Skip to main content

Phase Lag of Antarctic and Greenland Temperature in the Last Glacial and Link Between Co2 Variations and Heinrich Events

  • Chapter

Abstract

Fundamental for the understanding of processes involved in climate change is the knowledge about its temporal and spatial evolution. Of special interest is the relation between high-latitude polar sites since they are a major component in climate change. Ice cores are a unique climate archive with a high temporal resolution which directly record the atmospheric composition of trace gases.

We have established coherent time scales for two Antarctic cores with respect to the GRIP time scale over the period from 50kyr BP to the Holocene by using the global CH4 signal recorded in Antarctic (Byrd Station and Vostok ) and Greenland (GRIP ice core, Summit) ice cores.

The atmospheric CO2 evolution is best recorded in Antarctic ice cores. The glacial CO2 variations (back to ∼50kyr BP) can now be linked to northern hemispheric climate change (Dansgaard-Oeschger events, Heinrich events). Variations of the atmospheric CO2 concentration during Dansgaard-Oeschger (D-O) events were generally less than ∼10ppmv. Rather, atmospheric CO2 varied parallel to Heinrich events, especially to the ones which start with a very long lasting D-0 event (∼20ppmv). D-0 cycles represent as well fast and abrupt changes in the Northern Hemisphere temperature, but there seem to be no significant CO2 increases parallel to short D-O cycles. We suggest that either the dynamics of the D-O cycles are distinctly different from that of H-events or that the response time for CO2 to reach a new equilibrium is too long compared to the time scale of the shorter D-O cycles.

A central issue in climate dynamics is to understand how the Northern and Southern Hemisphere temperatures couple during climatic events. It was shown that some of the fast temperature changes observed in Greenland during the last glacial have a concomitant in the temperature signal of Antarctica. With the CH4 synchronisation we are able to show that long-lasting Greenland warming events around 36 and 45kyr BP (D-O events 8 and 12) lag their Antarctic counterpart by 2–3kyr (comparing the starting points of corresponding warmings). On average, Antarctic climate change leads that of Greenland by 1–2.5kyr over the period 47–23kyr BP. The CH4 changes are in phase with Greenland climatic fluctuations and thus also lag the Antarctic climate change. The observed time lag questions a coupling between northern and southern polar regions via the atmosphere and favours a connection via the ocean. Here we confirm a mechanism described in climate models: when the North Atlantic deep water formation switches on, heat is extracted from the Southern Hemisphere where cooling occurs. This interhemispheric coupling is clearly identified for interstadial events 8 and 12 as well as during the termination of the last glacial.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anklin, M., J. Schwander, B. Stauffer, J. Tschumi, A. Fuchs, J.M. Barnola, and D. Raynaud, CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core, J. Geophys. Res., 102(C12), 26539–26546, 1997.

    Article  Google Scholar 

  • Anklin, M.J., Kohlenstoffdioxid Bestimmungen in Luftproben aus einem neuen Tiefbohrkern von Summit (Grönland), Ph.D. Thesis, Physikalisches Institut, Universität Bern, Bern, p. 146, 1994.

    Google Scholar 

  • Bard, E., B. Hamelin, M. Arnold, L. Montaggioni, G. Cabioch, G. Faure, and F. Rougerie, Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge, Nature, 382, 241–244, 1996.

    Article  Google Scholar 

  • Bard, E., F. Rostek, and C. Sonzogni, Interhemispheric synchrony of the last deglaciation inferred from alkenone paleothermometry, Nature, 385, 707–710, 1997.

    Article  Google Scholar 

  • Barnola, J.-M., E. Jeanjean, and D. Raynaud, Holocene atmospheric CO2 evolution as deduced from an Antarctic ice core, EOS, 77(17), 151, 1996.

    Google Scholar 

  • Barnola, J.-M., P. Pimienta, D. Raynaud, and Y.S. Korotkevich, CO2-climate relationship as deduced from the Vostok ice core: A re-examination based on new measurements and on a re-evaluation of the air dating, Tellus, 43, 83–90, 1991.

    Article  Google Scholar 

  • Beer, J., S.J. Johnsen, G. Bonani, R.C. Finkel, C.C. Langway, H. Oeschger, B. Stauffer, M. Suter, and W. Woelfli, 10Be peaks as time markers in polar ice cores, in NATO ASI Series I 2: The last deglaciation: absolute and radiocabon chronologies, edited by E. Bard, and W.S. Broecker, pp. 141–153, Springer-Verlag, Berlin, Heidelberg, 1992.

    Chapter  Google Scholar 

  • Beerling, D.J., H.H. Birks, and F.I. Woodward, Rapid late-glacial atmospheric CO2 changes reconstructed from the stomatal density record of fossil leaves, Journal of Quaternary Science, 379–384, 1995.

    Google Scholar 

  • Behl, R.J., and J.P. Kennettt, Brief interstadial events in the Santa Barbara basin, tNE Pacific, during the past 60 kyr, Nature, 379, 243–379, 1996.

    Article  Google Scholar 

  • Bender, M., T. Sowers, M.-L. Dickson, J. Orchardo, P. Grootes, P.A. Mayewski, and D.A. Meese, Climate correlations between Greenland and Antarctica during the past 100,000 years, Nature, 372, 663–666, 1994.

    Article  Google Scholar 

  • Benson, L.V., J.W. Burdett, M. Kashgarian, S.P. Lund, F.M. Phillips, and R.O. Rey, Climatic and Hydrologic Oscillations in the Owens Lake Basin and Adjacent Sierra Nevada, California, Science, 274, 746–749, 1996.

    Article  Google Scholar 

  • Blunier, T., J. Chappellaz, J. Schwander, A. Dällenbach, B. Stauffer, T.F. Stocker, D. Raynaud, J. Jouzel, H.B. Clausen, C.U. Hammer, and S.J. Johnsen, Asynchrony of Antarctic and Greenland climate change during the last glacial period, Nature, 394, 739–743, 1998.

    Article  Google Scholar 

  • Blunier, T., J. Chappellaz, J. Schwander, B. Stauffer, and D. Raynaud, Variations in atmospheric methane concentration during the Holocene epoch, Nature, 374, 46–49, 1995.

    Article  Google Scholar 

  • Blunier, T., J. Schwander, B. Stauffer, T. Stocker, A. Dällenbach, J. Indermühle, J. Tschumi, J. Chappellaz, D. Raynaud, and J.-M. Barnola, Timing of the Antarctic Cold Reversal and the atmospheric CO2 increase with respect to the Younger Dryas event., Geophys. Res. Lett., 24(21), 2683–2686, 1997.

    Article  Google Scholar 

  • Bond, G., W. Broecker, S. Johnsen, J. McManus, L. Labeyrie, J. Jouzel, and G. Bonani, Correlations between climate records from North Atlantic sediments and Greenland ice, Nature, 365, 143–147, 1993.

    Article  Google Scholar 

  • Bond, G.C., and R. Lotti, Iceberg discharges into the North Atlantic on millennial time scales during the last deglaciation, Science, 267, 1005–1010, 1995a.

    Article  Google Scholar 

  • Bond, G.C., and R. Lotti, Iceberg Discharges into the North Atlantic on Millennial Time Scales During the Last Glaciation, Science, 267, 1005–1010, 1995b.

    Article  Google Scholar 

  • Broecker, W.S., and G.H. Denton, The role of ocean-atmosphere reorganizations in glacial cycles, Geochim. Cosmochim. Acta, 53(10), 2465–2501, 1989.

    Article  Google Scholar 

  • Chappellaz, J., T. Blunier, S. Kints, A. Dällenbach, J.-M. Barnola, J. Schwander, D. Raynaud, and B. Stauffer, Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene, J. Geophys. Res., 102(D13), 15987–15999, 1997.

    Article  Google Scholar 

  • Chappellaz, J., T. Blunier, D. Raynaud, J.M. Barnola, J. Schwander, and B. Stauffer, Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8kyr BP, Nature, 366, 443–445, 1993.

    Article  Google Scholar 

  • Charles, C.D., J. Lynch-Stieglitz, U.S. Ninnemann, and R.G. Fairbanks, Climate connections between the hemisphere revealed by deep sea sediment core / ice core correlations, Earth Planet. Sci. Lett., 142, 19–27, 1996.

    Article  Google Scholar 

  • Crowley, T.J., North Atlantic deep water cools the Southern Hemisphere, Paleoceanogr., 7(4), 489–497, 1992.

    Article  Google Scholar 

  • Dahl-Jensen, D., S.J. Johnsen, C.U. Hammer, H.B. Clausen, and J. Jouzel, Past accumulation rates derived from observed annual layers in the GRIP ice core from Summit, central Greenland, in Ice in the Climate System, edited by W.R. Peltier, pp. 517–532, Springer-Verlag, Berlin, Heidelberg, 1993.

    Chapter  Google Scholar 

  • Dansgaard, W., S.J. Johnsen, H.B. Clausen, D. Dahl-Jensen, N.S. Gundestrup, C.U. Hammer, C.S. Hvidberg, J.P. Steffensen, A.E. Sveinbjörnsdottir, J. Jouzel, and G. Bond, Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, 1993.

    Article  Google Scholar 

  • Delmas, R.A., A natural artefact in Greenland ice-core CO2 measurements, Tellus, 45B, 391–396, 1993.

    Google Scholar 

  • Fuhrer, A., Ein System zur Messung des totalen Karbonatgehaltes polarer Eisproben, Diploma thesis, Physikalisches Institut, Universität Bern, p. 64, 1995.

    Google Scholar 

  • Grimm, E.C., G.L. Jacobson, Jr, W.A. Watts, B.C.S. Hansen, and K.A. Maasch, A 50,000-Year Record of Climate Oscillations from Florida and Its Temporal Correlation with the Heinrich Events, Science, 261, 198–200, 1993.

    Article  Google Scholar 

  • Grootes, P.M., M. Stuiver, J.W.C. White, S.J. Johnsen, and J. Jouzel, Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366(6455), 552–554, 1993.

    Article  Google Scholar 

  • Hammer, C.U., K.K. Andersen, H.B. Clausen, D. Dahl-Jensen, C. Schott Hvidberg, and P. Iversen, Report on the stratigraphic dating of the GRIP Ice core, Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, Copenhagen, in the press.

    Google Scholar 

  • Hammer, C.U., H.B. Clausen, and C.C. Langway, Jr., Electrical conductivity method (ECM) stratigraphic dating of the Byrd Station ice core, Antarctica, Ann. Glaciol., 20, 115–120, 1994.

    Article  Google Scholar 

  • Johnsen, S., D. Dahl-Jensen, W. Dansgaard, and N. Gundestrup, Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles, Tellus, 47B, 624–629, 1995.

    Google Scholar 

  • Johnsen, S.J., H.B. Clausen, W. Dansgaard, K. Fuhrer, N. Gundestrup, C.U. Hammer, P. Iversen, J. Jouzel, B. Stauffer, and J.P. Steffensen, Irregular glacial interstadials recorded in a new Greenland ice core, Nature, 359, 311–313, 1992.

    Article  Google Scholar 

  • Johnsen, S.J., W. Dansgaard, H.B. Clausen, and C.C. Langway, Jr, Oxygen isotope profiles through the Antarctic and Greenland ice sheets, Nature, 235(5339), 429–434, 1972.

    Article  Google Scholar 

  • Johnsen, S.J., W. Dansgaard, and J.W.C. White, The origin of Arctic precipitation under present and glacial conditions, Tellus, Ser. B, 41, 452–468, 1989.

    Article  Google Scholar 

  • Jouzel, J., C. Lorius, J.R. Petit, C. Genthon, N.I. Barkov, V.M. Kotlyakov, and V.M. Petrov, Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years), Nature, 329, 403–408, 1987.

    Article  Google Scholar 

  • Jouzel, J., and L. Merlivat, Deuterium and oxygen 18 in precipitation: modeling of the isotopic effects during snow formation, J. Geophys. Res., 89(D7), 11749–11757, 1984.

    Article  Google Scholar 

  • Jouzel, J., R. Vaikmae, J.R. Petit, M. Martin, Y. Duclos, M. Stievenard, C. Lorius, M. Toots, M.A. Mélières, L.H. Burckle, N.I. Barkov, and V.M. Kotlyakov, The two-step shape and timing of the last deglaciation in Antarctica, Clint. Dyn., 11, 151–161, 1995.

    Article  Google Scholar 

  • Keir, R.S., On the Late Pleistocene ocean geochemistry and circulation, Paleoceanogr., 3, 413–445, 1988.

    Article  Google Scholar 

  • Leuenberger, M., U. Siegenthaler, and C.C. Langway, Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core, Nature, 357, 488–490, 1992.

    Article  Google Scholar 

  • MacAyeal, D.R., Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich events, Paleoceanogr., 8(6), 775–784, 1993a.

    Article  Google Scholar 

  • MacAyeal, D.R., A low-order model of the Heinrich event cycle, Paleoceanogr., 8, 767–773, 1993b.

    Article  Google Scholar 

  • Machida, T., T. Nakazawa, H. Narita, Y. Fujii, S. Aoki, and O. Watanabe, Variations of the CO2, CH4 and N2O concentrations and δ13C of CO2 in the glacial period deduced from an Antarctic ice core, south Yamato, Proc. NIPR Symp. Polar Meteorol. Glaciol., 10, 55–65, 1996.

    Google Scholar 

  • Maier-Reimer, E., and U. Mikolajewicz, Experiments with an OGCM on the cause of the Younger Dryas, 39, Max-Planck-Inst. für Meteorol., Hamburg, 198

    Google Scholar 

  • Marchai, O., T.F. Stocker, F. Joos, A. Indermühle, T. Blunier, and J. Tschumi, Modelling the concentration of atmospheric CO2 during the Younger Dryas climate event, Clint. Dyn., 15, 341–354, 1999.

    Article  Google Scholar 

  • Neftel, A., H. Oeschger, T. Staffelbach, and B. Stauffer, CO2 record in the Byrd ice core 50,000-5,000 years BP, Nature, 331, 609–611, 1988.

    Article  Google Scholar 

  • Oeschger, H., J. Beer, U. Siegenthaler, B. Stauffer, W. Dansgaard, and C.C. Langway, Late glacial climate history from ice cores, in Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser., vol. 29, edited by J.E. Hansen, and T. Takahashi, pp. 299–306, AGU, Washington, D.C., 1984.

    Chapter  Google Scholar 

  • Oeschger, H., A. Neftel, T. Staffelbach, and B. Stauffer, The dilemma of the rapid variations in CO2 in Greenland ice cores, Ann. Glaciol., 10, 215–216, 1988.

    Google Scholar 

  • Raisbeck, G.M., F. Yiou, J. Jouzel, J.R. Petit, N.I. Barkov, and E. Bard, W.S. Broecker, pp. 127–140, Springer-Verlag, Berlin, Heidelberg, 19

    Chapter  Google Scholar 

  • Raynaud, D., J. Jouzel, J.M. Barnola, J. Chappellaz, R.J. Delmas, and C. Lorius, The ice record of greenhouse gases, Science, 259, 926–933, 1993.

    Google Scholar 

  • Robin, G. de Q., The 8 value-temperature relationship, in The climatic record in polar ice sheets, edited by G. de Q. Robin, pp. 180–184, Cambridge University Press, London, 1983.

    Google Scholar 

  • Roemmich, D., Estimation of meridional heat flux in the North Atlantic by inverse methods, J. Phys. Oceanogr., 10, 1972–1983, 1981.

    Article  Google Scholar 

  • Salamatin, A.N., V.Y. Lipenkov, N.I. Barkov, J. Jouzel, J.R. Petit, and D. Raynaud, Ice core age dating and paleothermometer calibration based on isotope and temperature profiles from deep boreholes at Vostok Station (East Antarctica), J. Geophys. Res., 103, 8963–8977, 1998.

    Article  Google Scholar 

  • Schiller, A., U. Mikolajewicz, and R. Voss, The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model, Clim. Dyn., 13(5), 325–348, 1997.

    Article  Google Scholar 

  • Schulz, H., S. von Rad, and H. Erlenkeuser, Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years, Nature, 393, 54–57, 1998.

    Google Scholar 

  • Schwander, J., T. Sowers, J.-M. Barnola, T. Blunier, B. Malaizé, and A. Fuchs, Age scale of the air in the summit ice: Implication for glacial-interglacial temperature change, J. Geophys. Res., 102(D16), 19483–19494, 1997.

    Article  Google Scholar 

  • Severinghaus, J.P., T. Sowers, E.J. Brook, R.B. Alley, and M.L. Bender, Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice, Nature, 391, 141–146, 1998.

    Article  Google Scholar 

  • Siegenthaler, U., U. Eicher, H. Oeschger, and W. Dansgaard, Lake sediments as continental δ18O records from the transition of glacial-interglacial, Ann. Glaciol., 5, 149–152, 1984.

    Google Scholar 

  • Singer, C., J. Shulmeister, and B. McLea, Evidence against a significant Younger Dryas cooling event in New Zealand, Science, 281, 812–814, 1998.

    Article  Google Scholar 

  • Sowers, T., and M. Bender, Climate records covering the last deglaciation, Science, 269, 210–214, 1995.

    Article  Google Scholar 

  • Stauffer, B., T. Blunier, A. Dällenbach, A. Indermühle, J. Schwander, T.F. Stocker, J. Tschumi, J. Chappellaz, D. Raynaud, C.U. Hammer, and H.B. Clausen, Atmospheric CO2 concentration and millennial-scale climate change during the last glacial period, Nature, 392, 59–62, 1998.

    Article  Google Scholar 

  • Stauffer, B., H. Hofer, H. Oeschger, J. Schwander, and U. Siegenthaler, Atmospheric CO2 concentration during the last glaciation, Ann. Glaciol., 5, 160–164, 1984.

    Google Scholar 

  • Steig, E.J., E.J. Brook, J.W.C. White, C.M. Sucher, M.L. Bender, S.J. Lehman, D.L. Morse, E.D. Waddington, and G.D. Clow, Synchronous climate changes in Antarctica and the North Atlantic, Science, 282, 92–95, 1998.

    Article  Google Scholar 

  • Stocker, T.F., and D.G. Wright, Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes, Nature, 351, 729–732, 1991.

    Article  Google Scholar 

  • Stocker, T.F., and D.G. Wright, The effect of a succession of ocean ventilation changes on radiocarbon, Radiocarbon, 40, 359–366, 1998.

    Google Scholar 

  • Stocker, T.F., D.G. Wright, and W.S. Broecker, The influence of high-latitude surface forcing on the global thermohaline circulation, Paleoceanogr., 7(5), 529–541, 1992a.

    Article  Google Scholar 

  • Stocker, T.F., D.G. Wright, and L.A. Mysak, A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies, J. Clim., 5, 773–797, 1992b.

    Article  Google Scholar 

  • Thompson, L.G., Variations in micropartical concentration, size distribution and elemental composition found in Camp Century, Greenland, and Byrd station Antarctica, deep ice cores, in Isotopes and Impurities in Snow and Ice, pp. 351–363, IAHS-AISH Publication, 118, Grenoble, 1975.

    Google Scholar 

  • Tschumi, J., and B. Stauffer, Reconstructing the past atmospheric CO2-concentration based on ice core analyses: open questions due to in situ production of CO2 in the ice, J. Glaciol., submitted, 1998.

    Google Scholar 

  • Tziperman, E., Inherently unstable climate behaviour due to weak thermohaline ocean circulation, Nature, 386, 592–595, 1997.

    Article  Google Scholar 

  • Whillans, I.M., Ice flow along the Byrd station strain network, Antarctica, J. Glaciol., 24(90), 15–28, 1979.

    Google Scholar 

  • Wright, D.G., and T.F. Stocker, Younger Dryas Experiments, in NATO ASI Series I, 12: Ice in the Climate System, edited by W.R. Peltier, pp. 395–416, Springer Verlag, Berlin, 1993.

    Google Scholar 

  • Yiou, F., G.M. Raisbeck, S. Baumgartner, J. Beer, C. Hammer, S. Johnsen, J. Jouzel, P.W. Kubik, J. Lestringuez, M. Stiévenard, M. Suter, and P. Yiou, Beryllium 10 in the Greenland Ice Core Project ice core at Summit, Greenland, J. Geophys. Res., 102(C12), 26783–26794, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blunier, T., Stocker, T.F., Chappellaz, J., Raynaud, D. (1999). Phase Lag of Antarctic and Greenland Temperature in the Last Glacial and Link Between Co2 Variations and Heinrich Events. In: Abrantes, F., Mix, A.C. (eds) Reconstructing Ocean History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4197-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4197-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6883-0

  • Online ISBN: 978-1-4615-4197-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics