Advertisement

Quantitative Methods for the Estimation of Tannins in Plant Tissues

  • Augustin Scalbert
Part of the Basic Life Sciences book series (BLSC, volume 59)

Abstract

The different assays used for tannin estimation in plant tissues can be classified into three groups according to the type of reaction involved: precipitation of proteins or alkaloids, reaction with phenolic rings, and depolymerization. The value of these methods for estimation of total tannins or of a particular group of tannins (proanthocyanidins, gallotannins or ellagitannins) is discussed. The importance of careful preparation of the tannin extract, including preparation and storage of the sample, extraction and fractionation of the isolates, is emphasized.

Keywords

Gallic Acid Condensed Tannin Prussian Blue Ellagic Acid Tannin Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.1.
    Schmidt, O.T. Nat ü rliche gerbstoffe. In: Moderne methoden der pfanzenanalyze. Paech, K., Tracey, M.V. (eds.) Springer-Verlag, Berlin, pp. 517–548 (1955).CrossRefGoogle Scholar
  2. 2.
    Kurth, E.F.; Chan, F.L. Extraction of tannin and dihydroquercetin from Douglas-fir bark. itJ. Am. Leather Chem. Assoc. 48:20 (1953).Google Scholar
  3. 3.
    Brugirard, A.; Tavernier, J. Les matières tannoïdes dans les cidres et les poirés. Ann. Tech-nol. Agr. 3:311 (1952).Google Scholar
  4. 4.
    White, T.; Kirby, K.S.; Knowles, E. Tannins. IV. The complexity of tannin extract composition. J. Soc. Leather Trade Chem. 36:148 (1952).Google Scholar
  5. 5.
    Mole, S.; Waterman, P.G. A critical analysis of techniques for measuring tannins in ecological studies. 2. Techniques for biochemically defining tannins. Occologia 72:148 (1987).CrossRefGoogle Scholar
  6. 6.
    Makkar, H.P.S.; Dawra, R.K.; Singh, B. Protein precipitation assay for quantitation of tannins: determination of protein in tannin-protein complex. Anal. Biochem. 166:435 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    Bate-Smith, E.C. Haemanalysis of tannins: the concept of relative astringency. Phyto-chemistry 12:907 (1973).CrossRefGoogle Scholar
  8. 8.
    Okuda, T.; Mori, K.; Aoi, K. Constituents of Geranium thunbergii Sieb, et Zucc. V. Difference of tannin, activities by structural differences (1) Effects of pH variations in relative astringency. Yakugaku Zasshi 97:1267 (1977).PubMedGoogle Scholar
  9. 9.
    Schultz, J.C.; Baldwin, I.T.; Nothnagle P.J. Hemoglobin as a binding substrate in the quantitative analysis of plant tannins. J. Agr. Food. Chem. 29:823 (1981).CrossRefGoogle Scholar
  10. 10.
    Asquith, T.N.; Butler, L.G. Use of dye-labelled protein as spectrophotometric assay for protein prrcipitants such as tannin. J. Chem. Ecol. 11:1535 (1985).CrossRefGoogle Scholar
  11. 11.
    Hagerman, A.E.; Butler, L.G. Determination of protein in tannin-protein precipitates. J. Agr. Food Chem. 28:944 (1980).CrossRefGoogle Scholar
  12. 12.
    Haslam, E. Polyphenol-protein interactions. Biochem. J. 139:285 (1974).PubMedGoogle Scholar
  13. 13.
    Becker, P.; Martin, J.S. Protein-binding capacity of tannins in Shorea (Dipterocarpaceae) seedling leaves. J. Chem. Ecol. 8:1353 (1982).CrossRefGoogle Scholar
  14. 14.
    Martin, J.S.; Martin, M.M. Tannin assays in ecologica studies. Precipitation of ribulose-1,5-bisphosphate carboxylase/oxygenase by tannic acid, quebracho, and oak foliage extracts. J. Chem. Ecol. 9:285 (1983).CrossRefGoogle Scholar
  15. 15.
    Wisdom, C.S.; Gonzalez Coloma, A.; Rundel, P.W. Ecological tannin assays. Evaluation of proanthocyanidins, protein binding assays and protein precipitating potential. Oecologia 72:395 (1987).CrossRefGoogle Scholar
  16. 16.
    Hagerman, A.E.; Butler, L.G. Protein precipitation method for the quantitative determination of tannins. J. Agr. Food Chem. 26:809 (1978).CrossRefGoogle Scholar
  17. 17.
    Hagerman, A.E.; Robbins, C.T. Implications of soluble tannin-protein complexes for tannin analysis and plant defense mechanisms. J. Chem. Ecol. 13:1243 (1987).CrossRefGoogle Scholar
  18. 18.
    Goldstein, J.L.; Swain, T. The inhibition of enzymes by tannins. Phytochemisiry 4:185 (1965).CrossRefGoogle Scholar
  19. 19.
    Okuda, T.; Mori, K.; Hatano, T. Relationship of the structures of tannins to the binding activities with hemoglobin and methylene blue. Chem. Pharm. Bull. 33:1424 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    McManus, J.P.; Davis, K.G.; Beart, J.E.; Gaffney, S.H.; Lilley, T.H.; Haslam, E. Polyphenol interactions. Part 1. Introduction, some observations on the reversible complexation of polyphenols with proteins and polysaccharides. J. Chem. Soc, Perkin Trans. II:1429 (1985).Google Scholar
  21. 21.
    Hagerman, A.E. Radial diffusion method for determining tannin in plant extracts. J. Chem. Ecol. 13:437 (1987).CrossRefGoogle Scholar
  22. 22.
    Dawra, R.K.; Makkar, H.P.S.; Singh, B. Protein-binding capacity of microquantities of tannins. Anal. Biochem. 170:50 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    Okuda, T.; Mori, K.; Murakami, R. Constituents of Geranium ihunbergii Sieb, et Zucc. VI. Differences of tannin activity caused by structural differences. (2). Colorimetry with methylene blue. Yakugaku Zasshi 97:1273 (1977).PubMedGoogle Scholar
  24. 24.
    Fear, C.M. The alkaloïd test for tannins. Analyst 54:316 (1929)CrossRefGoogle Scholar
  25. 25.
    Okuda, T.; Mori, K.; Shiota, M. Effects of the interaction of tannins with coexisting substances. III. Formation and solubilization of precipitates with alkaloids (Jap.) Yakugaku Zasshi 102:854 (1982).PubMedGoogle Scholar
  26. 26.
    Cai, Y.; Gaffney, S.H.; Lilley, T.H.; Magnolato, D.; Martin, R.; Spencer, CM.; Haslam, E. Polyphenol interactions. 4. Model studies with caffeine and cyclodextrins. J. Chem. Soc. Perkin Trans. II:2197 (1990).Google Scholar
  27. 27.
    Scalbert, A. Antimicrobial properties of tannins. Phytochemisiry 30:3875 (1991).CrossRefGoogle Scholar
  28. 28.
    Mole, S.; Waterman, P.G. A critical analysis of techniques for measuring tannins in ecological studies. 1. Techniques for chemically defining tannins. Oecologia 72:137 (1987).CrossRefGoogle Scholar
  29. 29.
    Wesp, E.F.; Brode, W.R. The absorption spectra of ferric compounds. I. The ferric chloride-phenol reaction. J. Am. Chem. Soc. 56:1037 (1934).CrossRefGoogle Scholar
  30. 30.
    Eskin, N.A.M.; Hoehn, E.; Frenkel, C. A simple and rapid quantitative method for total phenols. J. Agr. Food Chem. 26:973 (1978).CrossRefGoogle Scholar
  31. 31.
    Price, M.L.; Butler, L.G. Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J. Agr. Food Chem. 25:1268 (1977).CrossRefGoogle Scholar
  32. 32.
    Budini, R.; Tonelli, D.; Girotti, S. Analysis of total phenols using the prussian blue method. J. Agr. Food Chem. 28:1236 (1980).CrossRefGoogle Scholar
  33. 33.
    Goldstein, J.L.; Swain, T. Changes in tannins in ripening fruits. Phytochemistry 2:371 (1963).CrossRefGoogle Scholar
  34. 34.
    Singleton, V.L.; Rossi, J.A. Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16:144 (1965).Google Scholar
  35. 35.
    Singleton, V.L. Analytical fractionation of the phenolic substances of grapes and wine and some practical uses of such analyses. American Chemical Society, Adv. Chem. Ser., Washington, DC, 137:184 (1974).Google Scholar
  36. 36.
    Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: comparison of different estimation methods. J. Agr. Food Chem. 37:1324 (1989).CrossRefGoogle Scholar
  37. 37.
    Waite, J.H.; Tanzer, M.L. Specific colorimetric detection of o-diphenols and 3,4-dihydroxy-phenylalanine-containing peptides. Anal. Biochem. 111:131 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    Jennings, A.C. The determination of dihydroxyphenolic compounds in extracts of plant tissues. Anal. Biochem. 118:396 (1981).PubMedCrossRefGoogle Scholar
  39. 39.
    Löwenthal, J. Über die bestimmung des gerbstoffs. Z. Anal. Chem. 16:33 (1877).Google Scholar
  40. 40.
    Hathway, D.E. Plant phenols and tannins. In: Smith, I. (ed.). Chromatographic and electrophoretic techniques. Vol. I. Chromatography. William Heinemann. Medical Books Ltd, London, pp. 308–354 (1960).Google Scholar
  41. 41.
    Lau, O.W.; Luk, S.F.; Huang, H.L. Spectrophotometric determination of tannins in tea and beer samples with Iron (III) and 1,10-phenanthroline as reagents. Analyst 114:631 (1989).PubMedCrossRefGoogle Scholar
  42. 42.
    Folin, O.; Denis, W. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. J. Biol. Chem. 22:305 (1915).Google Scholar
  43. 43.
    Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 73:627 (1927).Google Scholar
  44. 44.
    Cotton, F.A.; Wilkinson, G. Advanced inorganic chemistry, a comprehensive text. John Wiley and Sons, New York (1980).Google Scholar
  45. 45.
    Legier, G.; M ü ller-Platz, CM.; Mentges-Hettkamp, M.; Pflieger, G.; J ü lich, E. On the chemical basis of the Lowry protein determination. Anal. Biochem. 150:278 (1985).CrossRefGoogle Scholar
  46. 46.
    Moutounet, M. Dosages des polyphénols des moÛts de raisin. Connaissance Vigne Vin 15:287 (1981).Google Scholar
  47. 47.
    Giuiliano, R. Sul prodotto di condensazione della vainiglina con le floroglucina. Ann. Chim. Appl. Roma 29:86 (1939).Google Scholar
  48. 48.
    Pew, J.C. Structural aspects of the color reaction of lignin with phenols. J. Am. Chem. Soc. 73:1678 (1951).CrossRefGoogle Scholar
  49. 49.
    Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10:63 (1959).CrossRefGoogle Scholar
  50. 50.
    McMurrough, I.; McDowell, J. Chromatographic separation and automated analysis of flavanols. J. Anal. Biochem. 91:92 (1978).CrossRefGoogle Scholar
  51. 51.
    Dalby, A.; Shuman, A.C. Temperature-induced errors in the colorimetric determination of tannins. Anal. Biochem. 85:325 (1978).PubMedCrossRefGoogle Scholar
  52. 52.
    Price, M.L.; Van Scoyoc, S.; Butler, L.G. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agr. Food Chem. 26:1214 (1978).CrossRefGoogle Scholar
  53. 53.
    Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric. 29:788 (1978).CrossRefGoogle Scholar
  54. 54.
    Butler, L.G.; Price, M.L.; Brotherton, J.E. Vanillin assay for proanthocyanidins (condensed tannins): modification of the solvent for estimation of the degree of polymerization. J. Agr. Food Chem. 30:1087 (1982).CrossRefGoogle Scholar
  55. 55.
    Hillis, W.E.; Urbach, G. The reaction of (+)-catechin with formaldehyde. J. Appl. Chem. London 9:474 (1959).CrossRefGoogle Scholar
  56. 56.
    Roberts, E.A.H. Economic importance of flavonoid substances: tea fermentation. In: Geissman, T.A. (ed.). The chemistry of flavonoid compounds. Pergamon Press, Oxford, pp. 468–512 (1962).Google Scholar
  57. 57.
    Kramling, T.E.; Singleton, V.L. An estimate of the non-flavonoid phenols in wine. Amer. J. Enol. Viticult. 20:86 (1969).Google Scholar
  58. 58.
    Procter, H.R.; Paessler, J. Leitfaden f ü r gerbereichemische Untersuchungen. S-78, Btrlin (1901). Quoted In: Schmidt, O.T. Nat ü rliche gerbstoffe./n: Moderne methoden der pfanzenanalyze. Paech, K., Tracey, M.V. (eds.) Springer-Verlag, Berlin, pp. 517-548 (1955).Google Scholar
  59. 59.
    Bate-Smith, E.C. Detection and determination of ellagitannins. Phytochemistry 11:1153 (1972).CrossRefGoogle Scholar
  60. 60.
    Lang, F.M.; Aunis, G. Du rôle de l’acide nitreux dans la formation des dérivés nitrés des amines et des phénols en milieu nitrique étendu. Action de l’acide nitrique 10% sur la tétraméthylbenzidine. Compte Rendu Acad. Sci.:834 (1949).Google Scholar
  61. 61.
    Schulze, H.; Flaig, W. Zurkenntnisderhuminsäuren. IV. Mitteilung ü ber die ringsprengung mehrwertiger phenole mit Sauerstoff in alkalischem medium. Annalen 575:231 (1952).Google Scholar
  62. 62.
    Hoepfner, W. Zwei neue reaktionen f ü r kaffeesaure und chlorogensäure. Chem. Ztg.:991 (1932).Google Scholar
  63. 63.
    Arnow, L.E. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 18:531 (1937).Google Scholar
  64. 64.
    Vorsatz, F. Uber eine kolorimetrische methode der gerbstoff-bestimmung. Collegium:424 (1942).Google Scholar
  65. 65.
    Haddock, E.A.; Al-Shafi, S.M.K., Gupta, R.K.; Magnolato, D.; Haslam, E. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 1. Introduction. Naturally occurring galloyl esters. J. Chem. Soc, Perkin Trans. 7:2515 (1982).CrossRefGoogle Scholar
  66. 66.
    Bate-Smith, E.C. Astringent tannins of Acer species. Phytochemistry 16:1421 (1977).CrossRefGoogle Scholar
  67. 67.
    Haslam, E. Galloyl esters in the Aceraceae. Phytochemistry 4:495 (1965).CrossRefGoogle Scholar
  68. 68.
    Porter, L.J.; Hrstich, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223 (1986).CrossRefGoogle Scholar
  69. 69.
    Govindarajan, V.S.; Mathew, A.G. Anthocyanidins from leucoanthocyanidins. Phytochemistry 4:985 (1965).CrossRefGoogle Scholar
  70. 70.
    Roux, D.G.; Bill, M.C. Mechanism of formation of anthocyanidins from leucoanthocyani-(di)ns. Nature 183:42 (1959).CrossRefGoogle Scholar
  71. 71.
    Mathew, A.G. Some characteristics of the additional anthocyanidins formed during conversion of leucoanthocyanidins into anthocyanidins. Phytochemistry 8:677 (1969).CrossRefGoogle Scholar
  72. 72.
    Fuleki, T.; Francis, F.J. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 33:72 (1968)CrossRefGoogle Scholar
  73. 73.
    Hemingway, R.W.; McGraw, G.W. Kinetics of acid-catalyzed cleavage of procyanidins. J. Wood Chem. Technol. 3:421 (1983).CrossRefGoogle Scholar
  74. 74.
    Thies, M.; Fisher, R. Photometrische bestimmung von gallusäure durch farbreaktion mit rhodanin. Mikrochim. Acta:809 (1973).Google Scholar
  75. 75.
    Franiau, R.; Mussche, R. Quantitative determination of gallic acid in tannic acid by thin layer chromatography. J. Inst. Brew. 78:450 (1972).CrossRefGoogle Scholar
  76. 76.
    Inoue, K.H.; Hagerman, A.E. Determination of gallotannin with rhodanine. Anal. Biochem. 169:363 (1988).PubMedCrossRefGoogle Scholar
  77. 77.
    Wilson, T.C.; Hagerman, A.E. Quantitative determination of ellagic acid. J. Agr. Food Chem. 38:1678 (1990).CrossRefGoogle Scholar
  78. 78.
    Puech, J.L.; Rabier, P.; Bories-Azeau, J.; Sarni, F.; Moutounet, M. Determination of ellagitannins in extracts of oak wood and in distilled beverages matured in oak barrels. J. Assoc. Off. Anal. Chem. 73:498 (1990).PubMedGoogle Scholar
  79. 79.
    Peng, S.; Scalbert, A.; Monties, B. Insoluble ellagitannins in Castanea sativa and Quercus petraca-woods. Phytochemistry 30:775 (1991).CrossRefGoogle Scholar
  80. 80.
    Hillis, W.E.; Rozsa, A.N.; Lau, L.S. Rapid determination of ellagic acids by gas-liquid chromatography. J. Chromatogr. 109:172 (1975).CrossRefGoogle Scholar
  81. 81.
    Spencer, CM.; Cai, Y.; Martin, R.; Lilley, T.H.; Haslam, E. The metabolism of gallic acid and hexahydroxydiphenic acid in higher plants. Part 4. Polyphenol interactions. Part 3. Sprectroscopic and physical properties of esters of gallic acid and (S)-hexahydroxydiphenic acid with D-glucopyranose (4C1). J. Chem. Soc, Perkin Trans. 11:651 (1990).Google Scholar
  82. 82.
    Roux, D.G.; Evelyn, S.R. Condensed tannins. 1. A study of complex leucoanthocyanins present in condensed tannins. Biochem. J. 69:530 (1958).PubMedGoogle Scholar
  83. 83.
    Roux, D.G.; Evelyn, S.R. Condensed tannins. 4. The distribution and deposition of tannins in heartwoods of Acacia mollissima and Schinopsis spp. Biochem. J. 76:17 (1960).PubMedGoogle Scholar
  84. 84.
    Joslyn, M.A.; Goldstein, J.L. Astringency of fruits and fruit products in relation to phenolic content. Adv. Food Res. 13:179 (1964).PubMedCrossRefGoogle Scholar
  85. 85.
    Jolyet, A. Repartition du tannin et de la résine dans le bois d’un mélèze. Rev. Eaux Forêts:110 (1892).Google Scholar
  86. 86.
    Martin, J.S.; Martin, M.M. Tannin assays in ecological studies: lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54:205 (1982).CrossRefGoogle Scholar
  87. 87.
    Mitaru, B.N.; Richert, R.D.; Blair, R. Improvement of the nutritive value of high tannin sorghums for broiler chickens by high moisture storage (reconstitution).Poultry Sci. 62:2065 (1983).CrossRefGoogle Scholar
  88. 88.
    Herrick, F.W. Chemistry and utilization of western hemlock bark extractives. J. Agr. Food Chem. 28:228 (1980).CrossRefGoogle Scholar
  89. 89.
    Hagerman, A.E. Extraction of tannin from fresh and preserved leaves. J. Chem. Ecol. 14:453 (1988).CrossRefGoogle Scholar
  90. 90.
    Price, M.L.; Stromberg, A.M.; Butler, L.G. Tannin content as a function of grain maturity and drying conditions in several varieties of Sorghum bicolor (L.) Moench. j. Agr. Food Chem. 27:1270 (1979).CrossRefGoogle Scholar
  91. 91.
    Terril, T.H.; Windham, W.R.; Evans, J.J.; Hoveland, C.S. Condensed tannin concentration in sericea lespedeza as influenced by preservation method. Crop Sci. 30:219 (1990).CrossRefGoogle Scholar
  92. 92.
    Butler, L.G. Relative degree of polymerization of sorghum tannin during seed development and maturation. J. Agr. Food Chem. 30:1090 (1982).CrossRefGoogle Scholar
  93. 93.
    Merrill, H.B.; Cameron, D.H.; Ellison, H.L.; Hall, C.P. The stripping of vegetable tannins from leather by aqueous organic solvents. J. Am. Leather Chem. Assoc. 42:536 (1947).Google Scholar
  94. 94.
    Julkunen-Tiitto, R. Phenolic constituents in the leaves of Northern willows: methods for the analysis of certain phenolics. J. Agr. Food Chem. 33:213 (1985).CrossRefGoogle Scholar
  95. 95.
    Bate-Smith, E.C. Phytochemistry of proanthocyanidins. Phytochemistry 14:1107 (1975).CrossRefGoogle Scholar
  96. 96.
    Okuda, T.; Yoshida, T.; Hatano, T. New methods of analyzing tannins. J. Nat. Prod. Lloydia 52:1 (1989).CrossRefGoogle Scholar
  97. 97.
    Bate-Smith, E.C. Tannins of herbaceous leguminosae. Phytochemistry 12:1809 (1973).CrossRefGoogle Scholar
  98. 98.
    Deshpande, S.S.; Cheryan, M.; Salunkhe, D.K. Tannin analysis of food products. CRC Crit. Rev. Food Sci. Nutr. 24:401 (1986).CrossRefGoogle Scholar
  99. 99.
    Foo, L.Y.; Porter, L.J. The phytochemistry of proanthocyanidin polymers. Phytochemistry 19:1747 (1980).CrossRefGoogle Scholar
  100. 100.
    Scalbert, A. [unpublished results].Google Scholar
  101. 101.
    Maxson, E.D.; Rooney, L.W. Evaluation of methods for tannin analysis in sorghum grain. Cereal Chem. 49:719 (1972).Google Scholar
  102. 102.
    Russell, A.E.; Shuttleworth, S.G.; Williams-Wynn, D.A. Further studies in vegetable tannage. Part 3. Solvent reversibility of wattle tannage. J. Soc. Leather Trade Chem. 51:349 (1967).Google Scholar
  103. 103.
    Armitage, R.; Bayliss, G.S.; Gramshaw, J.W.; Haslam, E.; Haworth, R.D.; Jones, K.; Rogers, H.J.; Searle, T. Gallotannins. Part III. The constitution of Chinese, turkish, sumach, and tara tannins. J. Chem. Soc.:1842 (1961).Google Scholar
  104. 104.
    Okuda, T.; Mori, K.; Seno, K.; Hatano, T. Constituents of Geranium thunbergii Sieb, et Zucc. VII. High performance reverse-phase liquid chromatography of hydrolyzable tannins and related polyphenols. J. Chromatogr. 17:1313 (1979).Google Scholar
  105. 105.
    Anderson, J.S. Extraction of enzymes and subcellular organelles from plant tissues. Phytochemistry 7:1973 (1968).CrossRefGoogle Scholar
  106. 106.
    Jones, W.T.; Broadhurst, R.B.; Lyttleton, J.W. The condensed tannins of pasture legume species. Phytochemistry 15:1407 (1976).CrossRefGoogle Scholar
  107. 107.
    Khanna, S.K.; Viswanathan, P.N.; Krishnam, P.S.; Sanwal, G.G. Extraction of total phe-nolics in the presence of reducing agents. Phytochemistry 7:1513 (1968).CrossRefGoogle Scholar
  108. 108.
    Spanos, G.A.; Wrolstad, R.E. Influence of variety, maturity, processing and storage on the phenolic composition of pear juice. J. Agr. Food Chem. 38:817 (1990).CrossRefGoogle Scholar
  109. 109.
    Hoff, J.E.; Singleton, K.I. A method for the determination of tannins in foods by means of immobilised proteins. J. Food Sci. 42:1566 (1977).CrossRefGoogle Scholar
  110. 110.
    Lavisci, P.; Scalbert, A.; Masson, D.; Janin, G. Quality of turkey oak (Quercus cerris L.) wood. I. Soluble and insoluble proanthocyanidins. Holzforschung 45:291 (1991).CrossRefGoogle Scholar
  111. 111.
    Bate-Smith, E.C. Ellagitannin content of leaves of Geranium species. Phytochemistry 11:1755 (1972).CrossRefGoogle Scholar
  112. 112.
    Yagi, K.; Nagatsu, T. Condensation products of ethylenediamine with catechol derivatives. J. Biochem. 48:439 (1960).Google Scholar
  113. 113.
    Schiller, J.G.; Chen, A.K.; Liu, C.C. Determination of phenol concentrations by an electrochemical system with immobilized tyrosinase. Anal Biochem. 85:25 (1978).PubMedCrossRefGoogle Scholar
  114. 114.
    Zachariah, K.; Mottola, H.A. Continuous-flow determination of phenol with chemically immobilized polyphenol oxidase (tyrosinase). Anal. Lett. 22:1145 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Augustin Scalbert
    • 1
  1. 1.Laboratory for Biological Chemistry (INRA), Center of Agro-Industrial BiotechnologyNational Agronomy Institute, Paris-GrignonThiverval-GrignonFrance

Personalised recommendations