Advertisement

Melatonin and Tryptophan Derivatives as Free Radical Scavengers and Antioxidants

  • Russel J. Reiter
  • Dun-xian Tan
  • Javier Cabrera
  • Daniele D’Arpa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 467)

Abstract

Several tryptophan derivatives function as free radical scavengers and antioxidants. The molecule that has been most widely investigated in this regard is N-acetyl-5-methoxytryptamine (melatonin); however, pinoline (6-methoxy-1,2,3,4-tetrahydro-β-carboline) and N-acetylserotonin also possess free radical scavenging activity. Experimental studies have shown that melatonin directly scavenges the hydroxy radical, peroxyl radical, peroxynitrite anion, and singlet oxygen. Furthermore, this tryptophan derivative stimulates a number of antioxidative enzymes and stabilizes cell membranes; this latter action helps membranes to resist free radical damage. While the antioxidative actions of most molecules are limited by their specific intracellular distribution, e.g., vitamin E in lipid-rich membranes, melatonin’s antioxidative actions include the protection of lipids in the cell membrane, proteins in the cytosol, and DNA in the nucleus. Furthermore, melatonin crosses all morphophysiological barriers and enters equally well all cells in the organism.

Keywords

Electron Spin Resonance Free Radical Scavenger Pineal Gland Free Radical Scavenge Activity Peroxyl Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barchas, J., DaCosta, F., and Spector, S., 1967, Acute pharmacology of melatonin, Nature 214:919–920.PubMedCrossRefGoogle Scholar
  2. Beal, M.F., 1995, Aging, energy, and oxidative stress in neurodegenerative diseases, Ann. Neurol. 38:357–366.PubMedCrossRefGoogle Scholar
  3. Beckman, K.B. and Ames, B.N, 1997, Oxidative decay of Dann, J. Biol. Chem. 272:19633–19636.PubMedCrossRefGoogle Scholar
  4. Chen, T.Y. and Tang, P.L., 1996, Characterization of the antioxidant effects of melatonin and related indoleamines in vitro, J. Pineal Res. 20:187–191.CrossRefGoogle Scholar
  5. Costa, E.J.X., Lopes, R.H., and Lamy-Freund, M.T., 1995, Permeability of pure lipid bilayers to melatonin, J. Pineal Res. 19:123–126.PubMedCrossRefGoogle Scholar
  6. Crow, J.P., Beckman, J.S., and McCord, J.M., 1995, Sensitivity of the zinc-thiolate mioety of yeast alcohol dehydrogenase to hypochorite and peroxynitrite, Biochemistry 34:3544–3552.PubMedCrossRefGoogle Scholar
  7. Finnochiaro, L.M.E. and Glikin, G.C., 1998, Intracellular melatonin distribution in cultured cell lines, J. Pineal Res. 24:22–34.CrossRefGoogle Scholar
  8. Garcia, J.J., Reiter, R.J., Ortiz, G.G., Oh, C.S., Tang, L., Yu, B.P., and Escames, G., 1998, Melatonin enhances tamoxifen’s ability to prevent the reduction in microsomal membrane fluidity induced by lipid peroxidation, J. Membr. Biol. 162:59–65.PubMedCrossRefGoogle Scholar
  9. Gilad, E., Cuzzocrea, S., Zingarelli, B, Salzman, A.L., and Szabo, C., 1997, Melatonin is a scavenger of peroxynitrite, Life Sci. 60:PL169–PL174.PubMedCrossRefGoogle Scholar
  10. Halliwell, B. and Gutteridge, J.M.C., 1985, Oxygen radicals and the nervous system, Trends Neurosci. 8:22–26.CrossRefGoogle Scholar
  11. Halliwell, B. and Gutteridge, J.M.C., 1990, Role of free radicals and catalytic metal ions in human disease: a review, Methods Enzymol. 186:1–85.PubMedCrossRefGoogle Scholar
  12. Hardeland, R., Reiter, R.J., Poeggeler, B., and Tan, D.X., 1993, The significance of the metabolism of the neurohormone melatonin: antioxidant protection and formation of bioactive substances, Neurosci. Biobehav. Res. 17:347–357.CrossRefGoogle Scholar
  13. Harman, D., 1992, Free radical theory of aging, Mutat. Res. 275:257–266.PubMedCrossRefGoogle Scholar
  14. Huether G., 1993, The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates, Experientia 49:665–670.PubMedCrossRefGoogle Scholar
  15. Ianas, O., Olinescu, R., and Badescu, I., 1991, Melatonin involvement in oxidative stress, Endocrinol. 29:147–153.Google Scholar
  16. Lezoualc’h, F., Sparapani, M., and Behl, C., 1998, N-acetylserotonin (normelatonin) and melatonin protect neurons against oxidative challenges and suppress the activity of the transcription factor NF-κB, J. Pineal Res. 24:168–178.CrossRefGoogle Scholar
  17. Longoni, B., Pryor, W.A., and Marchiafava P., 1997, Inhibition of lipid peroxidation by N-acetylserotonin and its role in retinal physiology, Biochem. Biophys. Res. Commun. 233:778–780.PubMedCrossRefGoogle Scholar
  18. Matuszek, Z., Reszka, K.J., and Chignell, C.F., 1997, Reaction of melatonin and related indoles with hydroxyl radicals: ESR and spin trapping investigations, Free Radical Biol. Med. 23:367–372.CrossRefGoogle Scholar
  19. Menendez-Pelaez, A. and Reiter, R.J., 1993, Distribution of melatonin in mammalian tissues: relative importance of nuclear versus cytosolic localization, J. Pineal Res. 15:59–69.PubMedCrossRefGoogle Scholar
  20. Menendez-Pelaez, A., Poeggeler, B., Reiter, R.J., Barlow-Waiden, L., Pablos, M.I., and Tan D.X., 1993, Nuclear localization of melatonin in different mammalian tissues, J. Cell. Biochem. 53:572–582.CrossRefGoogle Scholar
  21. Morrey, K.M., McLauhlan, J.A., Sherkin, C.D., and Barouche, O., 1994, Activation of human monocytes by the pineal hormone melatonin, J. Immunol. 153:2671–2680.PubMedGoogle Scholar
  22. Nordlund, J.J. and Lerner, A.B., 1976, The effects of oral melatonin on skin color and the release of pituitary hormones, J. Clin. Endocrinol. Metab. 45:768–774.CrossRefGoogle Scholar
  23. Pähkla, R., Zilmer, M., Kullisar, T., and Rägo, L., 1998, Comparison of the antioxidant activity of melatonin and pinoline in vitro, J. Pineal Res. 24:96–101.PubMedCrossRefGoogle Scholar
  24. Pieri, C., Marra, M., Moroni, F., Recchioni, R., and Marcheselli, F., 1994, Melatonin: a peroxyl radical scavenger more efficient than vitamin E, Life Sci. 55:PL271–PL276.PubMedCrossRefGoogle Scholar
  25. Pieri, C., Moroni, F., Marra, M., Marcheselli, F., and Recchioni, R., 1995, Melatonin is an efficient antioxidant, Arch, Geront l. Geriatrics 20:159–165.CrossRefGoogle Scholar
  26. Poeggeler, B., Reiter, R.J., Hardeland, R., Sewerynek, E., Melchiorri, D, and Barlow-Walden, L.R., 1995, Melatonin, a mediator of electron transfer and repair reactions, acts synergistically with the chain-breaking antioxidants ascorbate, trolox and glutathione, Neuroendocrinol. Lett. 17:87–92.Google Scholar
  27. Poeggeler, B., Reiter, R.J., Hardeland, R., Tan, D.X., and Barlow-Walden, L.R., 1996, Melatonin and structurally-related endogenous indoles act as potent electron donors and radical scavengers, Redox Report 2:179–184.Google Scholar
  28. Pryor, W. and Squadrito, G., 1995, The chemistry of peroxynitrite: a product from the reaction of nitric oxide with Superoxide, Am. J. Physiol. 268:L699–L722.PubMedGoogle Scholar
  29. Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A., 1991, Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of Superoxide and nitric oxide, J. Biol Chem. 266:4244–4250.PubMedGoogle Scholar
  30. Reiter, R.J., 1991, Pineal melatonin: cell biology of its synthesis and of its physiological interactions, Endocrine Rev. 12:151–180.CrossRefGoogle Scholar
  31. Reiter, R.J., 1998a, Oxidative damage in the central nervous system: protection by melatonin, Prog. Neurobiol. 56:359–367.PubMedCrossRefGoogle Scholar
  32. Reiter, R.J., Pablos, M.I., Agapito, M.I., and Guerrero, J.M., 1996a, Melatonin in the context of the free radical theory of aging, Ann. N. Y. Acad. Sci. 786:362–378.PubMedCrossRefGoogle Scholar
  33. Reiter, R.J., Oh, C.S., and Fujimori, O., 1996b, Melatonin: its intracellular and genomic actions, Trends Endocrinol. Metab. 7:22–27.PubMedCrossRefGoogle Scholar
  34. Reiter, R.J., Tang, L., Garcia, J.J., and Muñoz-Hoyos, A., 1997, Pharmacological actions of melatonin in oxygen radical pathophysiology, Life Sci. 60:2255–2271.PubMedCrossRefGoogle Scholar
  35. Reiter, R.J., Carneiro, R.C., and Oh, C.S., 1997, Melatonin in relation to cellular antioxidative defense mechanisms, Horm. Metab. Res. 29:363–372.PubMedCrossRefGoogle Scholar
  36. Reiter, R.J., Garcia, J.J., and Pie, J.S., 1998b, Oxidative toxicity in models neurodegeneration, Restr. Neurol. Neurosci. 12:135–142.Google Scholar
  37. Shida, C.S., Castrucci, A.M.L., and Lamy-Freund, M.T., 1994, High solubility in aqueous medium, J. Pineal Res. 16:198–201.PubMedCrossRefGoogle Scholar
  38. Sies, H., Sharov, V.S., Klotz, L.O., and Briviba, K., 1997, Glutathione peroxidase protects against peroxynitrite-mediated oxidations, J. Biol. Chem. 272:27812–27817.PubMedCrossRefGoogle Scholar
  39. Stasica, P., Ulanski, P., and Rosiak, J.M., 1998, Melatonin as a hydroxy radical scavenger, J. Pineal Res. 25:65–66.PubMedCrossRefGoogle Scholar
  40. Susa, N., Ueno, S., Furukawa, Y., Ueda, J., and Sugiyama, M., 1997, Potent protective effect of melatonin on chromium (VI) induced DNA single-strand breaks, cytotoxicity, and lipid peroxidation in primary cultures of rat hepatocytes, Toxicol. Appl. Pharmacol. 144:377–384.PubMedCrossRefGoogle Scholar
  41. Tan, D.X., Chen, L.D., Poeggeler, B. Manchester, L.C., and Reiter, R.J., 1993, Melatonin: a potent, endogenous hydroxyl radical scavenger, Endocrine J. 1:57–60.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Russel J. Reiter
    • 1
  • Dun-xian Tan
    • 1
  • Javier Cabrera
    • 1
  • Daniele D’Arpa
    • 1
  1. 1.Department of Cellular and Structural BiologyUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations