Advertisement

Plasticity of Developmental Timing as the Underlying Cause of High Speciation Rates in Ammonoids

An Example from the Cenomanian Western Interior Seaway of North America
  • Margaret M. Yacobucci

Abstract

Rapid diversification of clades within a restricted geographic area is fairly common, and has been well studied as a model of adaptive radiation. The monophyletic clades produced by this type of event have been called “species flocks.” An investigation of the Cenomanian radiation of acanthoceratid ammonites in the North American Western Interior Seaway reveals that this clade shows all the characteristics of a species flock: the acanthoceratid genera are speciose and diversified rapidly, and many of the species are geographically restricted within the Western Interior, possibly due to environmental barriers. A cladistic analysis shows many true polytomies, a high autapomorphy to synapomor- phy ratio, and much parallelism, all reflecting rapid diversification from a single ancestral lineage. These ammonites also show pronounced plasticity of developmental timing. Most differences in morphology among taxa are due to small changes in developmental timing, and an unusually high number of progenic dwarf spinoff taxa occur in this clade, indicating that larger-scale changes in ontogenetic timing are also common. It seems, then, that the developmental program of this ammonite clade was exceedingly labile during its radiation. This plasticity may have allowed the clade to radiate so rapidly and profusely. As developmental plasticity may be a characteristic of ammonoids as a whole, this internal factor, rather than sensitivity to external environmental conditions, may be the root cause of high speciation rates in ammonoids.

Keywords

Cladistic Analysis Developmental Plasticity Shell Shape Species Flock Rapid Diversification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayer, U., and McGhee, G. R., Jr., 1985, Evolution in marginal epicontinental basins: The role of phylogenetic and ecological factors, in: Sedimentary and Evolutionary Cycles (U. Bayer and A. Seilacher, eds.), Lecture Notes in Earth Sciences Vol. 1, Springer-Verlag, Berlin, pp. 164–220.CrossRefGoogle Scholar
  2. Becker, R. T., 1993, Anoxia, eustatic changes, and Upper Devonian to lowermost Carboniferous global ammonoid diversity, in: The Ammonoidea: Environment, Ecology, and Evolutionary Change (M. R. House, ed.), The Systematics Association Special Volume No. 47. Clarendon Press, Oxford, pp. 115–163.Google Scholar
  3. Callomon, J. H., 1985, The evolution of the Jurassic ammonite family Cardioceratidae, Special Papers in Palaeontology 33:49–90.Google Scholar
  4. Cobban, W. A., 1987, Some Middle Cenomanian (Upper Cretaceous) acanthoceratid ammonites from the Western Interior of the United States, USGS Professional Paper 1445.Google Scholar
  5. Cobban, W. A., and Kennedy, W. J., 1991, Evolution and biogeography of the Cenomanian (Upper Cretaceous) ammonite Metoicoceras Hyatt, 1903, with a revision of Metoicoceras praecox Haas, 1949, USGS Bulletin 1934.Google Scholar
  6. Geyssant, J. R., 1988, Diversity in mode and tempo of evolution within one Tithonian ammonite family, the Simo-ceratids, in: Cephalopods-Present and Past (J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 79–88.Google Scholar
  7. Glenister, B. F., and Furnish, W. M., 1988, Terminal Progenesis in Late Paleozoic Ammonoid Families, in: Cephalopods—Present and Past (J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 51–66.Google Scholar
  8. Gould, S. J., 1977, Ontogeny and Phytogeny, Harvard University Press, Cambridge.Google Scholar
  9. Greenwood, P. H., 1981, Species-flocks and explosive evolution, in: Chance, Change and Challenge — The evolving biosphere (P. H. Greenwood and P. L. Forey, eds.), Cambridge University Press and British Museum (Natural History), London, pp. 61–74.Google Scholar
  10. Greenwood, P. H., 1984, African cichlids and evolutionary theories, in: Evolution of fish species flocks (A. Echelle and I. Kornfield, eds.), University of Maine Press, Orono, Maine, pp. 141–154.Google Scholar
  11. Hallam, A., 1989, The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates, Philosophical Transactions of the Royal Society of London B 325:437–455.CrossRefGoogle Scholar
  12. Hallam, A., 1990, Biotic and abiotic factors in the evolution of early Mesozoic marine molluscs, in: Causes of Evolution: A Paleontological Perspective (R. M. Ross and W. D. Allmon, eds.), University of Chicago Press, Chicago, pp. 249–268.Google Scholar
  13. House, M. R., 1985, Correlation of mid-Palaeozoic ammonoid evolutionary events with global sedimentary perturbations, Nature 313:17–22.CrossRefGoogle Scholar
  14. House, M. R., 1989, Ammonoid extinction events, Philosophical Transactions of the Royal Society of London B325:307–326.CrossRefGoogle Scholar
  15. House, M. R., 1993, Fluctuations in ammonoid evolution and possible environmental controls, in: The Am-monoidea: Environment, Ecology, and Evolutionary Change (M. R. House, ed.), The Systematics Association Special Volume No. 47, Clarendon Press, Oxford, pp. 13–34.Google Scholar
  16. Kauffman, E. G., and Caldwell, W. G. E., 1993, The Western Interior Basin in Space and Time, in: Evolution of the Western Interior Basin (W. G. E. Caldwell and E. G. Kauffman, eds.), Geological Association of Canada Special Paper 39, pp. 1–30.Google Scholar
  17. Kennedy, W. J., 1988, Late Cenomanian and Turonian ammonite faunas from north-east and central Texas, Special Papers in Palaeontology 39: 1–131.Google Scholar
  18. Kennedy, W. J., and Cobban, W. A., 1990a, Cenomanian ammonite faunas from the Woodbine Formation and lower part of the Eagle Ford Group, Texas, Palaeontology 33(1):75–154.Google Scholar
  19. Kennedy, W. J., and Cobban, W. A., 1990b, Cenomanian micromorph ammonites from the Western Interior of the USA, Palaeontology 33(2): 379–422.Google Scholar
  20. Kennedy, W. J., and Wright, C. W., 1985, Evolutionary patterns in Late Cretaceous ammonites, Special Papers in Palaeontology 33:131–143.Google Scholar
  21. Kennedy, W. J., and Wright, C. W., 1987, The Ammonoidea of the Lower Chalk, Part 2, Monograph of the Pa-laeontological Society, Publication No. 573 Google Scholar
  22. Korn, D., 1995, Paedomorphosis of ammonoids as a result of sealevel fluctuations in the Late Devonian Wock-lumeria Stufe, Lethaia 28: 155–165.CrossRefGoogle Scholar
  23. Kowallis, B. J., Christiansen, E. H., Deino, A. L., Kunk, M. J., and Heaman, L. M., 1995, Age of the Cenomanian-Turonian boundary in the Western Interior of the United States, Cretaceous Research 16(1): 109–129.CrossRefGoogle Scholar
  24. Landman, N. H., 1987, Ontogeny of Upper Cretaceous (Turonian-Santonian) scaphitid ammonites from the Western Interior of North America: Systematics, developmental patterns and life history, Bulletin of the American Museum of Natural History 185(2): 117–241.Google Scholar
  25. Landman, N. H., 1988, Heterochrony in ammonites, in: Heierochrony in Evolution (M. L. McKinney, ed.), Plenum Press, New York, pp. 159–182.Google Scholar
  26. Landman, N. H., 1989, Iterative progenesis in Upper Cretaceous ammonites, Paleobiology 15(2): 95–117.Google Scholar
  27. Landman, N. H., and Geyssant, J. R., 1993, Heterochrony and ecology in Jurassic and Cretaceous ammonites, in: Sème Symposium international sur les Céphalopodes actuels et fossiles (S. Elmi, C. Mangold, and Y. Aimeras, eds.), Geobios, Mémoire Special 15, pp. 247–255.Google Scholar
  28. Landman, N. H., Dommergues, J.-L., and Marchand, D., 1991, The complex nature of progenetic species-examples from Mesozoic ammonites, Lethaia 24: 409–421.CrossRefGoogle Scholar
  29. Marchand, D., and Dommergues, J.-L., 1988, Rythmes évolutifs et hétérochronies du développement: Exemples pris parmi les Ammonites Jurassiques, in: Cephalopods — Present and Past (J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 67–78.Google Scholar
  30. McCune, A. R., 1982, Early Jurassic Semionotidae (Pisces) from the Newark Supergroup: systematics and evolution of a fossil species flock, Ph.D. dissertation, Yale University, New Haven, Connecticut, USA.Google Scholar
  31. McCune, A. R., 1987a, Toward a phylogeny of a fossil species flock: semionotid fishes from a lake deposit in the Early Jurassic Towaco Formation, Newark Basin, Yale Peabody Museum of Natural History Bulletin 43: 1–108.Google Scholar
  32. McCune, A. R., 1987b, Lakes as laboratories of evolution: endemic fishes and environmental cyclicity, Palaios 2:446–454.CrossRefGoogle Scholar
  33. McCune, A. R., 1990, Evolutionary novelty and atavism in the Semionotus Complex: relaxed selection during colonization of an expanding lake, Evolution 44: 71–85.CrossRefGoogle Scholar
  34. McCune, A. R., 1996, Biogeographic and stratigraphic evidence for rapid speciation in semionotid fishes, Paleobiology 22: 34–48.Google Scholar
  35. McCune, A. R., Thomson, K. S., and Olsen, P. E., 1984, Semionotid fishes from the Mesozoic great lakes of North America, in: Evolution offish species flocks (A. Echelle and I. Kornfield, eds.), University of Maine Press, Orono, Maine, pp. 27–44.Google Scholar
  36. McKinney, M. L., and McNamara, K. J., 1991, Heterochrony: The evolution of ontogeny, Plenum Press, New York.Google Scholar
  37. Meyer, A., 1993, Phylogenetic relationships and evolutionary processes in East African cichlid fishes, Trends in Ecology and Evolution 8(8): 279–284.CrossRefGoogle Scholar
  38. Nations, J. D., and Eaton, J. G. (eds.), 1991, Stratigraphy, depositional environments, and sedimentary tectonics of the western margin, Cretaceous Western Interior Seaway, Geological Society of America Special Paper 260 Google Scholar
  39. Obradovich, J. D., 1993, A Cretaceous Time Scale, in: Evolution of the Western Interior Basin (W. G. E. Caldwell and E. G. Kauffman, edsj, Geological Association of Canada Special Paper 39, pp. 379–396.Google Scholar
  40. Rawson, P. F., 1993, The influence of sea-level changes on the migration and evolution of early Cretaceous (pre-Aptian) ammonites, in: The Ammonoidea: Environment, Ecology, and Evolutionary Change (M. R. House, ed.), The Systematics Association Special Volume No. 47, Clarendon Press, Oxford, pp. 227–242.Google Scholar
  41. Smith, A. B., 1994, Systematics and the fossil record: documenting evolutionary patterns, Blackwell Scientific Publications, Oxford.Google Scholar
  42. Smith, A. G., Smith, D. G., and Funneil, B. F., 1994, Atlas of Mesozoic and Cenozoic coastlines, Cambridge University Press, Cambridge.Google Scholar
  43. Swan, A. R. H., 1988, Heterochronic trends in Namurian ammonoid evolution, Palaeontology 31: 1033–1051.Google Scholar
  44. Swofford, D. L., 1989, PAUP: Phylogenetic Analysis Using Parsimony, Version 3.0. Computer program distributed by the Illinois Natural History Survey, Champaign, Illinois, USA. [Currently available from Sinauer Associates, Inc., Sunderland, Massachusetts.]Google Scholar
  45. TAnabe, K., 1993, Variability and mode of evolution of the Middle Cretaceous ammonite Subprionocyclus (Ammonitina: Collignoniceratidae) from Japan, in: 3ème Symposium international sur les Céphalopodes actuels et fossiles (S. Elmi, C. Mangold, and Y. Aiméras, eds.), Geobios M.S. 15, pp. 347–357.Google Scholar
  46. Thomson, K. S., 1988, Morphogenesis and Evolution, Oxford University Press, Oxford.Google Scholar
  47. Wagner, P. J., and Erwin, D. H., 1995, Phylogenetic patterns as tests of speciation models, in: New Approaches to Speciation in the Fossil Record (D. H. Erwin and R. L Anstey, eds.), Columbia University Press, New York, pp. 87–122.Google Scholar
  48. Webb, G. E., 1994, Parallelism, non-biotic data and phytogeny reconstruction, Lethaia 27: 185–192.CrossRefGoogle Scholar
  49. Westermann, G. E. G., 1993, Global bio-events in mid-Jurassic ammonites controlled by seaways, in: The Ammonoidea: Environment, Ecology, and Evolutionary Change (M. R. House, ed.), The Systematics Association Special Volume No. 47, Clarendon Press, Oxford, pp. 187–226.Google Scholar
  50. Wiedmann, J., 1988, Plate tectonics, sea level changes, climateand the relationship to ammonite evolution, provincialism and mode of life, in: Cephalopods—Present and Past (J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sehe Verlagsbuchhandlung, Stuttgart, pp. 737–765.Google Scholar
  51. Williams, G. D., and Stelck, C. R., 1975, Speculations on the Cretaceous palaeogeography of North America, in: The Cretaceous System in the Western Interior of North America (W. G. E. Caldwell, ed.), Geological Association of Canada Special Paper No. 13, pp. 1–20.Google Scholar
  52. Cobban, W. A., 1953, Cenomanian ammonite fauna from the Mosby Sandstone of Central Montana, USGS Professional Paper 243-D, [Dunveganoceras]Google Scholar
  53. Cobban, W. A., 1983, Molluscan fossil record from the northeastern part of the Upper Cretaceous seaway, Western Interior, in: Stratigraphy and paleontology of mid-Cretaceous rocks in Minnesota and contiguous areas (W. A. Cobban and E. A. Merewether, eds.), USGS Professional Paper 1253, pp. A1–A23. [Metoicoceras]Google Scholar
  54. Cobban, W. A., 1987, Some Middle Cenomanian (Upper Cretaceous) acanthoceratid ammonites from the Western Interior of the United States, USGS Professional Paper 1445, [Acanthoceras, Cunningtoniceras, Plesia-canthoceras, Plesiacanthoceratoides]Google Scholar
  55. Cobban, W. A., 1988a, Some acanthoceratid ammonites from Upper Cenomanian (Upper Cretaceous) rocks of Wyoming, USGS Professional Paper 1353, [Dunveganoceras, Metoicoceras]Google Scholar
  56. Cobban, W. A., 1988b, Tarrantoceras Stephenson and related ammonoid genera from Cenomanian (Upper Cretaceous) rocks in Texas and the Western Interior of the United States, USGS Professional Paper 1473, [Neo-cardioceras, Tarrantoceras]Google Scholar
  57. Cobban, W. A., 1990, Ammonites and some characteristics bivalves from the Upper Cretaceous Frontier Formation, Natrona County, Wyoming, USGS Bulletin 1917-B. [Conlinoceras, Cunningtoniceras]Google Scholar
  58. Cobban, W. A., and Hook, S. C., 1983, Mid-Cretaceous (Turonian) ammonite fauna from Fence Lake area of west-central New Mexico, New Mexico Bureau of Mines and Mineral Resources Memoir 41. [Acanthoceras]Google Scholar
  59. Cobban, W. A., and Kennedy, W. J., 1991, Evolution and biogeography of the Cenomanian (Upper Cretaceous) ammonite Metoicoceras Hyatt, 1903, with a revision of Metoicoceras praecox Haas, 1949. USGS Bulletin 1934-B, [Metoicoceras]Google Scholar
  60. Cobban, W. A., and Scott, G. R., 1972, Stratigraphy and ammonite fauna of the Graneros Shale and Greenhorn Limestone near Pueblo, Colorado. USGS Professional Paper 645, [Acanthoceras, Calycoceras, Conlinoceras, Tarrantoceras]Google Scholar
  61. Collignon, M., 1937, Ammonites Cénomaniennes du sud-ouest de Madagascar. Annales Géologiques du Service des Mines de Madagascar 8: 29–72. [Acanthoceras, Cunningtoniceras]Google Scholar
  62. Emerson, B. L., Emerson, J. H., Akers, R. E., and Akers, T. J., 1994, Texas Cretaceous Ammonites and Nautiloids, Houston Gem and Mineral Society, Paleontology Section, Texas Paleontology Series, Publication No. 5. [Graysonites]Google Scholar
  63. Haas, O., 1942, Some Upper Cretaceous ammonites from Angola. American Museum Novitates no. 1182, [Shar-peiceras]Google Scholar
  64. Haas, O., 1949, Acanthoceratid Ammonoidea from near Greybull, Wyoming, American Museum of Natural History Bulletin 93(1). [Dunveganoceras]Google Scholar
  65. Haas, O., 1951, Supplementary notes on the ammonoid genus Dunveganoceras, American Museum Novitates No. 1490, [Dunveganoceras]Google Scholar
  66. Haas, O., 1963, Par acanthoceras wyomingense (Reagan) from the western interior of the United States and from Alberta (Ammonoidea), American Museum Novitates 2151, [Plesiacanthoceras]Google Scholar
  67. Haas, O., 1964, Plesiacanthoceras, new name for Paracanthoceras Haas 1963, non Furon, 1935, Journal of Paleontology 38(3):610. [Plesiacanthoceras]Google Scholar
  68. Hyatt, A., 1903, Pseudoceratites of the Cretaceous, USGS Monograph 44, [Acompsoceras, Calycoceras, Metoicoceras]Google Scholar
  69. Juignet, P., and Kennedy, W. J., 1976, Faunes d’ammonites et biostratigraphie comparée du Cénomanien du nord-oest de la France (Normandie) et du sud de l’Angleterre, Société Géologique de Normandie et Amis du Muséum du Havre 63(2). [Plesiacanthoceras]Google Scholar
  70. Kennedy, W. J., 1971, Cenomanian ammonites from southern England, Palaeontological Association of London, Special Papers in Palaeontology 8. [Acanthoceras, Calycoceras, Plesiacanthoceras]Google Scholar
  71. Kennedy, W. J., and Cobban, W. A., 1990, Cenomanian ammonite faunas from the Woodbine Formation and the lower part of the Eagle Ford Group, Texas, Palaeontology 33(1):75–154. [Acanthoceras, Conlinoceras, Cunningtoniceras, Plesiacanthoceras, Plesiacanthoceratoides, Tarrantoceras]Google Scholar
  72. Kennedy, W. J., and Delamette, M., 1994, Neophlycticeras SPATH, 1922 (Ammonoidea) from the Upper Albian of Ain, France, N. Jb. Geol Paläont. Abh, 191(1): 1–24. [Neophlycticeras]Google Scholar
  73. Kennedy, W. J., and Hancock, J. M., 1970, Ammonites of the genus Acanthoceras from the Cenomanian of Rouen, France, Palaeontology 13(3): 462–490. [Acanthoceras]Google Scholar
  74. Kennedy, W. J., and Juignet, P., 1993, A revision of the ammonite faunas of the Type Cenomanian. 4. Acantho-ceratinae (Acompsoceras, Acanthoceras, Protacanthoceras, Cunningtoniceras and Thomelites), Cretaceous Research 14: 145–190. [Acanthoceras, Acompsoceras]CrossRefGoogle Scholar
  75. Kennedy, W. J., and Juignet, P., 1994a, A revision of the ammonite faunas of the type Cenomanian 5. Acantho-ceratinae (Calycoceras (Calycoceras), C. (Gentoniceras) and C. (Newboldiceras), Cretaceous Research 15: 17–57. [Calycoceras]Google Scholar
  76. Kennedy, W. J., and Juignet, P., 1994b, A revision of the ammonite faunas of the type Cenomanian 6. Acantho-ceratinae (Calycoceras (Proeucalycoceras), Eucalycoceras, Pseudocalycoceras, Neocardioceras), Euom-phaloceratinae, Mammitinae and Vascoceratidae, Cretaceous Research 15: 469–501. [Calycoceras, Metoicoceras, Neocardioceras]Google Scholar
  77. Kennedy, W. J., Juignet, P., and Hancock, J. M., 1981, Late Cenomanian ammonites from Anjou and the Vendee, western France, Palaeontology 24(1): 25–84. [Metoicoceras]Google Scholar
  78. Kennedy, W. J., Wright, C. W., and Hancock, J. M., 1980, Origin, evolution, and systematics of the Cretaceous am-monoid Spathites, Palaeontology 23(4): 821–837. [Metoicoceras]Google Scholar
  79. Matsumoto, T., 1960, On some type ammonites from the Gulf Coast Cretaceous, Kyushu University Faculty of Sciences, Science Reports, Geology 5(1): 36–49. (In Japanese). [Plesiacanthoceras]Google Scholar
  80. Matsumoto, T., and Obata, I., 1966, An acanthoceratid ammonite from Sakhalin, Bulletin of the National Science Museum 9(1): 43–52. [Plesiacanthoceras]Google Scholar
  81. Morrow, A. L., 1935, Cephalopods from the Upper Cretaceous of Kansas, Journal of Paleontology 9(6): 463–473.[Acanthoceras]Google Scholar
  82. Neumayr, M., 1875, Die ammoniten der Kriede und die Systematik der Ammonitiden, Zeitschr. deutsch, geol Gesell., Band 27: 854–892. [Acanthoceras]Google Scholar
  83. Owen, H. G., 1971, Middle Albian stratigraphy in the Anglo-Paris Basin, Bulletin of the British Museum of Natural History (Geology) 71 (Supplement 8): 1–164. [Lyelliceras]Google Scholar
  84. Spath, L. F., 1921, On Cretaceous Cephalopoda from Zululand, Annals of the South African Museum 12:217–321. [Lyelliceras]Google Scholar
  85. Spath, L. F., 1926, On new ammonites from the Cretaceous Chalk, Geological Magazine 63(740): 77–83. [Neocardioceras]CrossRefGoogle Scholar
  86. Spath, L. F., 1931, A Monograph of the Ammonoidea of the Gault, Volume II, Part VIII, Monograph of the Pa-laeontographical Society. [Lyelliceras]Google Scholar
  87. Stephenson, L. W., 1952, Larger invertebrate fossils of the Woodbine formation (Cenomanian) of Texas, USGS Professional Paper 242. [Acanthoceras]Google Scholar
  88. Stephenson, L. W., 1955, Basal Eagle Ford fauna (Cenomanian) in Johnson and Tarrant counties, Texas, USGS Professional Paper 247 - C [Acanthoceras, Tarrantoceras]Google Scholar
  89. Thomel, G., 1980, Ammonites, Nice: Editions Serre [Acanthoceras, Calycoceras, Lyelliceras, Metoicoceras, Stoliczkaia]Google Scholar
  90. Warren, P. S., and Stelck, C. R., 1940, Cenomanian and Turonian faunas in the Pouce Coupe district, Alberta and British Columbia, Royal Society of Canada Transactions, third series 34(4): 143–152. [Dunveganoceras]Google Scholar
  91. Wright, C. W., 1963, Cretaceous ammonites from Bathurst Island, Northern Australia, Palaeontology 6(4): 597–614. [Acanthoceras]Google Scholar
  92. Wright, C. W., and Kennedy, W. J., 1981, The Ammonoidea of the Plenus Marls and the Middle Chalk, Monograph of the Paleontographical Society. [Mammites, Neocardioceras, Spathites]Google Scholar
  93. Wright, C. W., and Kennedy, W. J., 1984, The Ammonoidea of the Lower Chalk, Part I, Monograph of the Palaeontological Society. [Forbesiceras, Mantelliceras, Sharpeiceras, Stoliczkaia]Google Scholar
  94. Wright, C. W., and Kennedy, W. J., 1987, The Ammonoidea of the Lower Chalk, Part 2, Palaeontographical Society Monographs, pp. 127–218. [Acanthoceras, Acompsoceras, Calycoceras, Cunningtoniceras, Plesiacanthoceras]Google Scholar
  95. Young, K., 1957, Cretaceous ammonites from eastern Apache County, Arizona, Journal of Paleontology 31(6): 1167–1174. [Metoicoceras]Google Scholar
  96. Young, K., 1958, Graysonites, a Cretaceous ammonite in Texas, Journal of Paleontology 32(1):171–182. [Graysonites]Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Margaret M. Yacobucci
    • 1
  1. 1.Department of Earth and Planetary SciencesHarvard UniversityCambridgeUSA

Personalised recommendations