Advertisement

Phase Lag of Antarctic and Greenland Temperature in the Last Glacial and Link Between Co2 Variations and Heinrich Events

  • Thomas Blunier
  • Thomas F. Stocker
  • Jérôme Chappellaz
  • Dominique Raynaud

Abstract

Fundamental for the understanding of processes involved in climate change is the knowledge about its temporal and spatial evolution. Of special interest is the relation between high-latitude polar sites since they are a major component in climate change. Ice cores are a unique climate archive with a high temporal resolution which directly record the atmospheric composition of trace gases.

We have established coherent time scales for two Antarctic cores with respect to the GRIP time scale over the period from 50kyr BP to the Holocene by using the global CH4 signal recorded in Antarctic (Byrd Station and Vostok ) and Greenland (GRIP ice core, Summit) ice cores.

The atmospheric CO2 evolution is best recorded in Antarctic ice cores. The glacial CO2 variations (back to ∼50kyr BP) can now be linked to northern hemispheric climate change (Dansgaard-Oeschger events, Heinrich events). Variations of the atmospheric CO2 concentration during Dansgaard-Oeschger (D-O) events were generally less than ∼10ppmv. Rather, atmospheric CO2 varied parallel to Heinrich events, especially to the ones which start with a very long lasting D-0 event (∼20ppmv). D-0 cycles represent as well fast and abrupt changes in the Northern Hemisphere temperature, but there seem to be no significant CO2 increases parallel to short D-O cycles. We suggest that either the dynamics of the D-O cycles are distinctly different from that of H-events or that the response time for CO2 to reach a new equilibrium is too long compared to the time scale of the shorter D-O cycles.

A central issue in climate dynamics is to understand how the Northern and Southern Hemisphere temperatures couple during climatic events. It was shown that some of the fast temperature changes observed in Greenland during the last glacial have a concomitant in the temperature signal of Antarctica. With the CH4 synchronisation we are able to show that long-lasting Greenland warming events around 36 and 45kyr BP (D-O events 8 and 12) lag their Antarctic counterpart by 2–3kyr (comparing the starting points of corresponding warmings). On average, Antarctic climate change leads that of Greenland by 1–2.5kyr over the period 47–23kyr BP. The CH4 changes are in phase with Greenland climatic fluctuations and thus also lag the Antarctic climate change. The observed time lag questions a coupling between northern and southern polar regions via the atmosphere and favours a connection via the ocean. Here we confirm a mechanism described in climate models: when the North Atlantic deep water formation switches on, heat is extracted from the Southern Hemisphere where cooling occurs. This interhemispheric coupling is clearly identified for interstadial events 8 and 12 as well as during the termination of the last glacial.

Keywords

Before Present North Atlantic Deep Water Atlantic Thermohaline Circulation North Atlantic Deep Water Formation Greenland Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anklin, M., J. Schwander, B. Stauffer, J. Tschumi, A. Fuchs, J.M. Barnola, and D. Raynaud, CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core, J. Geophys. Res., 102(C12), 26539–26546, 1997.CrossRefGoogle Scholar
  2. Anklin, M.J., Kohlenstoffdioxid Bestimmungen in Luftproben aus einem neuen Tiefbohrkern von Summit (Grönland), Ph.D. Thesis, Physikalisches Institut, Universität Bern, Bern, p. 146, 1994.Google Scholar
  3. Bard, E., B. Hamelin, M. Arnold, L. Montaggioni, G. Cabioch, G. Faure, and F. Rougerie, Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge, Nature, 382, 241–244, 1996.CrossRefGoogle Scholar
  4. Bard, E., F. Rostek, and C. Sonzogni, Interhemispheric synchrony of the last deglaciation inferred from alkenone paleothermometry, Nature, 385, 707–710, 1997.CrossRefGoogle Scholar
  5. Barnola, J.-M., E. Jeanjean, and D. Raynaud, Holocene atmospheric CO2 evolution as deduced from an Antarctic ice core, EOS, 77(17), 151, 1996.Google Scholar
  6. Barnola, J.-M., P. Pimienta, D. Raynaud, and Y.S. Korotkevich, CO2-climate relationship as deduced from the Vostok ice core: A re-examination based on new measurements and on a re-evaluation of the air dating, Tellus, 43, 83–90, 1991.CrossRefGoogle Scholar
  7. Beer, J., S.J. Johnsen, G. Bonani, R.C. Finkel, C.C. Langway, H. Oeschger, B. Stauffer, M. Suter, and W. Woelfli, 10Be peaks as time markers in polar ice cores, in NATO ASI Series I 2: The last deglaciation: absolute and radiocabon chronologies, edited by E. Bard, and W.S. Broecker, pp. 141–153, Springer-Verlag, Berlin, Heidelberg, 1992.CrossRefGoogle Scholar
  8. Beerling, D.J., H.H. Birks, and F.I. Woodward, Rapid late-glacial atmospheric CO2 changes reconstructed from the stomatal density record of fossil leaves, Journal of Quaternary Science, 379–384, 1995.Google Scholar
  9. Behl, R.J., and J.P. Kennettt, Brief interstadial events in the Santa Barbara basin, tNE Pacific, during the past 60 kyr, Nature, 379, 243–379, 1996.CrossRefGoogle Scholar
  10. Bender, M., T. Sowers, M.-L. Dickson, J. Orchardo, P. Grootes, P.A. Mayewski, and D.A. Meese, Climate correlations between Greenland and Antarctica during the past 100,000 years, Nature, 372, 663–666, 1994.CrossRefGoogle Scholar
  11. Benson, L.V., J.W. Burdett, M. Kashgarian, S.P. Lund, F.M. Phillips, and R.O. Rey, Climatic and Hydrologic Oscillations in the Owens Lake Basin and Adjacent Sierra Nevada, California, Science, 274, 746–749, 1996.CrossRefGoogle Scholar
  12. Blunier, T., J. Chappellaz, J. Schwander, A. Dällenbach, B. Stauffer, T.F. Stocker, D. Raynaud, J. Jouzel, H.B. Clausen, C.U. Hammer, and S.J. Johnsen, Asynchrony of Antarctic and Greenland climate change during the last glacial period, Nature, 394, 739–743, 1998.CrossRefGoogle Scholar
  13. Blunier, T., J. Chappellaz, J. Schwander, B. Stauffer, and D. Raynaud, Variations in atmospheric methane concentration during the Holocene epoch, Nature, 374, 46–49, 1995.CrossRefGoogle Scholar
  14. Blunier, T., J. Schwander, B. Stauffer, T. Stocker, A. Dällenbach, J. Indermühle, J. Tschumi, J. Chappellaz, D. Raynaud, and J.-M. Barnola, Timing of the Antarctic Cold Reversal and the atmospheric CO2 increase with respect to the Younger Dryas event., Geophys. Res. Lett., 24(21), 2683–2686, 1997.CrossRefGoogle Scholar
  15. Bond, G., W. Broecker, S. Johnsen, J. McManus, L. Labeyrie, J. Jouzel, and G. Bonani, Correlations between climate records from North Atlantic sediments and Greenland ice, Nature, 365, 143–147, 1993.CrossRefGoogle Scholar
  16. Bond, G.C., and R. Lotti, Iceberg discharges into the North Atlantic on millennial time scales during the last deglaciation, Science, 267, 1005–1010, 1995a.CrossRefGoogle Scholar
  17. Bond, G.C., and R. Lotti, Iceberg Discharges into the North Atlantic on Millennial Time Scales During the Last Glaciation, Science, 267, 1005–1010, 1995b.CrossRefGoogle Scholar
  18. Broecker, W.S., and G.H. Denton, The role of ocean-atmosphere reorganizations in glacial cycles, Geochim. Cosmochim. Acta, 53(10), 2465–2501, 1989.CrossRefGoogle Scholar
  19. Chappellaz, J., T. Blunier, S. Kints, A. Dällenbach, J.-M. Barnola, J. Schwander, D. Raynaud, and B. Stauffer, Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene, J. Geophys. Res., 102(D13), 15987–15999, 1997.CrossRefGoogle Scholar
  20. Chappellaz, J., T. Blunier, D. Raynaud, J.M. Barnola, J. Schwander, and B. Stauffer, Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8kyr BP, Nature, 366, 443–445, 1993.CrossRefGoogle Scholar
  21. Charles, C.D., J. Lynch-Stieglitz, U.S. Ninnemann, and R.G. Fairbanks, Climate connections between the hemisphere revealed by deep sea sediment core / ice core correlations, Earth Planet. Sci. Lett., 142, 19–27, 1996.CrossRefGoogle Scholar
  22. Crowley, T.J., North Atlantic deep water cools the Southern Hemisphere, Paleoceanogr., 7(4), 489–497, 1992.CrossRefGoogle Scholar
  23. Dahl-Jensen, D., S.J. Johnsen, C.U. Hammer, H.B. Clausen, and J. Jouzel, Past accumulation rates derived from observed annual layers in the GRIP ice core from Summit, central Greenland, in Ice in the Climate System, edited by W.R. Peltier, pp. 517–532, Springer-Verlag, Berlin, Heidelberg, 1993.CrossRefGoogle Scholar
  24. Dansgaard, W., S.J. Johnsen, H.B. Clausen, D. Dahl-Jensen, N.S. Gundestrup, C.U. Hammer, C.S. Hvidberg, J.P. Steffensen, A.E. Sveinbjörnsdottir, J. Jouzel, and G. Bond, Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, 1993.CrossRefGoogle Scholar
  25. Delmas, R.A., A natural artefact in Greenland ice-core CO2 measurements, Tellus, 45B, 391–396, 1993.Google Scholar
  26. Fuhrer, A., Ein System zur Messung des totalen Karbonatgehaltes polarer Eisproben, Diploma thesis, Physikalisches Institut, Universität Bern, p. 64, 1995.Google Scholar
  27. Grimm, E.C., G.L. Jacobson, Jr, W.A. Watts, B.C.S. Hansen, and K.A. Maasch, A 50,000-Year Record of Climate Oscillations from Florida and Its Temporal Correlation with the Heinrich Events, Science, 261, 198–200, 1993.CrossRefGoogle Scholar
  28. Grootes, P.M., M. Stuiver, J.W.C. White, S.J. Johnsen, and J. Jouzel, Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366(6455), 552–554, 1993.CrossRefGoogle Scholar
  29. Hammer, C.U., K.K. Andersen, H.B. Clausen, D. Dahl-Jensen, C. Schott Hvidberg, and P. Iversen, Report on the stratigraphic dating of the GRIP Ice core, Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, Copenhagen, in the press.Google Scholar
  30. Hammer, C.U., H.B. Clausen, and C.C. Langway, Jr., Electrical conductivity method (ECM) stratigraphic dating of the Byrd Station ice core, Antarctica, Ann. Glaciol., 20, 115–120, 1994.CrossRefGoogle Scholar
  31. Johnsen, S., D. Dahl-Jensen, W. Dansgaard, and N. Gundestrup, Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles, Tellus, 47B, 624–629, 1995.Google Scholar
  32. Johnsen, S.J., H.B. Clausen, W. Dansgaard, K. Fuhrer, N. Gundestrup, C.U. Hammer, P. Iversen, J. Jouzel, B. Stauffer, and J.P. Steffensen, Irregular glacial interstadials recorded in a new Greenland ice core, Nature, 359, 311–313, 1992.CrossRefGoogle Scholar
  33. Johnsen, S.J., W. Dansgaard, H.B. Clausen, and C.C. Langway, Jr, Oxygen isotope profiles through the Antarctic and Greenland ice sheets, Nature, 235(5339), 429–434, 1972.CrossRefGoogle Scholar
  34. Johnsen, S.J., W. Dansgaard, and J.W.C. White, The origin of Arctic precipitation under present and glacial conditions, Tellus, Ser. B, 41, 452–468, 1989.CrossRefGoogle Scholar
  35. Jouzel, J., C. Lorius, J.R. Petit, C. Genthon, N.I. Barkov, V.M. Kotlyakov, and V.M. Petrov, Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years), Nature, 329, 403–408, 1987.CrossRefGoogle Scholar
  36. Jouzel, J., and L. Merlivat, Deuterium and oxygen 18 in precipitation: modeling of the isotopic effects during snow formation, J. Geophys. Res., 89(D7), 11749–11757, 1984.CrossRefGoogle Scholar
  37. Jouzel, J., R. Vaikmae, J.R. Petit, M. Martin, Y. Duclos, M. Stievenard, C. Lorius, M. Toots, M.A. Mélières, L.H. Burckle, N.I. Barkov, and V.M. Kotlyakov, The two-step shape and timing of the last deglaciation in Antarctica, Clint. Dyn., 11, 151–161, 1995.CrossRefGoogle Scholar
  38. Keir, R.S., On the Late Pleistocene ocean geochemistry and circulation, Paleoceanogr., 3, 413–445, 1988.CrossRefGoogle Scholar
  39. Leuenberger, M., U. Siegenthaler, and C.C. Langway, Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core, Nature, 357, 488–490, 1992.CrossRefGoogle Scholar
  40. MacAyeal, D.R., Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich events, Paleoceanogr., 8(6), 775–784, 1993a.CrossRefGoogle Scholar
  41. MacAyeal, D.R., A low-order model of the Heinrich event cycle, Paleoceanogr., 8, 767–773, 1993b.CrossRefGoogle Scholar
  42. Machida, T., T. Nakazawa, H. Narita, Y. Fujii, S. Aoki, and O. Watanabe, Variations of the CO2, CH4 and N2O concentrations and δ13C of CO2 in the glacial period deduced from an Antarctic ice core, south Yamato, Proc. NIPR Symp. Polar Meteorol. Glaciol., 10, 55–65, 1996.Google Scholar
  43. Maier-Reimer, E., and U. Mikolajewicz, Experiments with an OGCM on the cause of the Younger Dryas, 39, Max-Planck-Inst. für Meteorol., Hamburg, 198Google Scholar
  44. Marchai, O., T.F. Stocker, F. Joos, A. Indermühle, T. Blunier, and J. Tschumi, Modelling the concentration of atmospheric CO2 during the Younger Dryas climate event, Clint. Dyn., 15, 341–354, 1999.CrossRefGoogle Scholar
  45. Neftel, A., H. Oeschger, T. Staffelbach, and B. Stauffer, CO2 record in the Byrd ice core 50,000-5,000 years BP, Nature, 331, 609–611, 1988.CrossRefGoogle Scholar
  46. Oeschger, H., J. Beer, U. Siegenthaler, B. Stauffer, W. Dansgaard, and C.C. Langway, Late glacial climate history from ice cores, in Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser., vol. 29, edited by J.E. Hansen, and T. Takahashi, pp. 299–306, AGU, Washington, D.C., 1984.CrossRefGoogle Scholar
  47. Oeschger, H., A. Neftel, T. Staffelbach, and B. Stauffer, The dilemma of the rapid variations in CO2 in Greenland ice cores, Ann. Glaciol., 10, 215–216, 1988.Google Scholar
  48. Raisbeck, G.M., F. Yiou, J. Jouzel, J.R. Petit, N.I. Barkov, and E. Bard, W.S. Broecker, pp. 127–140, Springer-Verlag, Berlin, Heidelberg, 19CrossRefGoogle Scholar
  49. Raynaud, D., J. Jouzel, J.M. Barnola, J. Chappellaz, R.J. Delmas, and C. Lorius, The ice record of greenhouse gases, Science, 259, 926–933, 1993.Google Scholar
  50. Robin, G. de Q., The 8 value-temperature relationship, in The climatic record in polar ice sheets, edited by G. de Q. Robin, pp. 180–184, Cambridge University Press, London, 1983.Google Scholar
  51. Roemmich, D., Estimation of meridional heat flux in the North Atlantic by inverse methods, J. Phys. Oceanogr., 10, 1972–1983, 1981.CrossRefGoogle Scholar
  52. Salamatin, A.N., V.Y. Lipenkov, N.I. Barkov, J. Jouzel, J.R. Petit, and D. Raynaud, Ice core age dating and paleothermometer calibration based on isotope and temperature profiles from deep boreholes at Vostok Station (East Antarctica), J. Geophys. Res., 103, 8963–8977, 1998.CrossRefGoogle Scholar
  53. Schiller, A., U. Mikolajewicz, and R. Voss, The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model, Clim. Dyn., 13(5), 325–348, 1997.CrossRefGoogle Scholar
  54. Schulz, H., S. von Rad, and H. Erlenkeuser, Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years, Nature, 393, 54–57, 1998.Google Scholar
  55. Schwander, J., T. Sowers, J.-M. Barnola, T. Blunier, B. Malaizé, and A. Fuchs, Age scale of the air in the summit ice: Implication for glacial-interglacial temperature change, J. Geophys. Res., 102(D16), 19483–19494, 1997.CrossRefGoogle Scholar
  56. Severinghaus, J.P., T. Sowers, E.J. Brook, R.B. Alley, and M.L. Bender, Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice, Nature, 391, 141–146, 1998.CrossRefGoogle Scholar
  57. Siegenthaler, U., U. Eicher, H. Oeschger, and W. Dansgaard, Lake sediments as continental δ18O records from the transition of glacial-interglacial, Ann. Glaciol., 5, 149–152, 1984.Google Scholar
  58. Singer, C., J. Shulmeister, and B. McLea, Evidence against a significant Younger Dryas cooling event in New Zealand, Science, 281, 812–814, 1998.CrossRefGoogle Scholar
  59. Sowers, T., and M. Bender, Climate records covering the last deglaciation, Science, 269, 210–214, 1995.CrossRefGoogle Scholar
  60. Stauffer, B., T. Blunier, A. Dällenbach, A. Indermühle, J. Schwander, T.F. Stocker, J. Tschumi, J. Chappellaz, D. Raynaud, C.U. Hammer, and H.B. Clausen, Atmospheric CO2 concentration and millennial-scale climate change during the last glacial period, Nature, 392, 59–62, 1998.CrossRefGoogle Scholar
  61. Stauffer, B., H. Hofer, H. Oeschger, J. Schwander, and U. Siegenthaler, Atmospheric CO2 concentration during the last glaciation, Ann. Glaciol., 5, 160–164, 1984.Google Scholar
  62. Steig, E.J., E.J. Brook, J.W.C. White, C.M. Sucher, M.L. Bender, S.J. Lehman, D.L. Morse, E.D. Waddington, and G.D. Clow, Synchronous climate changes in Antarctica and the North Atlantic, Science, 282, 92–95, 1998.CrossRefGoogle Scholar
  63. Stocker, T.F., and D.G. Wright, Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes, Nature, 351, 729–732, 1991.CrossRefGoogle Scholar
  64. Stocker, T.F., and D.G. Wright, The effect of a succession of ocean ventilation changes on radiocarbon, Radiocarbon, 40, 359–366, 1998.Google Scholar
  65. Stocker, T.F., D.G. Wright, and W.S. Broecker, The influence of high-latitude surface forcing on the global thermohaline circulation, Paleoceanogr., 7(5), 529–541, 1992a.CrossRefGoogle Scholar
  66. Stocker, T.F., D.G. Wright, and L.A. Mysak, A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies, J. Clim., 5, 773–797, 1992b.CrossRefGoogle Scholar
  67. Thompson, L.G., Variations in micropartical concentration, size distribution and elemental composition found in Camp Century, Greenland, and Byrd station Antarctica, deep ice cores, in Isotopes and Impurities in Snow and Ice, pp. 351–363, IAHS-AISH Publication, 118, Grenoble, 1975.Google Scholar
  68. Tschumi, J., and B. Stauffer, Reconstructing the past atmospheric CO2-concentration based on ice core analyses: open questions due to in situ production of CO2 in the ice, J. Glaciol., submitted, 1998.Google Scholar
  69. Tziperman, E., Inherently unstable climate behaviour due to weak thermohaline ocean circulation, Nature, 386, 592–595, 1997.CrossRefGoogle Scholar
  70. Whillans, I.M., Ice flow along the Byrd station strain network, Antarctica, J. Glaciol., 24(90), 15–28, 1979.Google Scholar
  71. Wright, D.G., and T.F. Stocker, Younger Dryas Experiments, in NATO ASI Series I, 12: Ice in the Climate System, edited by W.R. Peltier, pp. 395–416, Springer Verlag, Berlin, 1993.Google Scholar
  72. Yiou, F., G.M. Raisbeck, S. Baumgartner, J. Beer, C. Hammer, S. Johnsen, J. Jouzel, P.W. Kubik, J. Lestringuez, M. Stiévenard, M. Suter, and P. Yiou, Beryllium 10 in the Greenland Ice Core Project ice core at Summit, Greenland, J. Geophys. Res., 102(C12), 26783–26794, 1997.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Thomas Blunier
    • 1
    • 2
  • Thomas F. Stocker
    • 2
  • Jérôme Chappellaz
    • 3
  • Dominique Raynaud
    • 3
  1. 1.Princeton University GeosciencesGuyot Hall, PrincetonUSA
  2. 2.Climate and Environmental Physics Physics InstituteUniversity of BernBernSwitzerland
  3. 3.CNRS Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE)GrenobleFrance

Personalised recommendations