Advertisement

Dendritic Control of Hebbian Computations

  • Edward W. Kairiss
  • Zachary F. Mainen
  • Brenda J. Claiborne
  • Thomas H. Brown

Abstract

In his influential 1949 work, The Organization of Behavior, the Canadian psychologist Donald Hebb expressed the following postulate for synaptic modification: When an axon of cell A is near enough to excite cell B, or repeatedly or consistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased. The original idea underlying this proposal was that use-dependent synaptic modifications could form the substrate for cognitive learning and memory. More recently, it has been suggested that a similar process may also contribute to the self-organization of perceptual systems during development. Hebbian synaptic plasticity is interesting for at least two reasons. First, the idea has inspired many provocative theories and computational models of learning and self-organization (Linsker, 1990). Second, a process similar to what Hebb predicted has been shown to exist in the mammalian central nervous system (Kelso et al, 1986).

Keywords

Synaptic Input Dendritic Tree Synaptic Strength Postsynaptic Activity Synaptic Modification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.A. (1985) What Hebb synapses build. In Synaptic modification, Neuron Selectivity, and Nervous System Organization, eds. W.B. Levy, J.A. Anderson and S. Lehmkuhle, pp. 153–173. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  2. Barrionuevo, G., Brown, T.H. (1983) Associative long-term potentiation in hippocampal slices. Proc. Natl. Acad. Sci. USA. 80:7347–7351.CrossRefGoogle Scholar
  3. Bliss, T.V.R, Lomo, T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J. Physiol. (London). 232:331–356.Google Scholar
  4. Brown, T.H., Chang, V.C., Ganong, A.H., Keenan, C.L., Kelso, S.R. (1988a) Biophysical properties of dendrites and spines that may control the induction and expression of long-term synaptic potentiation. In Long-Term Potentiation: From Biophysics to Behavior, eds. P.W.& Landfield & S.A. Deadwyler, pp. 197–260. New York: Liss.Google Scholar
  5. Brown, T.H., Chapman, RE, Kairiss, E.W., Keenan, C.L. (1988b) Long-term synaptic potentiation. Science. 242: 724–728.CrossRefGoogle Scholar
  6. Brown, T.H., Fricke, R.A., Perkel, D.H. (1981) Passive electrical constants in three classes of hippocampal neurons. J. Neurophysiol. 46: 812–827.Google Scholar
  7. Brown, T.H., Ganong, A.H., Kairiss, E.W., Keenan, C.L., Kelso, S.R. (1989) Long-term potentiation in two synaptic systems of the hippocampus. In Neural Models of Plasticity, eds. J.H. Byrne, J.H. & W.O. Berry, pp. 266–306. San Diego: Academic Press.Google Scholar
  8. Brown, T.H., Kairiss, E.W., Keenan, C.L. (1990) Hebbian synapses: biophysical mechanisms and algorithms. Annu. Rev. Neurosci. 13: 475–512.CrossRefGoogle Scholar
  9. Brown, T.H., Zador, A.M., Mainen, Z.E and Claiborne, BJ. (1991) Hebbian modifications in hippocampal neurons, (in preparation)Google Scholar
  10. Dunwiddie, T., Lynch, G. (1979) The relationship between extracelular calcium concentrations and the induction of long-term potentiation. Brain Res. 169: 103–110.CrossRefGoogle Scholar
  11. Durbin, R., Rumelhart, D.E. (1989) Product units: A computationally powerful and biologically plausible extension to backpropagation networks. Neural Computation. 1: 133–142.CrossRefGoogle Scholar
  12. Gamble, E., Koch, C. (1987) The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. Science. 236: 1311–1315.CrossRefGoogle Scholar
  13. Hille, B. (1984) Ionic Channels of Excitable Membranes. Sunderland, MA: Sinauer.Google Scholar
  14. Hines, M. (1989) A program for simulation of nerve equations with branching geometries. Int. J. Bio-Med Comp 2: 55–68.CrossRefGoogle Scholar
  15. Hodgkin, A.L., Huxley, A.F. (1952) A quantitative description of the membrane current and its application to conduction and excitation in nerve. J. Physiol. (London). 117: 500–544.Google Scholar
  16. Hopfield, J.J. (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81: 3088–3092.CrossRefGoogle Scholar
  17. Jack, J., Noble, A., Tsien, R.W. (1975) Electrical Current Flow in Excitable Membranes. London: Oxford.Google Scholar
  18. Jaffe, D., Johnston, D. (1990) Induction of long-term potentiation at hippocampal mossy-fiber synapses follows a hebbian rule. J. Neurophysiol. (in press)Google Scholar
  19. Jahr, C.E., Stevens, C.F (1987) Glutamate activates multiple single channel conductances in hippocampal neurons. Nature (London) 325: 522–525.CrossRefGoogle Scholar
  20. Jones, O.T., Kunze, D.L., Angelides, KJ. (1989) Localization and mobility of ω-conotoxin-sensitive Ca2+ channels in hippocampal CA1 neurons. Science 244: 1189–1193.CrossRefGoogle Scholar
  21. Kairiss, E.W., Keenan, C.L. and Brown, T.H. (1988) A biologically plausible implementation of a Hebbian covariance algorithm. Soc. Neurosci. Abstr. 14: 832m.Google Scholar
  22. Kelso, S.R. and Brown, T.H. (1986) Differential conditioning of associative synaptic enhancement in hippocampal brain slices. Science 232: 85–87.CrossRefGoogle Scholar
  23. Kelso, S.R., Ganong, Brown, T.H. (1986) Hebbian synapses in hippocampus. Proc. Natl. Acad. Sci. USA 83: 5326–5330.CrossRefGoogle Scholar
  24. Kohonen, T. (1989) Self-organization and Associative Memory. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  25. Linsker, R. (1990) Perceptual neural organization: some approaches based on network models and information theory.Ann. Rev. Neurosci. 13:257–282.CrossRefGoogle Scholar
  26. Mainen, Z.M., Zador, A.M., Claiborne, B., Brown, T.H. (1990) Hebbian synapses induce feature mosaics in hippocampal dendrites. Soc. Neurosci. Abstr., 16: 492.Google Scholar
  27. Malinow, R., Miller, J.P. (1986) Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature (London) 320: 529–530.CrossRefGoogle Scholar
  28. Mayer, M.L., Westbrook, G.L. (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28: 197–276.CrossRefGoogle Scholar
  29. Mead, C. (1989) Analog VLSI and Neural Systems. Reading: Addison-Wesley.zbMATHCrossRefGoogle Scholar
  30. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., Prochiantz, A. (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465.CrossRefGoogle Scholar
  31. Palm, G. (1982) Neural Assemblies: An Alternative Approach. Berlin: Springer-Verlag.Google Scholar
  32. Regehr, W.G., Connor, J.A., Tank, D.W. (1989) Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation Nature (London) 341: 533–536.CrossRefGoogle Scholar
  33. Rosenblatt, F. (1958) The perceptron: a probabilistic model for information staorage and organization in the brain. Psych. Rev. 65: 356–408.MathSciNetCrossRefGoogle Scholar
  34. Rumelhart, D.E., Hinton, G.E. and Williams, RJ. (1986) Learning internal representations by error propogation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition, eds. D. Rumelhart and J. McClelland. Vol. 1, pp. 318–362. Cambridge: MIT Press.Google Scholar
  35. Sejnowski, TJ. (1977) Statistical constraints on synaptic plasticity. J. Theor. Biol. 69: 385–389.CrossRefGoogle Scholar
  36. Sejnowski, T.J., Rosenberg, C.R., (1986) NETtalk: a parallel network that learns to read aloud. The Johns Hopkins University Electrical Engineering and Computer Science Technical Report JHU/EECS-86/01,32 pp.Google Scholar
  37. Spruston, N. and Johnston, D. (1990) Whole-cell patch clamp analysis of the passive membrane properties of hippocampal neurons. Soc. Neurosci. Abstr., 16: 1297.Google Scholar
  38. Stent, G.S. (1973) A physiological mechanism for Hebb’s postulate of learning. Proc. Natl. Acad. Sci. USA 70: 997–1001. 617CrossRefGoogle Scholar
  39. Wigström, H., Gustafsson, B., Huang, Y.-Y., Abraham, W.C. (1986) Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing pulses. Acta Physiol. Scand. 126: 317–319.CrossRefGoogle Scholar
  40. Zador, A., Koch, C, Brown, T.H. (1990) Biophysical model of a Hebbian synapse. Proc. Natl. Acad. Sci. USA. 87: 6718–6722.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Edward W. Kairiss
    • 1
  • Zachary F. Mainen
    • 1
  • Brenda J. Claiborne
    • 2
  • Thomas H. Brown
    • 1
  1. 1.Department of PsychologyYale UniversityNew HavenUSA
  2. 2.Division of Life SciencesUniversity of TexasSan AntonioUSA

Personalised recommendations