Advertisement

Inflammation and Fibrosis

  • David J. P. Bassett
  • Deepak K. Bhalla
Chapter
  • 99 Downloads

Abstract

Inflammatory cells represent an important component of the pulmonary defenses, but they also play a critical role in the pathogenesis of lung disorders such as adult respiratory distress syndrome (Patterson et al., 1989), asthma (Bigby and Nadel, 1988), silicosis (Lugano et al., 1984; Sjostrand et al., 1991; Li et al., 1992), interstitial pulmonary fibrosis, and asbestosis (Sibille and Reynolds, 1990; Rochester and Elias, 1993; Gee and Mossman, 1995). Because of the generally recognized adverse effects of airway inflammation and contribution of inflammatory cells to lung fibrosis, the factors involved in inflammatory reactions, mechanisms of toxicity and development of chronic lung disease have received considerable attention. The initial steps in the cascade of events, that ultimately result in the development of chronic lung disease, include stimulation of resident cells, release of chemotactic agents and recruitment of inflammatory cells. These events can be set in motion by an intrapulmonary insult in the form of an acute or chronic inhalation exposure to either environmental or occupational pollutants.

Keywords

Lung Injury Acute Lung Injury Alveolar Macrophage Idiopathic Pulmonary Fibrosis Pulmonary Fibrosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adamson IYR, Bowden DH. The pathogenesis on bleomycin-induced pulmonary fibrosis in mice. Am. J. Pathol., 1974;77:185–198.PubMedGoogle Scholar
  2. Albelda SM. Endothelial and epithelial cell adhesion molecules. Am. J. Respir. Cell Mol. Biol., 1991;4:195–203.Google Scholar
  3. Argenbright LW, Barton RW. Interactions of leukocyte integrins with intercellular adhesion molecule-1 in the production of inflammatory vascular injury in vivo. J. Clin. Invest., 1992;89:259–272.PubMedCrossRefGoogle Scholar
  4. Arnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood, 1990;75:1037–1050.PubMedGoogle Scholar
  5. Bassett DJP, Elbon CL, Reichenbaugh SS, Boswell GA, Stevens TM, McGowan MC, Kerr JS. Pretreatment with EDU decreases rat lung cellular responses to ozone. Toxicol. Appl. Pharmacol., 1989;100:32–40.Google Scholar
  6. Berg RA. “Intracellular Turnover of Collagen.” In Regulation of Matrix Accumulation, RP Mecham, ed. New York: Academic Press, 1986, pp 29–52.Google Scholar
  7. Bhalla DK, Daniels DS, Luu NT. Attenuation of ozone-induced airway permeability in rats by pretreatment with cyclophosphamide, FPL 55712, and indomethacin. Am. J. Respir. Cell Mol. Biol., 1992;7:73–80.PubMedGoogle Scholar
  8. Bhalla DK. Alteration of alveolar macrophage chemotaxis, cell adhesion, and cell adhesion molecules following ozone exposure of rats. J. Cell. Physiol., 1996;169:429–438.PubMedCrossRefGoogle Scholar
  9. Bienkowski RS, Gotkin MG. Control of collagen deposition in mammalian lung. Proc. Soc. Exp. Biol. Med., 1995;209:118–140.PubMedGoogle Scholar
  10. Bigby TD, Nadel JA. Asthma Inflammation: Basic Principles and Clinical Correlates. JI Gatlin, IM Goldstein, R Snyderman, eds. New York: Raven Press, 1988;36:6–79.Google Scholar
  11. Begin R, Martel M, Desmarais Y, Drapeau G, Boileau R, Rola-Pleszczynski M, Masse S. Fibronectin and procollagen-3 levels in bronchoalveolar lavage of asbestos-exposed human subjects and sheep. Chest, 1986;89:237–243.PubMedCrossRefGoogle Scholar
  12. Bittleman DB, Casale TB. Interleukin-8 mediates interleukin-1c-induced neutrophil transcellular migration. Am. J. Respir. Cell Mol. Biol., 1995;13:323–329.Google Scholar
  13. Bochner BS, Klunk DA, Sterbinsky SA, Coffman RL, Schleimer RP. Interleukin-13 selectively induces vascular cell adhesion molecule-1 (VCAM-1) expression in human endothelial cells. J. Immunol., 1995;154:799–803.PubMedGoogle Scholar
  14. Brieland JK, Fantone JC. “Neutrophils and Pulmonary Fibrosis.” In Pulmonary Fibrosis, S Phan, R Thrall, eds. New York: Marcel Dekker, 1995, pp. 383–404.Google Scholar
  15. Broekelmann TJ, Limper AH, Colby TV, McDonald JA. Transforming growth factor-I3 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc. Natl. Acad. Sci. USA, 1991;88:6642–6646.PubMedCrossRefGoogle Scholar
  16. Burns AB, Takei F, Doerschuk CM. ICAM-1 expression in mouse lung during pneumonia. J. Immunol., 1994a;153:3189–3198.Google Scholar
  17. Burns AB, Doerschuk CM. L-selectin and CDI8 expression on rabbit neutrophils during CD18independent and CD18-dependent emigration in the lung. J. Immunol., 1994b;153:3177–3188.Google Scholar
  18. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C. Focal adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann. Rev. Cell Biol., 1988;4:487–525.PubMedCrossRefGoogle Scholar
  19. Carre PC, Mortenson RL, King TE, Noble PW, Stable CL, Riches DWH. Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. J. Clin. Invest. 1991;88:1802–1811.PubMedCrossRefGoogle Scholar
  20. Choi AM, Elbon CL, Bruce SA, Bassett DJP. Messenger RNA levels of lung extracellular matrix proteins during ozone exposure. Lung, 1994;172:15–30.PubMedCrossRefGoogle Scholar
  21. Clark JG, Kuhn C. III. Bleomycin-induced pulmonary fibrosis in hamsters: The effect of neutrophil depletion on collagen synthesis. Am. Rev. Respir. Dis., 1982;126:737–739.PubMedGoogle Scholar
  22. Dean DC. Expression of the fibronectin gene. Am. J. Respir. Cell Mol. Biol., 1989;1:5–10.PubMedGoogle Scholar
  23. Denholm EM, Wolber FM, Pan SH. Secretion of monocyte chemotactic activity by alveolar macrophages. Am. J. Pathol., 1989;135:571–580.PubMedGoogle Scholar
  24. Deno DC, Saba TM, Lewis EP. Kinetics of endogenously labeled plasma fibronectin: Incorporation into tissues. Am. J. Physiol., 1983;245:R564–R575.PubMedGoogle Scholar
  25. Doerschuk CM, Downey GP, Doherty DE, English D, Gie RP, Ohgami M, Worthen GS, Henson PM, Hogg JC. Leukocyte and platelet margination within microvasculature of rabbit lungs. J. Appl. Physiol., 1990;68:1956–1961.Google Scholar
  26. Doherty DE, Worthen GC, Henson PM.“Inflammation in Interstitial Disease.” In Interstitial Lung Disease, M Schwartz, T King, Jr., eds. St. Louis: Mosby - Year Book, 1993, pp. 23–43.Google Scholar
  27. Driscoll KE, Hassewnbein DG, Carter J, Poynter J, Asquith TN, Grant RA, Whitten J, Purdon MP, Takigiku R. Macrophage inflammatory proteins 1 and 2: Expression by rat alveolar macrophages, fibroblasts, and epithelial cells and in rat lung after mineral dust exposure. Am. J. Respir. Mol. Biol., 1993a;8:311–318.Google Scholar
  28. Driscoll KE, Simpson L, Carter J, Hassenbein D, Leikauf GD. Ozone inhalation stimulates expression of a neutrophil chemotactic protein, macrophage inflammatory protein-2. Toxicol. Appl. Pharmacol., 1993b;119:306–309.Google Scholar
  29. Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA. Induction by IL l and interferon-y: Tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J. Immunol., 1986;137:245–252.PubMedGoogle Scholar
  30. Evans MJ, Johnson LV, Stephens RJ, Freeman G. Cell renewal in the lungs of rats exposed to low levels of ozone. Exp. Mol. Pathol., 1976;24:70–83.Google Scholar
  31. Everitt EA, Malik AB, Hendey B. Fibronectin enhances the migration rate of human neutrophil in vitro. J. Leukocyte Biol., 1996;60:199–206.PubMedGoogle Scholar
  32. Fullbrigge RC, Chaplin DD, Kiely JM, Unanue ER. Regulation of interleukin-1 gene expression by adherence and lipopolysaccharide. J. Immunol., 1987;138:3799–3802.Google Scholar
  33. Gee JBL, Mossman BT. ‘Basic Mechanisms in Occupational Lung Diseases Including Lung Cancer and Mesothelioma.“ In Occupational Lung Diseases, W Morgan, A Seaton, eds. Philadelphia: W.B. Saunders Company, 1995, pp. 191–221.Google Scholar
  34. Georgilis K, Schaefer C, Dinarello CA, Klempner MS. Human recombinant interleukin-1ß has no effect on intracellular calcium or on functional responses of human neutrophils. J. Immunol., 1987;138:3403–3407.PubMedGoogle Scholar
  35. Ghio AJ, Hatch GE. Tolerance to phosgene is associated with a neutrophilic influx into the rat lung. Am. J. Respir. Crit. Care Med., 1996;153:1064–1071.PubMedGoogle Scholar
  36. Goldstein RH. Control of type I collagen formation in the lung. Am. J. Pathol., 1991;261:L29–L40.Google Scholar
  37. Graves KL, Roman J. Fibronectin modulates expression of interleukin-113 and its receptor antagonist in human mononuclear cells. Am. J. Physiol., 1996;271:L61–L69.Google Scholar
  38. Gross TJ, Simon RH, Sitrin RG. Expression of urokinase-type plasminogen activator by rat pulmonary alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol., 1991;3:449–456.Google Scholar
  39. Gupta S, Feng L, Yoshimura T, Redick J, Fu SM, Rose CE. Intra-alveolar macrophage inflammatory peptide-2 induces rapid neutrophil localization in the lung. Am. J. Respir. Cell Mol. Biol., 1996;15:656–663PubMedGoogle Scholar
  40. Gupta SK, Reinhart PG, Bhalla DK. Enhancement of fibronectin expression in rat lung by ozone and an inflammatory stimulus. Am. J. Physiol., 1998;275:L330–L335.PubMedGoogle Scholar
  41. Gupta SK, Bhalla DK. Airway changes in rats exposed to ozone: Elevation of bronchoalveolar lavage protein, albumin, inflammatory cells, fibronectin and cell adhesion molecules. Toxicol. Sci., 1998;42(íS):70 (abstract).Google Scholar
  42. Haschek W, Witschi H. Pulmonary fibrosis - a possible mechanism. Toxicol. Appl. Pharmacol., 1979;51:475–487.CrossRefGoogle Scholar
  43. Haschek W, Reiser KM, Klein-Szanto AJ, Kehrer JP, Smith LH, Last JA, Witschi HP. Potentiation of butylhydroxytoluene-induced acute lung damage by oxygen. Cell kinetics and collagen metabolism. Am. Rev. Respir. Dis., 1983;127:28–34.PubMedGoogle Scholar
  44. Haskill S, Johnson C, Eierman D, Becker S, Warren K. Adherence induces selective mRNA expression of monocyte mediators and proto-oncogenes. J. Immunol., 1988;140:1690–1694.PubMedGoogle Scholar
  45. Henson PM, Johnson Jr. RB. Tissue injury in inflammation: Oxidants, proteinases, and cationic proteins. J. Clin. Invest., 1987;79:669–674.PubMedCrossRefGoogle Scholar
  46. Hogg N. The leukocyte integrins. Immunol. Today, 1989;10:111–114.Google Scholar
  47. Huang S, Paulauskis JD, Godleski JJ, Kobzik L. Expression of macrophage inflammatory protein-2 and KC mRNA in pulmonary inflammation. Am. J. Pathol., 1992;141:981–988.PubMedGoogle Scholar
  48. Huber AR, Kunkel SL, Todd RF, Ill, Weiss SJ. Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science, 1991;254:99–102.PubMedCrossRefGoogle Scholar
  49. Hunninghake GW. Release of interleukin-1 by alveolar macrophages of patients with active pulmonary sarcoidosis. Am. Rev. Respir. Dis., 1984;129:569–572.PubMedGoogle Scholar
  50. Hynes RO. “Introduction and Historical Perspective.” In Fibronectin, A Rich, ed. New York: Springer-Verlag, 1990a, pp. 1–6.CrossRefGoogle Scholar
  51. Hynes RO. “Wound Healing, Inflammation and Fibrosis.” In Fibronectin, A Rich, ed. New York: Springer-Verlag, 1990b, pp. 349–364.CrossRefGoogle Scholar
  52. Hynes RO. Integrins; versality, modulation, and signaling in cell adhesion. Cell, 1992;69:11–25.PubMedCrossRefGoogle Scholar
  53. Idell S.“Coagulation, Fibrinolysis, and Fibrin Deposition in Lung Injury and Repair.” In Pulmonary Fibrosis, S Phan, R Thrall, eds. New York: Marcel Dekker, 1995, pp. 743–776.Google Scholar
  54. Kang BH, Crapo JD, Wegner CD, Letts LG, Chang LY. Intercellular adhesion molecule-1 expression on the alveolar epithelium and its modification by hyperoxia. Am. J. Respir. Cell Mol. Biol., 1993;9:350–355.PubMedGoogle Scholar
  55. Kelley J, Farbisiak JP, Hawes K, Absher M. Cytokine signaling in the lung: Transforming growth factor-β secretion by lung fibroblasts. Am. J. Physiol., 1991;260:L123–L128.PubMedGoogle Scholar
  56. Kelley J. “Transforming Growth Factor-γ.” In Cytokines of the Lung, J Kelley, ed. New York: Marcel Dekker, 1992, pp. 101–137.Google Scholar
  57. Khalil N, Greenberg AH. The role of TGF-β in pulmonary fibrosis. Ciba Found. Symp., 1991;157:194–207.Google Scholar
  58. Khalil N, O’Connor RN, Unruh HW, Warren PW, Flanders KC, Kemp A, Bereznay OH, Greenberg AH. Increased production and immunochemical localization of transforming growth factor-13 in idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol., 1991;5:155–162.Google Scholar
  59. Khalil N, O’Conner RN. “Cytokine Regulation in Pulmonary Fibrosis: Transforming Growth Factor-G3.” In Pulmonary Fibrosis, S Phan, R Thrall, eds. New York: Marcel Dekker, 1995, pp. 627–645.Google Scholar
  60. Kleeberger SR, Hudak BB. Acute ozone induced change in airway permeability: Role of infiltrating leukocytes. J. Appl. Physiol. 1992;72:670–676.PubMedGoogle Scholar
  61. Koto H, Salmon M, Haddad E, Huang T, Zagorski J, Chung KF. Role of cytokine-induced neutrophil chemoattractant (CINC) in ozone-induced airway inflammation and hyperresponsiveness. Am. J. Respir. Cell Mol. Biol., 1997;156:234–239.Google Scholar
  62. Korfhagen TR, Swantz RJ, Wert SE, McCarty JM, Kerlakian CB, Glasser SW, Whitsett JA. Respiratory epithelial expression of human transforming growth factor-alpha induces lung fibrosis in transgenic mice. J. Clin. Invest., 1994;93:1691–1699.PubMedCrossRefGoogle Scholar
  63. Kovacs EJ. Fibrogenic cytokines: The role of immune mediators in the development of scar tissue. Immunol. Today, 1991;12:17–23.Google Scholar
  64. Kovacs EJ, Brock B, Silber lE, Neuman JE. Production of fibrogenic cytokines by interleukin-2-treated peripheral blood leukocytes: Expression of transforming growth factor-(3 and platelet-derived growth factor B chain genes. Obs. Gyn., 1993;82:29–36.Google Scholar
  65. Kovacs EJ, DiPietro LA. Fibrogenic cytokines and connective tissue production. FASEB J., 1994;8:854–861.PubMedGoogle Scholar
  66. Kucik DF, Dustin ML, Miller JM, Brown EJ. Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J.Clin. Invest., 1996;97:2139–2144.CrossRefGoogle Scholar
  67. Kuhn C, III, Boldt J, King Jr. TE, Crouch E, Vartio T, McDonald JA. An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am. Rev. Respir. Dis., 1989;140:1693–1703.PubMedCrossRefGoogle Scholar
  68. Kuhn C, III. “Pathology.” In Pulmonary Fibrosis, S Phan, R Thrall, eds. New York: Marcel Dekker, 1995, pp. 59–83.Google Scholar
  69. Kuhnle GEH, Kuebler WM, Groh J, Goetz AE. Effect of blood flow on the leukocyte-endothelium interaction in pulmonary microvessels. Am. J. Respir. Crit. Care Med., 1995;152:1221–1228.PubMedGoogle Scholar
  70. Kuwahara M, Kuwahara M, Verma K, Ando T, Hemenway DR, Kagan E. Asbestos exposure stimulates pleural mesothelial cells to secrete the fibroblast chemoattractant, fibronectin. Am. J. Respir. Cell Mol. Biol., 1994;10:167–176PubMedGoogle Scholar
  71. La Fleur M, Beaulieu AD, Kreis C, Poubelle P. Fibronectin gene expression in polymorphonuclear leukocytes. Accumulation of mRNA in inflammatory cells. J. Biol. Chem., 1987;262:2111–2115.PubMedGoogle Scholar
  72. Last JA, Gelzleicher TR, Pinkerton KE, Walker RM, Witschi H. A new model of progressive fibrosis in rats. Am. Rev. Respir. Dis., 1993;148:487–494.PubMedGoogle Scholar
  73. Leff JA, Wilke CP, Hybertson BM, Shanley PF, Beehler CJ, Repine JE. Postinsult treatment with Nacetyl-L-cysteine decreases IL-1-induced neutrophil influx and lung leak in rats. Am. J. Physiol., 1993;265:L501–L506.Google Scholar
  74. LeMaire I. “Silica-and Asbestos-Induced Pulmonary Fibrosis.” In Pulmonary Fibrosis, S Phan, R Thrall, eds. New York: Marcel Dekker, 1995, pp. 319–362.Google Scholar
  75. Leslie KO, Mitchell J, Low R. Lung myofibroblasts. Cell Motil. Cytoskel., 1992;22:92–98.CrossRefGoogle Scholar
  76. Li W, Kumar RK, OíGrady R, Velan GM. Role of lymphocytes in silicosis: Regulation of secretion of macrophage-derived mitogenic activity for fibroblasts. Int. J. Exp. Pathol., 1992;73:793–800.PubMedGoogle Scholar
  77. Limper AH, Roman J. Fibronectin. A versatile matrix protein with roles in thoracic development, repair and infection. Chest, 1992; 101:1663–1673.PubMedCrossRefGoogle Scholar
  78. Liu L, Mul FPJ, Lutter R, Roos D, Knol EF. Transmigration of human neutrophils across airway epithelial cell monolayers is preferentially in the physiologic basolateral-to-apical direction. Am. J. Respir. Cell Mol. Biol., 1996;15:771–780.PubMedGoogle Scholar
  79. Lollo BA, Chan KW, Hanson EM, Moy VT, Brian AA. Direct evidence for two affinity states for lymphocyte function-associated antigen-1 on activated T-cells (published erratum in J. Biol. Chem. 1994;269:10184). J. Biol. Chem., 1993;268:21693–21700.Google Scholar
  80. Lub M, Van Kooyk Y, Van Vliet SJ, Figdor CG. Dual role of the action cytoskeleton in regulating cell adhesion mediated by the integrin lymphocyte function-associated molecule-1. Mol. Biol., 1997;8:341–351.Google Scholar
  81. Lugano EM, Dauber JH, Elias JA. The regulation of lung fibroblast proliferation by alveolar macrophages in experimental silicosis. Am. Rev. Respir. Dis., 1984;1239:767–771.Google Scholar
  82. Marshall RP, McAnulty RJ, Laurent GJ. The pathogenesis of pulmonary fibrosis: Is there a fibrosis gene? Int. J. Biochem. Cell Biol., 1997;29:107–120.PubMedCrossRefGoogle Scholar
  83. Malizia G, Calabrese A, Cottone M, Raimondo M, Treidosiewicz LK, Smart CI. Expression of leukocyte adhesion molecules by mucosal mononuclear phagocytes in inflammatory bowel disease: Immunohistological evidence for enhanced antigen presenting capacity. Gastroenterology, 1991;100:150–159.PubMedGoogle Scholar
  84. Mays PK, McAnulty RI, Laurent GJ. Age-related changes in collagen metabolism: A role for degradation in regulating lung collagen production. Am. Rev. Respir. Dis., 1989;140:410–416.PubMedCrossRefGoogle Scholar
  85. McAnulty RI, Laurent GJ. “Collagen and its Regulation in Pulmonary Fibrosis.” In Pulmonary Fibrosis, S Phan, R Thrall, eds. New York: Marcel Dekker, 1995, pp. 135–171Google Scholar
  86. McElvaney NG, Nakamura H, Birrer P, Hebert CA, Wong WL, Alphonso M, Baker JB, Catalano MA, Crystal RG. Modulation of airway inflammation in cystic fibrosis. J. Clin. Invest., 1992;90:1296–1301.PubMedCrossRefGoogle Scholar
  87. McGee MP, Rothberger H. Tissue factor in bronchoalveolar lavage fluids. Evidence for an alveolar macrophage source. Am. Rev. Respir. Dis., 1985;131:331–336.PubMedGoogle Scholar
  88. McKeown-Longo PJ. Fibronectin-cell surface interactions. Rev. Infect. Dis., 1987;9:S322–S334.PubMedCrossRefGoogle Scholar
  89. Merrill WW, Naegel GP, Matthay RA, Reynolds HY. Alveolar macrophage-derived chemotactic factor: Kinetics of in vitro production and partial characterization. J. Clin. Invest., 1980;65:268–276.PubMedCrossRefGoogle Scholar
  90. Miller EJ, Cohen AB, Nagao S, Griffith D, Maunder RF, Martin TR, Weiner-Kronish JP, Sticherling M, Christophers E, Matthay MA. Elevated levels of NAP-1/interleukin-8 are present in the airspaces of patients with the adult respiratory distress syndrome and are associated with increased mortality. Am. Rev. Respir. Dis., 1992;146:427–432.PubMedGoogle Scholar
  91. Muller WA, Rani CM, McDonnell SL, Cohn ZA. A human endothelial cell-restricted, externally disposed plasmalemmal protein enriched in intercellular junctions. J. Exp. Med., 1989;170:399–414.PubMedCrossRefGoogle Scholar
  92. Mulligan MS, Varani J, Warren JS, Till GO, Smith CW, Anderson DC, Todd RF, Ward PA. Roles of 32 integrins of rat neutrophils in complement-and oxygen radical-mediated acute inflammatory injury. J. Immunol., 1992;148:1847–1857.PubMedGoogle Scholar
  93. Mulligan MS, Watson SR, Fennie C, Ward PA. Protective effect of selectin chimeras in neutrophilmediated lung injury. J. Immunol., 1993a;151:6410–6417.Google Scholar
  94. Mulligan MS, Wilson GP, Todd RF, Smith CW, Anderson DC, Varani J, Issekutz TB, Myasaka M, Tamatani T, Rusche R, Vaporciyan AA, Ward PA. Role of 31, 32 integrins and ICAM-1 in lung injury after deposition of IgG and IgA immune complexes. J. Immunol., 1993b;150:2407–2417.Google Scholar
  95. Mulligan MS, Vaporciyan AA, Myasaka M, Tamatani T, Ward PA. Tumor necrosis factor-a regulates in vivo intrapulmonary expression of ICAM-1. Am. J. Pathol., 1993c;142:1739–1749.Google Scholar
  96. Mulligan MS, Jones ML, Bolanowski MA, Baganoff MP, Deppeler CL, Meyers DM, Ryan US, Ward PA. Inhibition of lung inflammatory reactions in rats by an anti-human IL-8 antibody. J. Immunol., 1993d;150:5585–5595.Google Scholar
  97. Mulligan M S, Lentsch AB, Shanley TP, Miyasaka M, Johnson KJ, Ward PA. Cytokine and adhesion molecule requirements for lung injury induced by anti-glomerular basement membrane antibody. Inflammation, 1998;22:403–417.PubMedCrossRefGoogle Scholar
  98. Murphy G, Docherty JP. The matrix metalloproteinases and their inhibitors. Am. J. Respir. Cell Mol. Biol., 1992;7:120–125.Google Scholar
  99. Newman PJ, Berndt MC, Gorski J, White GC, Lyman S, Paddock C, Muller WA. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science, 1990;247:1219–1222.PubMedCrossRefGoogle Scholar
  100. Newman SL, Tucci MA. Regulation of human monocyte macrophage function by extracellular matrix. Adherence of monocytes to collagen matrices enhances phagocytosis of opsonized bacteria by activation of complement receptors and enhancement of Fc receptor function. J. Clin. Invest., 1990;86:703–714.PubMedCrossRefGoogle Scholar
  101. Patel JA, Kunimoto M, Sim TC, Garofalo R, Eliott T, Baron S, Ruuskanen O, Chonmaitree T, Ogra PL, Schmalstieg F. Interleukin-1a mediates the enhanced expression of intercellular adhesion molecule-1 in pulmonary epithelial cells infected with respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol., 1995;13:602–609.PubMedGoogle Scholar
  102. Patterson CE, Barnard JW, Lafuze JE, Hull MT, Baldwin SJ, Rhoades RA. The role of activation of neutrophils and microvascular pressure in acute pulmonary edema. Am. Rev. Respir. Dis., 1989;140:1052–1062.PubMedGoogle Scholar
  103. Pearson AC, Bhalla DK. Effects of ozone on macrophage adhesion in vitro and epithelial and inflammatory responses in vivo: The role of cytokines. J. Toxicol. Environ. Health, 1997;50:143–157.PubMedCrossRefGoogle Scholar
  104. Pendino KJ, Shuler RL, Laskin JD, Laskin DL. Enhanced production of interleukin-1, tumor necrosis factor-a, and fibronectin by rat lung phagocytes following inhalation of a pulmonary irritant. Am. J. Respir. Cell Mol. Biol., 1994;11:279–286.PubMedGoogle Scholar
  105. Piedboeuf B, Frenett J, Petrov P, Welty SE, Kazzaz JA, Horowitz S. In vivo expression of intercellular adhesion molecule-1 in type II pneumocytes during hyperoxia. Am. J. Respir. Cell Mol. Biol., 1996;15:71–77.PubMedGoogle Scholar
  106. Pierce LM, Alessandrini F, Godleski JJ, Paulauskis JD. Vanadium-induced chemokine mRNA expression and pulmonary inflammation. Toxicol. Appl. Pharmacol., 1996;138:1–11.CrossRefGoogle Scholar
  107. Pickrell JA, Abdel-Mageed AB. “Radiation-Induced Pulmonary Fibrosis.” In Pulmonary Disease, S Phan, R Thrall, eds. New York: Marcel Dekker, 1995, pp. 363–381.Google Scholar
  108. Piguet PF, Vesin C. Treatment by human recombinant soluble TNF receptor of pulmonary fibrosis induced by bleomycin or silica in mice. Eur. Respir. J., 1994;7:515–518.PubMedCrossRefGoogle Scholar
  109. Piguet PF, Vesin C, Grau GE, Thompson RC. Interleukin 1 receptor antagonist (IL-lra) prevents or cures pulmonary fibrosis elicited in mice by bleomycin or silica. Cytokine, 1993c;5:57–61.CrossRefGoogle Scholar
  110. Piguet PF, Rosen H, Vesin C, Grau GE. Effective treatment of pulmonary fibrosis elicited in mice by bleomycin or silica with anti-CD 11 antibodies. Am. Rev. Respir. Dis., 1993a;147:435–441.Google Scholar
  111. Piguet PF, Rebaux C, Karpuz V, Grau GE, Kapanci Y. Expression and localization of tumor necrosis factor-alpha and its mRNA in idiopathic pulmonary fibrosis. Am. J. Pathol., 1993b;143:651–655.Google Scholar
  112. Piguet PF, Collart MA, Grau GE, Sappino AP, Vassalli P. Requirements of tumor necrosis factor for development of silica-induced pulmonary fibrosis. Nature, 1990;344:245–247.PubMedCrossRefGoogle Scholar
  113. Pino MV, Stovall MY, Levin JR, Devlin RB, Koren HS, Hyde DM. Acute ozone-induced lung injury in neutrophil depleted rats. Toxicol. Appl. Pharmacol., 1992;114:268–276.Google Scholar
  114. Reinhart PG, Bassett DJP, Bhalla DK. The influence of polymorphonuclear leukocytes on altered pulmonary epithelial permeability during ozone exposure. Toxicology, 1998;127:17–28.PubMedCrossRefGoogle Scholar
  115. Rennard SI, Hunninghake GW, Bitterman PB, Crystal RG. Production of fibronectin by the human alveolar macrophage: Mechanism for the recruitment of fibroblasts to sites of tissue injury in interstitial lung diseases. Proc. Natl. Acad. Sci. USA, 1981;78:7147–7151.PubMedCrossRefGoogle Scholar
  116. Rennard SI, Crystal RG. Fibronectin in human bronchopulmonary lavage fluid. Elevation in patients with interstitial lung disease. J. Clin. Invest., 1981;69:113–122.CrossRefGoogle Scholar
  117. Rennard SI, Stier LE, Crystal RG. Intracellular degradation of newly synthesized collagen. J. Invest. Dermatol., 1982;79:77s-82s.PubMedCrossRefGoogle Scholar
  118. Repine JE. “Neutrophils, Oxygen Radicals, and Adult Respiratory Distress Syndrome.” In The Pulmonary Circulation and Acute Lung Injury, S Said, ed. Mount Kisco, NY: Futura, 1985, pp. 248–281.Google Scholar
  119. Riley DJ, Poiani GJ. “Hyperoxia and Oxidants in Pulmonary Fibrosis.” In Pulmonary Fibrosis, S Phan, R Thrall, eds. New York: Marcel Dekker, 1995, pp. 293–317.Google Scholar
  120. Rochester C, Elias JA. Cytokines and cytokine networking in the pathogenesis of interstitial and fibrotic lung disorders. Semin Respir Med 1993;14:389–416.CrossRefGoogle Scholar
  121. Roman J, Limper AH, McDonald JA. Lung extracellular matrix: Physiology and pathophysiology. Hosp. Pract., 1990;25:125–140.Google Scholar
  122. Rose CS, Newman LS. “Hypersensitivity Pneumonitis and Chronic Beryllium Disease.” In Interstitial Lung Disease, M Schwartz, T King, Jr., eds. St. Louis: Mosby - Year Book, 1993, pp. 231–253Google Scholar
  123. Ruoslahti E. Fibronectin and its receptors. Ann. Rev. Biochem., 1988;57:375–413.CrossRefGoogle Scholar
  124. Sannes PL. Differences in basement membrane associated microdomains of type I and type II pneumocytes in the rat and rabbit lung. J. Histochem. Cytochem., 1984;32:827–833.PubMedCrossRefGoogle Scholar
  125. Sannes PL. The structural and functional relationship between type II pneumocytes and components of extracellular matrices. Exp. Lung Res., 1991;17:639–659.CrossRefGoogle Scholar
  126. Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation. J. Clin. Invest., 1989;83:865–875.PubMedCrossRefGoogle Scholar
  127. Savill J. Macrophage recognition of senescent neutrophils. Clin. Sci., 1992;83:649–655.Google Scholar
  128. Schleimer RP, Sterbinsky SA, Kaiser J, Bickel CA, Klunk DA, Tomioka K, Newman W, Luscinskas FW, Gimbrone MA Jr, McIntyre BW, Bochner BS. Interleukin-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium: Association with expression of VCAM-1. J. Immunol., 1992;148:1086–1092.PubMedGoogle Scholar
  129. Schroeder JM, Mrowietz U, Moreta E, Christophers E. Purification and partial biochemical characterization of a human monocyte-derived, neutrophil-activation peptide that lacks interleukin-1 activity. J. Immunol., 1987;139:3474–3483.Google Scholar
  130. Semenzato G, Agostini C. “Immunology of Sarcoidosis.” In Interstitial Lung Disease, M Schwartz, T King, Jr., eds. St. Louis: Mosby - Year Book, 1993, pp. 127–158.Google Scholar
  131. Sheterline P, Rickard JE, Richards RC. Fe receptor-directed phagocytic stimuli induce transient actin assembly at an early stage of phagocytosis in neutrophil leukocytes. Eur. J. Cell Biol., 1984;34:80–87.PubMedGoogle Scholar
  132. Sheterline P, Rickard JE, Boothroyd B, Richards RC. Phorbol ester induces rapid actin assembly in neutrophil leukocytes independently of changes in [Ca2+] and pH. J. Muscle Res. Cell Motility, 1986;7:405–412.CrossRefGoogle Scholar
  133. Sheterline P, Rickard JE. “The Cortical Actin Filament Network of Neutrophil Leukocytes During Phagocytosis and Chemotaxis.” In Neutrophil: Cellular Biochemistry, MB Hallet, ed. Boca Raton, FL: CRC Press, 1989, pp. 141–165.Google Scholar
  134. Shijubo N, Imai K, Shigehara K, Honda Y, Koba H, Tsujisaki M, Hinoda Y, Yachi A, Ohmichi M, Hiraga Y. Soluble intercellular adhesion molecule-1 (ICAM-1) in sera and bronchoalveolar lavage fluid of patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Clin. Exp. Immunol., 1994;95:156–161.Google Scholar
  135. Shock A, Laurent GJ. Production of a factor by human neutrophils capable of modulating fibroblast replication. Thorax, 1989;44:336P (abstract).Google Scholar
  136. Shock A, Laurent GJ. Adhesive interactions between fibroblasts and polymorphonuclear neutrophils in vitro. Eur. J. Cell Biol., 1991;54:211–216.PubMedGoogle Scholar
  137. Sibille Y, Rynolds HY. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am. Rev. Respir. Dis., 1990;141:471–501.Google Scholar
  138. Sjostrand M, Absher PM, Hemenway DR. Comparison of lung alveolar and tissue cells in silica-induced inflammation. Am. Rev. Respir. Dis., 1991;143:147.Google Scholar
  139. Smart SJ, Casale TB. Pulmonary epithelial cells facilitate TNF-a-induced neutrophil chemotaxis. A role for cytokine networking. J. Immunol., 1994;152:4087–4094.PubMedGoogle Scholar
  140. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell, 1994;76:301–314.PubMedCrossRefGoogle Scholar
  141. Standiford TJ, Kunkel SL, Kasahara K, Milia MJ, Rolfe MW, Strieter RM. Interleukin-8 gene expression from human alveolar macrophages: The role of adherence. Am. J. Respir. Cell Mol. Biol., 1991;5:579–585.PubMedGoogle Scholar
  142. Stanislawski L, Huu TP, Perianin A. Priming effect of fibronectin on respiratory burst of human neutrophils induced by formyl peptides and platelet-activating factor. Inflammation, 1990;14:523–530.PubMedCrossRefGoogle Scholar
  143. Strieter RM, Kunkel SL, Showell HJ, Remick DG, Phan SH, Ward PA, Marks RM. Endothelial cell gene expression of a neutrophil chemotactic factor by TNFa, LPS and IL-1 3. Science, 1989;243:1467–1469.PubMedCrossRefGoogle Scholar
  144. Stringer B, Imrich A, Kobzic L. Lung epithelial cell (A549) interaction with unopsonized environmental particulates: Quantitation of particle-specific binding and IL-8 production. Exp. Lung Res., 1996;22:495–508.CrossRefGoogle Scholar
  145. Thrall RS, Phan SH, McCormick JR, Ward PA. The development of bleomycin-induced pulmonary fibrosis in neutrophil-depleted and complement-depleted rats. Am. J. Pathol., 1981;105:76–81.PubMedGoogle Scholar
  146. Thrall RS, Scalise PJ. “Bleomycin.” In Pulmonary Fibrosis, S Phan, R Thrall, eds. New York: Marcel Dekker, 1995; pp. 231–292.Google Scholar
  147. Tremblay GM, Jordana M, Gauldie J, Sornstrand B. “Fibroblasts as Effector Cells in Fibrosis.” In Pulmonary Fibrosis, S Phan, R Thrall, eds. New York: Marcel Dekker, 1995, pp. 541–577.Google Scholar
  148. Torikata C, Villiger D, Kuhn C, McDonald JA. Ultrastructural distribution of fibronectin in normal and fibrotic human lung. Lab. Invest., 1985;52:399–408.Google Scholar
  149. Tosi MF, Stark JM, Smith CW, Hamedani A, Gruenert DC, Infeld MD. Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cyokines: Effects on neutrophil epithelial cell adhesion. Am. J. Respir. Cell. Mol. Biol., 1992;7:214–221.PubMedGoogle Scholar
  150. van Kooyk Y, Weder P, Heije K, Figdor CG. Extracellular Ca2+ modulates leukocyte function-associated antigen-1 cell surface distribution on T lymphocytes and consequently affects cell adhesion. J. Cell Biol., 1994;124:1061–1070.PubMedCrossRefGoogle Scholar
  151. Vaporciyan AA, DeLisser HM, Yan HC, Mendiguren II, Thom SR, Jones ML, Ward PA, Albelda SM. Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science, 1993;262:1580–1582.PubMedCrossRefGoogle Scholar
  152. Vignola AM, Chanez P, Chiappara G, Merendino A, Zinnanti E, Bousquet J, Bellia V, Bonsignore G. Release of transforming growth factor-β (TGF-β and fibronectin by alveolar macrophages in airway diseases. Clin. Exp. Immunol., 1996;106:114–119.Google Scholar
  153. Villiger B, Broekelmann T, Kelley D, Heymach GJ 3d, McDonald JA. Bronchoalveolar fibronectin in smokers and nonsmokers. Am. Rev. Respir. Dis., 1981;124:652–654.PubMedGoogle Scholar
  154. von-Andrian UH, Chambers JD, McEvoy LM, Bargatze RF, Arfors KE, Butcher EC. Two-step model of leukocyte-endothelial cell interaction in inflammation: Distinct roles for LECAM-I and the leukocyte β-2 integrins in vivo. Proc. Nail. Acad. Sci. USA, 1991;88:7538–7542.CrossRefGoogle Scholar
  155. Ward PA, Hunninghake GW. Lung inflammation and fibrosis. Am. J. Respir. Crit. Care Med., 1998;157:S123–5129.Google Scholar
  156. Watanabe K, Koizumi F, Kurashige Y, Tsurufuji S, Nakagawa H. Rat CINC, a member of the interleukin-8 family, is a neutrophil-specific chemoattractant in vivo. Exp. Mol. Pathol., 1991;55:30–37.Google Scholar
  157. Wegner CD, Gundel RH, Reilly P, Haynes N, Letts LG, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science, 1990;247:456–459.PubMedCrossRefGoogle Scholar
  158. Wegner CD. “Role of ICAM-1 in Airway and Parenchymal Inflammation and Dysfunction.” In Adhesion Molecules and the Lung, PA Ward, JC Fantone, eds. New York: Marcel Dekker, 1996, pp. 253–257.Google Scholar
  159. Weiss SJ. Tissue destruction by neutrophils. N. Engl. J. Med., 1989;320:365–376.PubMedCrossRefGoogle Scholar
  160. Westergren-Thorsson G, Hernnas J, Sarnstrand B, Oldberg A, Heinegard D, Malmstrom A. Altered expression of small proteoglycans, collagen, and transforming growth factor-βl in developing bleomycin-induced pulmonary fibrosis in rats. J. Clin. Invest., 1993;92:632–637.PubMedCrossRefGoogle Scholar
  161. Xing Z, Tremblay GM, Sime PJ, Gauldie J. Overexpression of granulocyte-macrophage colony-stimulating factor induces pulmonary granulation tissue formation and fibrosis by induction of transforming growth factor-βl and myofibroblast accumulation. Am. J. Pathol., 1997;150:59–66.PubMedGoogle Scholar
  162. Yamada KM. “Fibronectin Domains and Receptors.” In Fibronectin, DF Mosher, ed. San Diego: Academic Press, 1989, pp. 48–121.Google Scholar
  163. Yang KD, Augustine NH, Shaio M, Bohnsack JF, Hill HR. Effects of fibronectin on actin organization and respiratory burst activity in neutrophils, monocytes, and macrophages. J. Cell. Physiol., 1994;158:347–353.PubMedCrossRefGoogle Scholar
  164. Yuen IS, Hartsky MA, Snajdr SI, Warheit DB. Time course of chemotactic factor generation and neutrophil recruitment in the lungs of dust-exposed rats. Am. J. Respir. Cell Mol. Biol., 1996;15:268–274.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • David J. P. Bassett
    • 1
  • Deepak K. Bhalla
    • 1
  1. 1.Department of Occupational and Enviornmental Health SciencesWayne State UniversityDetroitSUA

Personalised recommendations