Pathologic Gigantism in Middle Carboniferous Cephalopods, Southern Midcontinent, United States

  • Walter L. Manger
  • Lisa K. Meeks
  • Daniel A. Stephen


Giant genera and species occur in virtually every phylum of the Kingdom Animalia. For the most part, their existence has been viewed as an illustration of Cope’s Rule: the tendency toward phylogenetic size increase among groups of organisms. Giant Mesozoic ammonites are frequently cited examples of this trend, and the giants are typically treated as discrete taxonomic entities. In contrast, pathologic gigantism is a rare condition that results in abnormal growth of an individual beyond the normal size limits of its species, and does not reflect Cope’s Rule. That condition is little known among invertebrates, although pathologic gigantism has been reported in prosobranch and pulmonate gastropods, where it is associated with infestation by larval trematodes that caused parasitic castration.

In Middle Carboniferous strata of the southern midcontinent, United States, cephalopod occurrences are dominated by ammonoids in unusual abundance. These assemblages represent single horizons and localities where most individuals of a species are of strikingly similar size, apparently mature, and seem to reflect mass mortality, possibly related to reproduction (semelparity). Associated with these assemblages are rare, conspecific individuals thought to be pathologic giants that became abnormally large because they failed to achieve sexual maturity that would have caused their growth to cease.


Invertebrate Paleontology Larval Trematode Permian Ammonoid Ammonoid Assemblage Giant Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akimushkin, I. I., 1963, Cephalopods of the seas of the USSR, Acad. Sei. USSR, In Ocean., pp. 1–223. [English translation]Google Scholar
  2. Arkell, W. J., Furnish, W. M., Kümmel, B., Miller, A. K., Moore, R. C., SChindewolf, O. H., Sylvester-Bradley, P. C., and Wright, C. W., 1957, Treatise on Invertebrate Paleontology, Pt.L, Mollusca 4, Geol. Soc. Amer, Univ. Kansas, Lawrence, pp. 1–490.Google Scholar
  3. Barnes, R. D., 1987, Invertebrate Zoology, Fifth ed., Sanders College Publishing, New York, pp. 1–893.Google Scholar
  4. Basse, E., 1952, Sous-Classe des Ammonoidea, in: Traité de Paléontologie (P. Piveteau, ed.), Tome 2, Masson, Paris, pp. 522–5Google Scholar
  5. Bavendam, F., 1995, Giant cuttlefish, National Geographic, 188(3): 94–107.Google Scholar
  6. Böttger, C. R., 1953a, Grossenwachstum und Geschlechtsreife bei Schnecken und Pathologischer Riesenwuchs als Forge einer gestörten Wechselwirkung beiden Faktoken, Zool. Anz. 17, Verh. Deutsch. Zool. Ges, 46: 468–487.Google Scholar
  7. Böttger, C. R., 1953b, Riesenwuchs der Landschnecke Zebrina (Zebrina) detrita (Müller) als Folge parasitärer Kastration, Arch. Mollusken Kd, 82: 151–152.Google Scholar
  8. Branson, C. C., 1964, Large specimen of Goniatites, Okla. Geol. Notes, Okla. Geol. Surv., 24(12):287–288.Google Scholar
  9. Bucher, H., Landman, N. H., Klofak, S. M., and Guex, J., 1996, Mode and Rate of Growth in Ammonoids, Chapter 12, in: Ammonoid Paleobiology (N.H. Landman, K. Tanabe, and R.A. Davis, eds.), Plenum Press, NewYork, Topics in Geobiology 13: 407–Google Scholar
  10. Cheng, T. C., Howland, K. H., Moran, H. J., and Sullivan, J. T., 1983a, Studies on parasitic castration: aminopeptidase activity levels and protein concentrations in Ilyanassa obsoleta (Mollusca) parasitized by larval trematodes, Jour. Invert. Path, 42: 42–50.CrossRefGoogle Scholar
  11. Cheng, T. C., Sullivan, J. T., Howland, K. H., Jones, T. F., and Moran, H. J., 1983b, Studies on parasitic castration: soft tissue and shell weights of Ilyanassa obsoleta (Mollusca) parasitized by larval trematodes, Jour. Invert. Path, 42: 143–150.CrossRefGoogle Scholar
  12. Cousteau, J. Y., and Diolé, P., 1973, Octopus and Squid, Doubleday and Company, New York, pp. 1–304.Google Scholar
  13. Fernandez, J., and Esch, G. W., 1991, Effect of parasitism on the growth rate of the pulmonate snail Heliosoma anceps, Jour. Parasitol. 77:937–944.CrossRefGoogle Scholar
  14. Gordon M.,Jr., 1965, Carboniferous cephalopods of Arkansas, Geol. Surv. Prof. Paper 460: 1–322.Google Scholar
  15. Hartwick, B., Tulloch, L., and MacDonald, S., 1981, Feeding and growth of Octopus dofleini, Veliger 24(2): 129–138.Google Scholar
  16. Hengsbach, R., 1996, Ammonoid Pathology, Chapter 15, in: Ammonoid Paleobiology, (N.H. Landman, K. Tanabe and R.A. Davis, eds.), Plenum Press, New York,Topics in Geobiology 13: 581–605Google Scholar
  17. Hölder, H., 1956, Über Anomalien an jurassischen Ammoniten, Paläontol. Z, 30(1/2): 95–107.Google Scholar
  18. Hölder, H., 1970, Anomalien an Molluskenschalen, insbesondere Ammoniten, und deren Ursachen, Paläontol. Z, 44(3-4): 182–195.Google Scholar
  19. Landman, N. H., Tanabe, K., and Davis, R. A. (eds.), 1996, Ammonoid Paleobiology, Plenum Press, New York, Topics in Geobiology 13: 1–857.Google Scholar
  20. MacArthur, R. H., and Wilson, E. O., 1967, The theory of island biogeography, Princeton Univ. Press, Princeton, New Jersey, pp. 1–203.Google Scholar
  21. Manger, W. L., and Saunders, W. B., 1980, Lower Pennsylvanian (Morrowan) ammonoids from the North American midcontinent, Paleo.Soc. Mem. 10, Jour. Paleo, 54(3) supp.: 1–56.Google Scholar
  22. Mapes, R. H., 1976. An unusually large Pennsylvanian ammonoid from Oklahoma, Okla. Geol Notes, Okla. Geol. Surv. 36(2)47–51.Google Scholar
  23. McCaleb, J. A., 1968, Lower Pennsylvanian ammonoids from the Bloyd Formation of Arkansas and Oklahoma, Geol. Soc. Amer, Spec. Paper 96: 1–123.Google Scholar
  24. Miller, A. K., 1947, Tertiary nautiloids of the Americas, Geol. Soc. Amer, Mem. 23: 1–234pp.Google Scholar
  25. Mouritsen, K. N., and Jensen, K. T., 1994, The enigma of gigantism: effect of larval trematodes on growth, fecundity, egestion and locomotion in Hydrobia ulvae (Pennant) (Gastropoda: Prosobranchia), Jour. Exper. Mar. Biol Ecol. 181:53–66.CrossRefGoogle Scholar
  26. Nassichuk, W. W., Furnish, W. M., and Glenister, B. F., 1965, The Permian ammonoids of Arctic Canada, Geol. Surv. Canada Bull, 131: 1–56.Google Scholar
  27. Pearse, V., Pearse, J., Buchsbaum, M., and Buchsbaum, R., 1987, Living Invertebrates, Blackwell Scientific Publications, Palo Alto, California, pp. 1-848.Google Scholar
  28. Plummer, F. B., and Scott, G., 1937, Upper Paleozoic ammonites in Texas, Uni. Texas Bull, 3701:1–516.Google Scholar
  29. Roper, C. F. E., and Boss, K. J., 1982, The Giant Squid, Scient. Amer, 24696–105.CrossRefGoogle Scholar
  30. Rothschild, M., 1936, Gigantism and variation in Peringia ulvae Pennant 1777, caused by infection with larval trematodes, Jour. Mar. Biol. Assoc. U. K, 30: 537–546.CrossRefGoogle Scholar
  31. Rothschild, M., 1938, Further observations on the effect of trematode parasites on Peringia ulvae (Pennant) 1777, Novit. Zool, XLI:84–102.Google Scholar
  32. Ruzhencev, V. E., 1962, Fundamentals of Paleontology, vol. V, Mollusca-Cephalopoda 1, Acad. Sci. USSR, Moscow, pp. 1–887. [English translation]Google Scholar
  33. Saunders, W. B., 1973, Upper Mississippian ammonoids from Arkansas and Oklahoma, Geol. Soc. Amer, Spec. Paper 145:1–110.Google Scholar
  34. Saunders, W. B., and Spinoza, C., 1978, Sexual dimorphism in Nautilus from Palau, Paleobiology 4 (3): 349–358.Google Scholar
  35. Saunders, W. B., Ramsbottom, W. H. C., and Manger, W. L., 1979, Mesothemic cyclicity in the mid-Carboniferous of the Ozark shelf region? Geology 7(6): 293–296.Google Scholar
  36. Schenck, H.G., 1931, Cephalopods of the genus Aturia from western North America, Calif. Univ. Pub., Dept. Geol. Sci. Bull, 19: 435–491.Google Scholar
  37. Stanley, S. M., 1973, An explanation for Cope’s Rule, Evolution 27:26.Google Scholar
  38. Stevens, G. R., 1988, Giant ammonites: a review, in: Cephalopods Present and Past (J.Wiedmann, J. and J. Kull-mann, eds.), E. Schweizerbart’sche, Stuttgart, pp. 141–166.Google Scholar
  39. Teichert, C., 1964, Endoceratoidea, in: Treatise on Invertebrate Paleontology, Pt. K, ollusca 3, (C. Teichert, B. Kümmel, W.C. Sweet, H.B. Stenzel, W.M. Furnish, B.F. Glenister, H.K. Erben, R.C. Moore and D.E. No-dine Zeller, eds.), Geol. Soc. Amer, Univ. Kansas, Lawrence, pp. K160–K189.Google Scholar
  40. Wesenberg-Lund, C. J., 1934, Contribution to the development of the trematode diagenea. Part II. The biology of the freshwater cercariae in Danish waters, D. Kgl. Danske Vidensk. Selsk. Skrifer 5: 671–676.Google Scholar
  41. Wright, C. W., 1981, Cretaceous ammonoidea, in: The Ammonoidea, (M.R. House and J.R. Senior, eds.) Sys. Assoc. Spec, v.l 8, Academic Press, London, pp. 157–174.Google Scholar
  42. Wright, C. W. with Callomon, sJ. H. and Howarth, M. K., 1996. Volume 4: Cretaceous Ammonoidea, in: Treatise on Invertebrate Paleontology, Pt. L, Mollusca 4 Revised (R.L. Kaesler, ed.), Geol. Soc. Amer., Univ. Kansas, Lawrence, pp. 1–362.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Walter L. Manger
    • 1
  • Lisa K. Meeks
    • 2
  • Daniel A. Stephen
    • 3
  1. 1.Department of GeologyUniversity of ArkansasFayettevilleUSA
  2. 2.Department of GeologyUniversity of IowaIowa CityUSA
  3. 3.Department of GeologyTexas A&M UniversityCollege StationUSA

Personalised recommendations