Field Metabolic Rate and the Cost of Ranging of the Red-Tailed Sportive Lemur (Lepilemur Ruficaudatus)

  • Sonja Drack
  • Sylvia Ortmann
  • Nathalie Bührmann
  • Jutta Schmid
  • Ruth D. Heldmaier
  • Gerhard Heldmaier
  • Jörg U. GanzhornEmail author


The goal of this study was to describe energy expenses of free ranging Lepilemur ruficaudatus during the dry season in the deciduous forest of western Madagascar. Since all lemur species measured so far have had very low resting metabolic rates (RMR) and some lemur species can go into daily or prolonged torpor, the question was, whether or not resting metabolic rates can be used to predict field metabolic rates (FMR) in lemurs. Doubly-labeled water measurements of FMR in 11 free-ranging L. ruficaudatus showed that these animals had FMR of about 65.6% of the values expected for FMR of eutherian herbivores of similar body mass (mean mass = 723 g). FMR was on average 2.6-3.1 times higher than RMR that had been measured previously as 63.6% of the expected value for RMR of eutherian mammals of similar body mass. The ratio of FMR/RMR matches the ratio found in other eutherian mammals and is consistent with the idea that FMR is a constant multiple of RMR for eutherian mammals over a wide range of body mass. FMR augmented with increasing range size. The present data do not provide evidence that the costs of locomotion were energetically limiting for L.ruficaudatus.


Home Range Home Range Size Rest Metabolic Rate Eutherian Mammal Mouse Lemur 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, J.H., P. A. Marquet, and M. L. Taper. 1993. Evolution of body size: consequences of an energetic definition of fitness. American Naturalist, 142: 573–584.PubMedCrossRefGoogle Scholar
  2. Charles-Dominique, E, and C. M. Hladik. 1971. Le Lepilemur du sud de Madagascar: écologie, alimentation et vie sociale. La Terre et la Vie, 25: 3–66.Google Scholar
  3. Chown, S.-L., and K.-J. Gaston. 1997. The species-body size distribution: energy, fitness, and optimality. Functional Ecology, 11: 365–375.CrossRefGoogle Scholar
  4. Degen, A.A., and M. Kam. 1995. Scaling of field metabolic rate to basal metabolic rate in homeotherms. Ecoscience, 2: 48–54.Google Scholar
  5. Drack, S. 1997. Messung des Energieumsatzes mittels der D2180-Methode am freilebenden “KleinenWieselmaki” (Lepilemur ruficaudatus) an der Westküste Madagaskars. Diplom Thesis, Marburg University, Marburg.Google Scholar
  6. Ganzhorn, J. U. 1993. Flexibility and constraints of Lepilemur ecology, pp. 153–165. In Kappeler, R M., andJ. U. Ganzhorn, eds., Lemur Social Systems and their Ecological Basis. Plenum Press, New York.Google Scholar
  7. Ganzhorn, J. U. submitted. Implications of seasonal variation in food selection by folivorous lemurs for habitat carry-ing capacitiesGoogle Scholar
  8. Ganzhorn, J. U., and J. Schmid. 1998. Different population dynamics of Microcebus murinus in primary and secondary deciduous dry forests of Madagascar. International Journal of Primatology, 19.Google Scholar
  9. Ganzxorn, J. U., and J.-R Sorg (eds.). 1996. Ecology and Economy of a Tropical Dry Forest. Primate Report, 46–1: 1–382.Google Scholar
  10. Genoud, M., R. D. Martin, and D. Glaser. 1997. Rate of metabolism in the smallest Simian primate, the Pygmy Marmoset (Cebuella pygmaea). American Journal of Primatology, 41: 229–245.PubMedCrossRefGoogle Scholar
  11. Hladik, C. M. 1979. Diet and ecology of prosimians, pp. 307–357. In Doyle, G. A., and R. D. Martin, eds., The Study of Prosimian Behavior. Academic Press, LondonGoogle Scholar
  12. Jolly, A. 1966. Lemur Behaviour. The University of Chicago Press, Chicago.Google Scholar
  13. Kappeler, P. M. 1996. Causes and consequences of life-history variation among Strepsirhine primates. American Naturalist, 148: 868–891.CrossRefGoogle Scholar
  14. Karasov, W. H. 1992. Daily energy expenditure and cost of activity in mammals. American Zoologist, 32: 238–248.Google Scholar
  15. Kleiber, M. 1961. The Fire of Life. John Wiley, New York.Google Scholar
  16. Koteja, P. 1991. On the relation between basal and field metabolic rates in birds and mammals. Functional Ecology, 5: 56–64.CrossRefGoogle Scholar
  17. Lifson, N., and Mcclintock, R. 1966. Theory of use of the turnover rates of body water for measuring energy and material balance. Journal of Theoretical Biology, 12: 46–74.PubMedCrossRefGoogle Scholar
  18. Mcnab, B. K. 1980. Food habits, energetics, and the population biology of mammals. American Naturalist, 116: 106–124.CrossRefGoogle Scholar
  19. Mcnab, B. K. 1986. The influence of food habits on the energetics of eutherian mammals. Ecological Monographs,56: 1–19.CrossRefGoogle Scholar
  20. Miller, E. F. 1985. Basal metabolic rates in primates-the possible role of phylogenetic and ecological factors. Comparative Biochemical Physiology, 81A: 707–711.CrossRefGoogle Scholar
  21. Nagy, K. A. 1987. Field metabolic rate and food requirement scaling in mammals and birds. Ecological Monographs, 57: 111–128.CrossRefGoogle Scholar
  22. Nagy, K. A., C. Meienberger, S. D. Bradshaw, and R. D. Wooller. 1995. Field metabolic rate of a small marsupial mammal, the honey possum (Tarsipes rostratus). Journal of Mammalogy, 76: 862–866.CrossRefGoogle Scholar
  23. Nasx, L. T. 1998. Vertical clingers and sleepers: seasonal influence on the activities and substrate use of Lepilemur leucopus at Beza Mahafaly Special Reserve, Madagascar. Folia Primatologica, 69, Supplement 1: 204–217.Google Scholar
  24. Ortmann, S., G. Heldmaier, J. Schmid, and J. U. Ganzhorn. 1997. Spontaneous daily torpor in Malagasy mouse lemurs. Naturwissenschaften, 84: 28–32.PubMedCrossRefGoogle Scholar
  25. Pereira, M. E. 1993. Seasonal adjustment of growth rate and adult body weight in ringtailed lemurs, pp. 205–221. In Kappeler, P. M., and J U. Ganzhorn, eds., Lemur Social Systems and their Ecological Basis. Plenum Press, New York.Google Scholar
  26. Peterson, C. C., K. A. Nacy, and J. Diamond. 1990. Sustained metabolic scope. Proceedings of the National Academy of Science USA, 87: 2324–2328.CrossRefGoogle Scholar
  27. Petter, J.-J. 1978. Ecological and physiological adaptations of five sympatric nocturnal lemurs to seasonal variations in food production, pp. 211–223. In Chivers, D. J., and J. Herbert, eds., Recent Advances in Primatology. Academic Press, New York.Google Scholar
  28. Petter-Rousseaux, A., and C.M. Hladjk. 1980. A comparative study of food intake in five nocturnal prosimians in simulated climatic conditions, pp. 169–179. In Charles-Dominique, P., H. M. Cooper, A. Hladik, C. M. Hladik, G. F. Pariente, A. Petter-Rousseaux, and A. Schilling, eds., Nocturnal Malagasy Primates. Academic Press, New York.Google Scholar
  29. Pietsch, T. 1998. Geschlechtsspezifische Unterschiede in der räumlichen Verteilung und Nahrungswahl von Lepilemur ruficaudatus im Trockenwald von Madagaskar. Diplom Thesis, Universität Hamburg, Hamburg.Google Scholar
  30. Richard, A. E 1987. Malagasy prosimians: female dominance, pp. 25–33. In Smuts, B. B., D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, and T. T. Struhsaker, eds., Primate Societies. The University of Chicago Press, Chicago.Google Scholar
  31. Schmid, J. 1996. Oxygen consumption and torpor in mouse lemurs (Microcebus murinus and M. myoxinus): Preliminary results of a study in western Madagascar, pp. 47–54. In Geiser, E, A. J. Hulbert, and S. C. Nicol, eds., Adaptations to the Cold: the Tenth International Hibernation Symposium. University of New England Press, Armidale.Google Scholar
  32. Schmid, J. and J. U. Ganzhorn. 1996. Resting metabolic rates of Lepilemur ruficaudatus. American Journal of Primatology, 38: 169–174.CrossRefGoogle Scholar
  33. Schmidt-Nielsen, K. Animal Physiology. 4th ed. Cambridge University Press, Cambridge.Google Scholar
  34. Siegel, S., and N. J. Castellan. 1988. Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York.Google Scholar
  35. Warren, R. D., and R. H. Cromrron. 1998. Diet, body size, and the energy costs of locomotion in saltatory primates. Folia Primatologica, 69, Supplement 1: 86–100.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Sonja Drack
    • 1
  • Sylvia Ortmann
    • 1
  • Nathalie Bührmann
    • 2
  • Jutta Schmid
    • 3
  • Ruth D. Heldmaier
    • 3
  • Gerhard Heldmaier
    • 1
  • Jörg U. Ganzhorn
    • 3
    Email author
  1. 1.TierphysiologieUniversität MarburgMarburgGermany
  2. 2.ZoologieUniversität GiessenGiessenGermany
  3. 3.Deutsches PrimatenzentrumGöttingenGermany

Personalised recommendations