969, Mise en evidence de plusiers loci independants impliques dans la synthese de l’iso-2-cytochrome c chez la levure, Mol. Gen. Genet. 104: 195–218.PubMedCrossRefGoogle Scholar
  23. Clayton, D. A., 1991, Replication and transcription of vertebrate mitochondrial DNA, Annu. Rev. Cell Biol. 7:453–478.PubMedCrossRefGoogle Scholar
  24. Costanzo, M. C., and Fox, T. D., 1990, Control of mitochondrial gene expression in Saccharomyces cerevisiae, Annu. Rev. Genet. 24:91–113.PubMedCrossRefGoogle Scholar
  25. Crow, J. F., and Dove, W. F., 1990, Studies of yeast cytochrome c: How and why they started and why they continued, Genetics 125:9–12.Google Scholar
  26. Cumsky, M. G., Trueblood, C. E., Ko, C., and Poyton, R. O., 1987, Structural analysis of two genes encoding divergent forms of yeast cytochrome c oxidase subunit V., Mol. Cell. Biol. 7:3511–3519.PubMedGoogle Scholar
  27. David, M., Daveran, M., Batut, J., Dedieu, A., Domergue, O., Ghai, J., Hertig, C., Boistard, P., and Kahn, D., 1988, Cascade regulation of nif gene expression in Rhizobium meliloti, Cell 54: 671–683.PubMedCrossRefGoogle Scholar
  28. Deckert, J., Perini, R., Balasubramanian, B., and Zitomer, R. S., 1995a, Multiple elements and auto-repression regulate Roxl, a repressor of hypoxic genes in Saccharomyces cerevisiae, Genetics 139:1149–1158.PubMedGoogle Scholar
  29. Deckert, J., Torres, A. M. R., Simon, J. T., and Zitomer, R. S., 1995b, Mutational analysis of Roxl, a DNA-bending, repressor of hypoxic genes in Saccharomyces cerevisiae, Mol. Cell. Biol. 15: 6109–6117.PubMedGoogle Scholar
  30. Desimone, S. M., and White, K., 1993, The Drosophila erect wing gene, which is important for both neuronal and muscle development, encodes a protein which is similar to the sea urchin P3A2 DNA binding protein, Mol. Cell. Biol 13(6):3641–3949.PubMedGoogle Scholar
  31. Dickerson, R. E, 1972, The structure and history of an ancient protein, Sci. Am. 266:58–72.CrossRefGoogle Scholar
  32. Dorsman, J. C., Van Heeswijk, W. C., and Grivell, L. A., 1990, Yeast general transcription factor GFI: Sequence requirements for binding to DNA and evolutionary conservation, Nucleic Acids Res. 18:2769–2776.PubMedCrossRefGoogle Scholar
  33. Drabkin, D. L., 1950a, Cytochrome c metabolism and liver regeneration. Influence of thyroid gland and thyroxine, J. Biol. Chem. 182:335–349.Google Scholar
  34. Drabkin, D. L., 1950b, The distribution of the chromoproteins, hemoglobin, myoglobin, and cytochrome c, in the tissues of different species, and the relationship of the total content of each chromoprotein to body mass, J. Biol. Chem. 182:317–333.Google Scholar
  35. Dyer, M. R., Gay, N. J., Powell, S. J., and Walker, J. E., 1989, ATP synthase from bovine mitochondria: Complementary DNA sequence of the mitochondrial import precursor of the gamma-subunit and the genomic sequence of the mature protein, Biochemistry 28:3670–3680.PubMedCrossRefGoogle Scholar
  36. Evans, M. J., and Scarpulla, R. C., 1988a, The human somatic cytochrome c gene: Two classes of processed pseudogenes demarcate a period of rapid molecular evolution, Proc. Natl. Acad. Sci. USA 85:9625–9629.PubMedCrossRefGoogle Scholar
  37. Evans, M. J., and Scarpulla, R. C., 1988b, Both upstream and intron sequence elements are required for elevated expression of the rat somatic cytochrome c gene in COS-1 cells, Mol. Cell. Biol. 8:35–41.PubMedGoogle Scholar
  38. Evans, M. J., and Scarpulla, R. C., 1989, Interaction of nuclear factors with multiple sites in the somatic cytochrome c promoter. Characterization of upstream NRF-1, ATF and intron Spl recognition sites, J. Biol. Chem. 264:14361–14368.PubMedGoogle Scholar
  39. Evans, M. J., and Scarpulla, R. C., 1990, NRF-1: A trans-activator of nuclear-encoded respiratory genes in animal cells, Genes Dev. 4:1023–1034.PubMedCrossRefGoogle Scholar
  40. Forsburg, S. L., and Guarente, L., 1989a, Communication between mitochondria and the nucleus in regulation of cytochrome genes in the yeast Saccharomyces cerevisiae, Annu. Rev. Cell Biol. 5:153–180.PubMedCrossRefGoogle Scholar
  41. Forsburg, S. L., and Guarente, L., 1989b, Identification and characterization of HAP4: A third component of the CCAAT-bound HAP2/HAP3 heteromer, Genes Dev. 3:1166–1178.PubMedCrossRefGoogle Scholar
  42. Fytlovich, S., Gervais, M., Agrimonti, C., and Guiard, B., 1993, Evidence for an interaction between the CYPl(HAPl) activator and a cellular factor during heme-dependent transcriptional regulation in the yeast Saccharomyces cerevisiae, EMBO J. 12:1209–1218.PubMedGoogle Scholar
  43. Gagnon, J., Kurowski, T. T., Wiesner, R. J., and Zak, R., 1991, Correlations between a nuclear and a mitochondrial mRNA of cytochrome c oxidase subunits, enzymatic activity and total mRNA content, in rat tissues, Mol. Cell Biochem. 107:21–29.PubMedCrossRefGoogle Scholar
  44. Genuario, R. R., Kelley, D. E., and Perry, R. P., 1993, Comparative utilization of transcription factor GABP by the promoters of ribosomal protein genes rpL30 and rpL32, Gene Expr. 3: 279–288.PubMedGoogle Scholar
  45. Gilles-Gonzalez, M. A., Ditta, G. S., and Helinski, D. R., 1991, A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti, Nature 350:170–172.PubMedCrossRefGoogle Scholar
  46. Goldberg, E., Sberna, D., Wheat, T. E., Urbanski, G. J., and Margoliash, E., 1977, Cytochrome c: Immunofluorescent localization of the testis-specific form, Science 196:1010–1012.PubMedCrossRefGoogle Scholar
  47. Gomez-Cuadrado, A., Rousseau, S., Renaud, J., and Ruiz-Carrillo, A., 1992, Repression of the H5 histone gene by a factor from erythrocytes that binds to the region of transcription initiation, EMBO J. 11:1857–1866.PubMedGoogle Scholar
  48. Gomez-Cuadrado, A., Martin, M., Noel, M., and Ruiz-Carrillo, A., 1995, Initiation binding receptor, a factor that binds to the transcription initiation site of the histone h5 gene, is a glycosylated member of a family of cell growth regulators, Mol. Cell. Biol. 15:6670–6685.PubMedGoogle Scholar
  49. Gopalakrishnan, L., and Scarpulla, R. C., 1994, Differential regulation of respiratory chain subunits by a CREB-dependent signal transduction pathway. Role of cyclic AMP in cytochrome c and COXIV gene expression, J. Biol. Chem. 269:105–113.PubMedGoogle Scholar
  50. Gopalakrishnan, L., and Scarpulla, R. C., 1995, Structure, expression, and chromosomal assignment of the human gene encoding nuclear respiratory factor 1, J. Biol. Chem. 270:18019–18025.PubMedCrossRefGoogle Scholar
  51. Gossett, L. A., Kelvin, D. J., Sternberg, E. A., and Olson, E. N., 1989, A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes, Mol. Cell. Biol. 9:5022–5033.PubMedGoogle Scholar
  52. Grivell, L. A., 1995, Nucleo-mitochondrial interactions in mitochondrial gene expression, Crit. Rev. Biochem. Mol. Biol. 30:121–164.PubMedCrossRefGoogle Scholar
  53. Guarente, L., and Mason, T., 1983, Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site, Cell 32:1279–1286.PubMedCrossRefGoogle Scholar
  54. Guarente, L., and Ptashne, M., 1981, Fusion of the Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 78:2199–2203.PubMedCrossRefGoogle Scholar
  55. Guarente, L., LaLonde, B., Gifford, P., and Alani, E., 1984, Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae, Cell 36: 503–511.PubMedCrossRefGoogle Scholar
  56. Gugneja, S., and Scarpulla, R. C., 1997, Serine phosphorylation within a concise amino-terminal domain in nuclear respiratory factor 1 enhances DNA binding, J. Biol. Chem. 272:18732–18739.PubMedCrossRefGoogle Scholar
  57. Gugneja, S., Virbasius, J. V., and Scarpulla, R. C., 1995, Four structurally distinct, non-DNA-binding subunits of human nuclear respiratory factor 2 share a conserved transcriptional activation domain, Mol. Cell. Biol. 15:102–111.PubMedGoogle Scholar
  58. Gugneja, S., Virbasius, C. A., and Scarpulla, R. C., 1996, Nuclear respiratory factors 1 and 2 utilize similar glutamine-containing clusters of hydrophobic residues to activate transcription, Mol. Cell Biol. 16:5708–5716.PubMedGoogle Scholar
  59. Hahn, S., and Guarente, L., 1988, Yeast HAP2 and HAP3: Transcriptional activators in a hetero-meric complex, Science 240:317–321.PubMedCrossRefGoogle Scholar
  60. Haldi, M. L., and Guarente, L., 1995, Multiple domains mediate heme control of the yeast activator HAP1, Mol. Gen. Genet. 248:229–235.PubMedCrossRefGoogle Scholar
  61. Hennig, B., 1975, Change of cytochrome c structure during development of the mouse, Eur. J. Biochem. 55:167–183.PubMedCrossRefGoogle Scholar
  62. Hodge, M. R., Kim, G., Singh, K., and Cumsky, M. G., 1989, Inverse regulation of the yeast COX5 genes by oxygen and heme, Mol. Cell. Biol. 9:1958–1964.PubMedGoogle Scholar
  63. Hodge, M. R., Singh, K., and Cumsky, M. G., 1990, Upstream activation and repression elements control transcription of the yeast COX5b gene, Mol. Cell. Biol 10:5510–5520.PubMedGoogle Scholar
  64. Hood, D. A., 1990, Co-ordinate expression of cytochrome c oxidase subunit III and VIc mRNAs in rat tissue, Biochem. J. 269:503–506.PubMedGoogle Scholar
  65. Hood, D. A., Zak, R., and Pette, D., 1989, Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome-c-oxidase subunits, Eur. J. Biochem. 179:275–280.PubMedCrossRefGoogle Scholar
  66. Hoog, C., Calzone, F. J., Cutting, A. E., Britten, R. J., and Davidson, E. H., 1991, Gene regulatory factors of the sea urchin embryo. II. Two dissimilar proteins, P3A1 and P3A2, bind to the same target sites that are required for early territorial gene expression, Development 112:351–364.PubMedGoogle Scholar
  67. Horrum, M. A., Tobin, R. B., and Ecklund, R. E., 1985, Thyroxine-induced changes in rat liver mitochondrial cytochromes, Mol. Cell. Endocrinol. 41:163–169.PubMedCrossRefGoogle Scholar
  68. Hortner, H., Ammerer, E., Hartter, B., Hamilton, B., Rytka, J., Bilinski, T., and Ruis, H., 1982, Regulation of synthesis of catalase and iso-1-cytochrome c in Saccharomyces cerevisiae by glucose, oxygen and heme, Eur. J. Biochem. 128:179–184.PubMedCrossRefGoogle Scholar
  69. Iborra, F., Francingues, M., and Guerineau, M., 1985, Localization of the upstream regulatory sites of yeast iso-2-cytochrome c gene, Mol. Gen. Genet. 199:117–122.PubMedCrossRefGoogle Scholar
  70. Jacob, W. F., Silverman, T. A., Cohen, R. B., and Safer, B., 1989, Identification and characterization of a novel transcription factor participating in the expression of eukaryotic initiation factor alpha, J. Biol Chem. 264:20372–20384.PubMedGoogle Scholar
  71. Joste, V., Goitom, Z., and Nelson, B.D., 1989, Thyroid hormone regulation of nuclear-encoded mitochondrial inner membrane polypeptides of the liver, Eur. J. Biochem. 184:255–260.PubMedCrossRefGoogle Scholar
  72. Kadenbach, B., and Merle, P., 1981, On the function of multiple subunits of cytochrome c oxidase from higher eukaryotes, FEBS Lett. 135:1–11.PubMedCrossRefGoogle Scholar
  73. Kadenbach, B., Stroh, A., Huther, F. J., Reimann, A., and Steverding, D., 1991, Evolutionary aspects of cytochrome c oxidase, J. Bioenerg. Biomembr. 23:321–334.PubMedCrossRefGoogle Scholar
  74. Kadenbach, B., Barth, J., Akgün, R., Freund, R., Linder, D., and Possekel, S., 1995, Regulation of mitochondrial energy generation in health and disease, Biochim. Biophys. Acta Mol. Basis Dis. 1271:103–109.CrossRefGoogle Scholar
  75. Karim, F. D., Urness, L. D., Thummel, C. S., Klemsz, M. J., McKercher, S. R., Celada, A., Van Beveren, C., Maki, R. A., Gunther, C. V., Nye, J. A., and Graves, B. J., 1990, The ETS-domain: A new DNA-binding motif that recognizes a purine-rich core DNA sequence, Genes Dev. 4:1451–1453.PubMedCrossRefGoogle Scholar
  76. Kim, K., Lecordier, A., and Bowman, L. H., 1995, Both nuclear and mitochondrial cytochrome c oxidase mRNA levels increase dramatically during mouse postnatal development, Biochem. J. 306:353–358.PubMedGoogle Scholar
  77. Kim, K. S., Pfeifer, K., Powell, L., and Guarente, L., 1990, Internal deletions in the yeast transcriptional activator HAP1 have opposite effects at two sequence elements, Proc. Natl. Acad. Sci. USA 87:4524–4528.PubMedCrossRefGoogle Scholar
  78. Ku, C. Y., Lu, Q., Ussuf, K. K., Weinstock, G. M., and Sanborn, B. M., 1991, Hormonal regulation of cytochrome oxidase subunit messenger RNAs in rat Sertoli cells, Mol. Endocrinol 5:1669–1676.PubMedCrossRefGoogle Scholar
  79. LaMarco, K., Thompson, C. C., Byers, B. P., Walton, E. M., and McKnight, S. L., 1991, Identification of Ets-and notch-related subunits in GA binding protein, Science 253:789–792.PubMedCrossRefGoogle Scholar
  80. LaMarco, K. L., and McKnight, S. L., 1989, Purification of a set of cellular polypeptides that bind to the purine-rich cis-regulatory element of herpes simplex virus immediate early genes, Genes Dev. 3:1372–1383.PubMedCrossRefGoogle Scholar
  81. Lambert, J. R., Bilanchone, V. W., and Cumsky, M. G., 1994, The ORD1 gene encodes a transcription factor involved in oxygen regulation and is identical to IXR1, a gene that confers cisplatin sensitivity to Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 91:7345–7349.PubMedCrossRefGoogle Scholar
  82. Laz, T. M., Peitras, D. F., and Sherman, F., 1984, Differential regulation of the duplicated isocytochrome c genes in yeast, Proc. Natl. Acad. Sci. USA 81:4475–4479.PubMedCrossRefGoogle Scholar
  83. Lenka, N., Basu, A., Mullick, J., and Avadhani, N. G., 1996, The role of an E box binding basic helix loop helix protein in the cardiac muscle-specific expression of the rat cytochrome oxidase subunit VIII gene, J. Biol. Chem. 271:30281–30289.PubMedCrossRefGoogle Scholar
  84. Li, K., Hodge, J. A., and Wallace, D. C., 1990, OXBOX, a positive transcriptional element of the heart-skeletal muscle ADP/ATP translocator gene, J. Biol Chem. 265:20585–20588.PubMedGoogle Scholar
  85. Li, R., Luciakova, K., and Nelson, B.D., 1996, Expression of the human cytochrome c 1 gene is controlled through multiple Spl-binding sites and an initiator region, Eur. J. Biochem. 241: 649–656.PubMedCrossRefGoogle Scholar
  86. Linder, M. E., and Gilman, A. G., 1992, G proteins, Sci. Am. 267:56–65.PubMedCrossRefGoogle Scholar
  87. Lomax, M. I., and Grossman, L. I., 1989, Tissue-specific genes for respiratory proteins, Trends Biochem. Sci. 14:501–504.PubMedCrossRefGoogle Scholar
  88. Lowry, C. V., and Zitomer, R. S., 1984, Oxygen regulation of anaerobic and aerobic genes mediated by a common factor in yeast, Proc. Natl Acad. Sci. USA 81:6129–6133.PubMedCrossRefGoogle Scholar
  89. Lowry, C. V., and Zitomer, R. S., 1988, ROX1 encodes a heme-induced repression factor regulating ANB1 and CYC7 of Saccharomyces cerevisiae, Mol. Cell. Biol. 8:4651–4658.PubMedGoogle Scholar
  90. Luciakova, K., and Nelson, B. D., 1992, Transcript levels for nuclear-encoded mammalian mitochondrial respiratory-chain components are regulated by thyroid hormone in an uncoordinated fashion, Eur. J. Biochem. 207:247–251.PubMedCrossRefGoogle Scholar
  91. McNabb, D. S., Xing, Y., and Guarente, L., 1995, Cloning of yeast HAP 5: A novel subunit of a heterotrimeric complex required for CCAAT binding, Genes Dev. 9:47–58.PubMedCrossRefGoogle Scholar
  92. Mell, O. C., Seibel, P., and Kadenbach, B., 1994, Structural organisation of the rat genes encoding liver-and heart-type of cytochrome c oxidase subunit VIa and a pseudogene related to the COXVIa-L cDNA, Gene 140:179–186.PubMedCrossRefGoogle Scholar
  93. Montgomery, D. L., Hall, B. D., Gillam, S., and Smith, M., 1978, Identification and isolation of the yeast cytochrome c gene, Cell 14:673–680.PubMedCrossRefGoogle Scholar
  94. Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G., and Goodman, R. H., 1986, Identification of a cyclic-AMP-responsive element within the rat somatostatin gene, Proc. Natl. Acad. Sci. USA 83:6682–6686.PubMedCrossRefGoogle Scholar
  95. Nagley, P., 1991, Coordination of gene expression in the formation of mammalian mitochondria, Trends Genet. 7:1–4.PubMedCrossRefGoogle Scholar
  96. Olesen, J., Hahn, S., and Guarente, L., 1987, Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2, in an interdependent manner, Cell 51:953–961.PubMedCrossRefGoogle Scholar
  97. Olesen, J., T. and Guarente, L., 1990, The HAP2 subunit of yeast CCAAT transcriptional activator contains adjacent domains for subunit association and DNA recognition: Model for the HAP2/3/4 complex, Genes Dev. 4:1714–1729.PubMedCrossRefGoogle Scholar
  98. Olson, E. N., 1993, Regulation of muscle transcription by the MyoD family. The heart of the matter, Circ. Res. 72:1–6.PubMedCrossRefGoogle Scholar
  99. Parsons, W. J., Williams, R. S., Shelton, J. M., Luo, Y. A., Kessler, D. J., and Richardson, J. A. 1996, Developmental regulation of cytochrome oxidase subunit VIa isoforms in cardiac and skeletal muscle, Am. J. Physiol. Heart Circ. Physiol. 270:H567–H574.Google Scholar
  100. Pfeifer, K., Arcangioli, B., and Guarente, L., 1987a, Yeast HAP1 activator competes with the factor RC2 for binding to the upstream activation site UAS1 of the CYC1 gene, Cell 49:9–18.PubMedCrossRefGoogle Scholar
  101. Pfeifer, K., Prezant, T., and Guarente, L., 1987b, Yeast HAP1 activator binds to two upstream activation sites of different sequence, Cell 49:19–27.PubMedCrossRefGoogle Scholar
  102. Pfeifer, K., Kim, K.-S., Kogan, S., and Guarente, L., 1989, Functional dissection and sequence of yeast HAP1 activator, Cell 56:291–301.PubMedCrossRefGoogle Scholar
  103. Poyton, R. O., and Burke, P. V., 1992, Oxygen regulated transcription of cytochrome c and cytochrome c oxidase genes in yeast, Biochim Biophys. Acta Bio-Energ. 1101:252–256.Google Scholar
  104. Poyton, R. O., and McEwen, J. E., 1996, Crosstalk between nuclear and mitochondrial genomes, Annu. Rev. Biochem. 65:563–607.PubMedCrossRefGoogle Scholar
  105. Poyton, R. O., Trueblood, C. E., Wright, R. M., and Farrell, L. E., 1988, Expression and function of cytochrome c oxidase subunit isologues: Modulators of cellular energy production, Ann. NY Acad. Sci. 550:289–307.PubMedCrossRefGoogle Scholar
  106. Puntschart, A., Claassen, H., Jostarndt, K., Hoppeler, H., and Billeter, R., 1995, mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance-trained athletes, Am. J. Physiol. Cell Physiol. 269:C619–C625.Google Scholar
  107. Rao, V. N., Huebner, K., Isobe, M., ar-Rushdi, A., Croce, C. M., and Reddy, E. S. P., 1989, elk, tissue-specific ets-related genes on chromosomes X and 14 near translocation breakpoints, Science 244:66–70.PubMedCrossRefGoogle Scholar
  108. Rizzuto, R., Nakase, H., Darras, B., Francke, U., Fabrizi, G. M., Mengel, T., Walsh, F., Kadenbach, B., DiMauro, S., and Schon, E. A., 1989, A gene specifying subunit VIII of human cytochrome c oxidase is localized to chromosome 11 and is expressed in both muscle and nonmuscle tissues, J. Biol. Chem. 264:10595–10600.PubMedGoogle Scholar
  109. Rohdich, F., and Kadenbach, B., 1993, Tissue-specific regulation of cytochrome c oxidase efficiency by nucleotides, Biochemistry 32:8499–8503.PubMedCrossRefGoogle Scholar
  110. Scarpulla, R. C., 1984, Processed pseudogenes for rat cytochrome c are preferentially derived from one of three alternate mRNAs, Mol. Cell Biol 4:2279–2288.PubMedGoogle Scholar
  111. Scarpulla, R. C., 1996, Nuclear respiratory factors and the pathways of nuclear-mitochondrial interaction, Trends Cardiovasc. Med. 6:39–45.PubMedCrossRefGoogle Scholar
  112. Scarpulla, R. C., 1997, Nuclear control of respiratory chain expression in mammalian cells, J. Bioenerg. Biomembr. 29:109–119.PubMedCrossRefGoogle Scholar
  113. Scarpulla, R. C., and Nye, S. H., 1986, Functional expression of rat cytochrome c in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 83:6352–6356.PubMedCrossRefGoogle Scholar
  114. Scarpulla, R. C., and Wu, R., 1983, Nonallelic members of the cytochrome c multigene family of the rat may arise through different messenger RNAs, Cell 32:473–482.PubMedCrossRefGoogle Scholar
  115. Scarpulla, R. C., Agne, K. M., and Wu, R., 1981, Isolation and structure of a rat cytochrome c gene, J. Biol. Chem. 256:6480–6486.PubMedGoogle Scholar
  116. Scarpulla, R. C., Agne, K. M., and Wu, R., 1982, Cytochrome c gene-related sequences in mammalian genomes, Proc. Natl. Acad. Sci. USA 79:739–743.PubMedCrossRefGoogle Scholar
  117. Scarpulla, R. C., Kilar, M. C., and Scarpulla, K. M., 1986, Coordinate induction of multiple cytochrome c mRNAs in response to thyroid hormone, J. Biol. Chem. 261:4660–4662.PubMedGoogle Scholar
  118. Seelan, R. S., and Grossman, L. I., 1992, Structure and organization of the heart isoform gene for bovine cytochrome c oxidase subunit Vila, Biochemistry 31:4696–4704.PubMedCrossRefGoogle Scholar
  119. Seelan, R. S., and Grossman, L. I., 1993, Structural organization and evolution of the liver isoform gene for bovine cytochrome c oxidase subunit VIIa, Genomics 18:527–536.PubMedCrossRefGoogle Scholar
  120. Seelan, R. S., and Grossman, L. I., 1997, Structural organization and promoter analysis of the bovine cytochrome c oxidase subunit VIIc gene—A functional role for YY1, J. Biol. Chem. 272:10175–10181.PubMedCrossRefGoogle Scholar
  121. Seelan, R. S., Gopalakrishnan, L., Scarpulla, R. C., and Grossman, L. I., 1996, Cytochrome c oxidase subunit VIIa liver isoform: Characterization and identification of promoter elements in the bovine gene, J. Biol. Chem. 271:2112–2120.PubMedCrossRefGoogle Scholar
  122. Sestoft, L., 1980, Metabolic aspects of the calorigenic effect of thyroid hormone in mammals, Clin. Endocrinol. 13:489–506.CrossRefGoogle Scholar
  123. Shadel, G. S., and Clayton, D. A., 1993, Mitochondrial transcription initiation: Variation and conservation, J. Biol. Chem. 268:16083–16086.PubMedGoogle Scholar
  124. Sherman, F., and Stewart, J. W., 1971, Genetics and biosynthesis of cytochrome c, Annu. Rev. Genet. 5:257–296.PubMedCrossRefGoogle Scholar
  125. Short, J. M., Wynshaw-Boris, A., Short, H. F., and Hanson, R. W., 1986, Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region, J. Biol. Chem. 261: 9721–9726.PubMedGoogle Scholar
  126. Shyjan, A. W., and Butow, R. A., 1993, Intracellular dialogue, Curr. Biol. 3:398–400.PubMedCrossRefGoogle Scholar
  127. Silve, S., Rhode, P. R., Coll, B., Campbell, J., and Poyton, R. O., 1992, ABF1 is a phosphoprotein and plays a role in carbon source control of COX6 transcription in Saccharomyces cerevisiae, Mol. Cell Biol. 12:4197–4208.PubMedGoogle Scholar
  128. Smith, E. O., and Lomax, M. I., 1993, Structural organization of the bovine gene for the heart/ muscle isoform of cytochrome c oxidase subunit VIa, Biochim. Biophys. Acta 1174:63–71.PubMedCrossRefGoogle Scholar
  129. Stotz, E., 1939, The estimation and distribution of cytochrome oxidase and cytochrome c in rat tissues, J. Biol. Chem. 131:555–565.Google Scholar
  130. Sucharov, C., Basu, A., Carter, R. S., and Avadhani, N. G., 1995, A novel transcriptional initiator activity of the GABP factor binding ets sequence repeat from the murine cytochrome c oxidase Vb gene, Gene Expr. 5:93–111.PubMedGoogle Scholar
  131. Suske, G., Enders, C., Schleif, A., and Kadenbach, B., 1988, Organization and nucleotide sequence of two chromosomal genes for rat cytochrome c oxidase subunit VIc: A structural and a processed gene, DNA 7:163–171.PubMedCrossRefGoogle Scholar
  132. Suzuki, H., Hosokawa, Y., Toda, H., Nishikimi, M., and Ozawa, T., 1989, Isolation of a single nuclear gene encoding human ubiquinone-binding protein in complex III of mitochondrial respiratory chain, Biochem. Biophys. Res. Commun. 161:371–378.PubMedCrossRefGoogle Scholar
  133. Suzuki, H., Hosokawa, Y., Toda, H., Nishikimi, M., and Ozawa, T., 1990, Common protein-binding sites in the 5′-flanking regions of human genes for cytochrome c 1 and ubiquinone-binding protein, J. Biol. Chem. 265:8159–8163.PubMedGoogle Scholar
  134. Taanman, J.-W., and Capaldi, R. A., 1993, Subunit VIa of yeast cytochrome c oxidase is not necessary for assembly of the enzyme complex but modulates the enzyme activity. Isolation and characterization of the nuclear-coded gene, J. Biol. Chem. 268:18754–18761.PubMedGoogle Scholar
  135. Taanman, J.-W., Turina, P., and Capaldi, R. A., 1994, Regulation of cytochrome c oxidase by interaction of ATP at two binding sites, one on subunit VIa, Biochemistry 33:11833–11841.PubMedCrossRefGoogle Scholar
  136. Tata, J. R., Ernster, L., Lindberg, O., Arrhenius, E., Pederson, S., and Hedman, R., 1963, The action of thyroid hormones at the cell level, Biochem. J. 86:408–428.PubMedGoogle Scholar
  137. Thompson, C. C., Brown, T. A., and McKnight, S. L., 1991, Convergence of Ets-and notch-related structural motifs in a heteromeric DNA binding complex, Science 253:762–768.PubMedCrossRefGoogle Scholar
  138. Tominaga, K., Akiyama, S., Kagawa, Y., and Ohta, S., 1992, Upstream region of a genomic gene for human mitochondrial transcription factor 1, Biochim. Biophys. Acta Gene Struct. Expr. 1131:217–219.CrossRefGoogle Scholar
  139. Topper, J. N., Bennett, J. L., and Clayton, D. A., 1992, A role for RNAse MRP in mitochondrial RNA processing, Cell 70:16–20.PubMedCrossRefGoogle Scholar
  140. Topper, J. N., and Clayton, D. A., 1990, Characterization of human MRP/Th RNA and its nuclear gene: Full-length MRP/Th RNA is an active endoribonuclease when assembled as an RNP, Nucleic Acids Res. 18:793–799.PubMedCrossRefGoogle Scholar
  141. Tracy, R. L., and Stern, D. B., 1995, Mitochondrial transcription initiation: Promoter structures and RNA polymerases, Curr. Genet. 28:205–216.PubMedCrossRefGoogle Scholar
  142. Trawick, J. D., Rogness, C., and Poyton, R. O., 1989a, Identification of an upstream activation sequence and other cis-acting elements required for transcription of COX6 from Sac-charomyces cerevisiae, Mol. Cell. Biol. 9:5350–5358.PubMedGoogle Scholar
  143. Trawick, J. D., Wright, R. M., and Poyton, R. O., 1989b, Transcription of yeast COX6, the gene for cytochrome c oxidase subunit VI, is dependent on heme and on the HAP2 gene, J. Biol. Chem. 264:7005–7008.PubMedGoogle Scholar
  144. Trawick, J. D., Kraut, N., Simon, E R., and Poyton, R. O., 1992, Regulation of yeast COX6 by the general transcription factor ABF1 and separate HAP2-and heme-responsive elements, Mol. Cell. Biol. 12:2302–2314.PubMedGoogle Scholar
  145. Trueblood, C. E., and Poyton, R. O., 1987, Differential effectiveness of yeast cytochrome c oxidase subunit V genes results from differences in expression not function, Mol. Cell. Biol. 7:3520–3526.PubMedGoogle Scholar
  146. Trueblood, C. E., Wright, R. M., and Poyton, R. O., 1988, Differential regulation of the two genes encoding Saccharomyces cerevisiae cytochrome oxidase subunit V by heme and the HAP2 and REOl genes, Mol. Cell. Biol. 8:4537–4540.PubMedGoogle Scholar
  147. Van Beeumen, J. J., Van Kuilenburg, A. B. P., Van Bun, S., Van den Bogert, C., Tager, J. M., and Muijsers, A. O., 1990, Demonstration of two isoforms of subunit VIIa of cytochrome c oxidase from human skeletal muscle: Implications for mitochondrial myopathies, FEBS Lett. 263:213–216.PubMedCrossRefGoogle Scholar
  148. Van Itallie, C. M., 1990, Thyroid hormone and dexamethasone increase the levels of a messenger ribonucleic acid for a mitochondrially encoded subunit but not for a nuclear-encoded subunit of cytochrome c oxidase, Endocrinology 127:55–62.PubMedCrossRefGoogle Scholar
  149. Van Kuilenburg, A. B. P., Muijsers, A. O., Demol, H., Dekker, H. L., and Van Beeumen, J. J., 1988, Human heart cytochrome c oxidase subunit VIII: Purification and determination of the complete amino acid sequence, FEBS Lett. 240:127–132.PubMedCrossRefGoogle Scholar
  150. Verdière, J., Creusot, F., and Guerineau, M., 1985, Regulation of the expression of iso-2-cytochrome c gene in S. cerevisiae: Cloning of the positive regulatory gene CYP1 and identification of the region of its target sequence on the structural gene CYP3, Mol. Gen. Genet. 199:524–533.PubMedCrossRefGoogle Scholar
  151. Vestweber, D., and Schatz, G., 1988, Mitochondria can import artificial precursor proteins containing a branched polypeptide chain or a carboxy-terminal stilbene disulfonate, J. Biol. Chem. 107:2045–2049.Google Scholar
  152. Villena, J. A., Martin, I., Viñas, O., Cormand, B., Iglesias, R., Mampel, T., Giralt, M., and Villarroya, F., 1994, ETS transcription factors regulate the expression of the gene for the human mitochondrial ATP synthase β-subunit, J. Biol. Chem. 269:32649–32654.PubMedGoogle Scholar
  153. Virbasius, C. A., Virbasius, J. V., and Scarpulla, R. C., 1993, NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators, Genes Dev. 7:2431–2445.PubMedCrossRefGoogle Scholar
  154. Virbasius, J. V., and Scarpulla, R. C., 1988, Structure and expression of rodent genes encoding the testis-specific cytochrome c. Differences in gene structure and evolution between somatic and testicular variants, J. Biol. Chem. 263:6791–6796.PubMedGoogle Scholar
  155. Virbasius, J. V., and Scarpulla, R. C., 1990, The rat cytochrome c oxidase subunit IV gene family: Tissue-specific and hormonal differences in subunit IV and cytochrome c mRNA expression, Nucleic Acids Res. 18:6581–6586.PubMedCrossRefGoogle Scholar
  156. Virbasius, J. V., and Scarpulla, R. C., 1991, Transcriptional activation through ETS domain binding sites in the cytochrome c oxidase subunit IV gene, Mol. Cell. Biol. 11:5631–5638.PubMedGoogle Scholar
  157. Virbasius, J. V., and Scarpulla, R. C., 1994, Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis, Proc. Natl. Acad. Sci. USA 91:1309–1313.PubMedCrossRefGoogle Scholar
  158. Virbasius, J. V., Virbasius, C. A., and Scarpulla, R. C., 1993, Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters, Genes Dev. 7:380–392.PubMedCrossRefGoogle Scholar
  159. Wan, B., and Moreadith, R. W., 1995, Structural characterization and regulatory element analysis of the heart isoform of cytochrome c oxidase VIa, J. Biol. Chem. 270:26433–26440.PubMedCrossRefGoogle Scholar
  160. Watanabe, H., Wada, T., and Handa, H., 1990, Transcription factor E4TF1 contains two subunits with different functions, EMBO J. 9:841–847.PubMedGoogle Scholar
  161. Watanabe, H., Sawada, J.-I., Yano, K.-L, Yamaguchi, K., Goto, M., and Handa H., 1993, cDNA cloning of transcription factor E4TF1 subunits with Ets and notch motifs, Mol. Cell. Biol. 13:1385–1391.PubMedGoogle Scholar
  162. Waterland, R. A, Basu, A., Chance, B., and Poyton, R. O., 1991, The isoforms of yeast cytochrome c oxidase subunit V alter the in vivo kinetic properties of the holoenzyme, J. Biol. Chem. 266: 4180–4186.PubMedGoogle Scholar
  163. Weintraub, S. J., Prater, C. A., and Dean, D. C., 1992, Retinoblastoma protein switches the E2F site from positive to negative element, Nature 358:259–261.PubMedCrossRefGoogle Scholar
  164. Wheat, T. E., Hintz, M., Goldberg, E., and Margoliash, E., 1977, Analyses of stage-specific multiple forms of lactate dehydrogenase and of cytochrome c during spermatogenesis in mouse, Differentiation 9:37–41.PubMedCrossRefGoogle Scholar
  165. Wiesner, R. J., Kurowski, T. T., and Zak, R., 1992, Regulation by thyroid hormone of nuclear and mitochondrial genes encoding subunits of cytochrome-c-oxidase in rat liver and skeletal muscle, Mol. Endocrinol. 6:1458–1467.PubMedCrossRefGoogle Scholar
  166. Williams, R. S., Garcia-Moll, M., Mellor, J., Salmons, S., and Harlan, W., 1987, Adaptation of skeletal muscle to increased contractile activity, J. Biol. Chem. 262:2764–2767.PubMedGoogle Scholar
  167. Wolstenholme, D. R., 1992, Animal mitochondrial DNA: Structure and evolution, Int. Rev. Cytol 141:173–216.PubMedCrossRefGoogle Scholar
  168. Wright, R. M., and Poyton, R. O., 1990, Release of two Saccharomyces cerevisiae cytochrome genes, COX6 and CYC1, from glucose repression requires the SNF1 and SSN6 gene products, Mol. Cell. Biol. 10:1297–1300.Google Scholar
  169. Wright, R. M., Ko, C., Cumsky, M. G., and Poyton, R. O., 1984, Isolation and sequence of the structural gene for cytochrome c oxidase subunit VI from Saccharomyces cerevisiae, J. Biol. Chem. 259:15401–15407.PubMedGoogle Scholar
  170. Xing, Y., Fikes, J. D., and Guarente, L., 1993, Mutations in yeast HAP2/HAP3 define a hybrid CCAAT box binding domain, EMBO J. 12:4647–4655.PubMedGoogle Scholar
  171. Yamada, M., Amuro, N., Goto, Y., and Okazaki, T., 1990, Structural organization of the rat cytochrome c oxidase subunit IV gene, J. Biol Chem. 265:7687–7692.PubMedGoogle Scholar
  172. Yiu, G. K., Murray, M. T., and Hecht, N. B., 1997, Deoxyribonucleic acid-protein interactions associated with transcriptional initiation of the mouse testis-specific cytochrome c gene, Biol. Reprod. 56:1439–1449.PubMedCrossRefGoogle Scholar
  173. Yu, C. Y., Breitbart, R. E., Smoot, L. B., Lee, Y., Mandavi, V., and Nadal-Ginard, B., 1992, Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors, Genes Dev. 6:1783–1798.PubMedCrossRefGoogle Scholar
  174. Zeviani, M., Nakagawa, M., Herbert, J., Lomax, M. I., Grossman, L. I., Sherbany, A. A., Miranda, A. F., DiMauro, S., and Schon, E. A., 1987, Isolation of a cDNA clone encoding subunit IV of human cytochrome c oxidase, Gene 55:205–217.PubMedCrossRefGoogle Scholar
  175. Zhang, L., and Guarente, L., 1995, Heme binds to a short sequence that serves a regulatory function in diverse proteins, EMBO J. 14:313–320.PubMedGoogle Scholar
  176. Zhang, L., Bermingham-McDonogh, O., Turcotte, B., and Guarente, L., 1993, Antibody-promoted dimerization bypasses the regulation of DNA binding by the heme domain of the yeast transcriptional activator HAP1, Proc. Natl. Acad. Sci. USA 90:2851–2855.PubMedCrossRefGoogle Scholar
  177. Zitomer, R. S., and Hall, B.D., 1976, Yeast cytochrome c messenger RNA. In vitro translation and specific immunoprecipitation of the CYC1 gene product, J. Biol. Chem. 251:6320–6326.Google Scholar
  178. Zitomer, R. S., and Lowry, C. V., 1992, Regulation of gene expression by oxygen in Saccharomyces cerevisiae, Microbiol. Rev. 56:1–11.PubMedGoogle Scholar
  179. Zitomer, R. S., and Nichols, D. L., 1978, Kinetics of glucose repression of yeast cytochrome c, J. Bacteriol. 135:39–44.PubMedGoogle Scholar
  180. Zitomer, R. S., Montgomery, D. L., Nichols, D. L., and Hall, B. D., 1979, Transcriptional regulation of the yeast cytochrome c gene, Proc. Natl. Acad. Sci. USA 76:3627–3631.PubMedCrossRefGoogle Scholar
  181. Zitomer, R. S., Sellers, J. W., McCarter, D. W., Hastings, G. A., Wick, P., and Lowry, C. V., 1987, Elements involved in oxygen regulation of the Saccharomyces cerevisiae CYC7 gene, Mol. Cell. Biol. 7:2212–2220.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Richard C. Scarpulla
    • 1
  1. 1.Department of Cell and Molecular BiologyNorthwestern Medical SchoolChicagoUSA

Personalised recommendations