Whitham Theory for Integrable Systems and Topological Quantum Field Theories

  • I. Krichever
Part of the NATO ASI Series book series (NSSB, volume 295)


During the last two years remarkable connections between the non-perturbative theory of two-dimensional gravity coupled with various matter fields, the theory of topological gravity coupled with topological matter fields, the theory of matrix models and, finally, the theory of integrable soliton equations with special Virasoro constraints have been found [1–11]. The main goal of these few lectures is to present the results of perturbation theory of algebraic-geometrical solutions of integrable equations which clarify some of this connections.


Modulus Space Loop Equation Virasoro Constraint Whitham Equation Topological Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Brézin, V. Kazakov, Phys. Lett. (1990),B236 144.ADSGoogle Scholar
  2. 2.
    M. Douglas, S. Shenker, Nucl. Phys. (1990) B335 635.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    D. J. Gross, A. Migdal, Phys. Rev. (1990) 64 127.MathSciNetADSzbMATHGoogle Scholar
  4. 4.
    D. J. Gross, A Migdal, Nucl. Phys. (1990) B340 333.MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    T. Banks, M. Douglas, N. Seiberg, S. Shenker, Phys. Lett. (1990) 238B 279.MathSciNetADSGoogle Scholar
  6. 6.
    M. Douglas, Phys. Lett. 238B (1 B.Dubrovin, I. Krichever, S. Novikov, Soviet Doklady 229, No 1 (1976), 15.Google Scholar
  7. 7.
    E. Witten, Nucl. Phys. B340 (1990), 176.MathSciNetGoogle Scholar
  8. 8.
    R. Dijkgraaf, E. Witten, Nucl. Phys. B342 (1990), 486.MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    J. Distler, Nucl. Phys. B342 (1990), 523.MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    M. Fukuma, H. Kawai, Continuum Schwinger-Dyson equations and universal structures in two-dimensional quantum gravity, preprint Tokyo University UT-562, May 1990.Google Scholar
  11. 11.
    M. Fukuma, H. Kawai, Infinite dimensional Grassmanian structure of two-dimensional quantum gravity, preprint Tokyo University UT-572, November 1990.Google Scholar
  12. 12.
    I. Krichever, Soviet Doklady 227:2 (1976), 291.Google Scholar
  13. 13.
    I. Krichiver, Funk. Anal. i Pril. 11 No 13 (1977), 15.Google Scholar
  14. 14.
    B. Dobrovin, V. Matveev, S. Novikov, Uspekhi Mat. Nauk] 31 No 1 (1976),.55–136.Google Scholar
  15. 15.
    V. Zakharov, S. Manakov, S. Novikov, L. Pitaevski, Soliton theory, Moscow, Nauka, 1980.Google Scholar
  16. 16.
    B. Dubrovin, Uspekhi Mat. Nauk 36 No 2 (1981),11–80.MathSciNetGoogle Scholar
  17. 17.
    I. Krichever, S. Novikov, Uspekhi Mat. Nauk, 35 No 6 (1980).Google Scholar
  18. 18.
    I. Krichever, Uspekhi Mat. Nauk, 44 No 2 (1989), 121.MathSciNetGoogle Scholar
  19. 19.
    B. Dubrovin, I. Krichever, S. Novikov, Integrable systems, VINITY AN USSR, 1985.Google Scholar
  20. 20.
    I. Krichever, Uspekhi Mat. Nauk 32 No 6 (1977), 180.Google Scholar
  21. 21.
    I. Krichever, Topological minimal models and dispersionless Lax equations, preprint ISI Turin (to appear in Comm. Math. Phys. (1991).Google Scholar
  22. 22.
    E. Verlinder, H. Verlinder, A solution of two-dimensional topological quantum gravity, preprint IASSNS-HEP-90/40, PUPT-1176 (1990).Google Scholar
  23. 23.
    M. Sato, Y. Sato Soliton equations as dynamical systems in an infinite dimensional Grassmann manifolds, in Nonlinear Partial Differential equations in Applied Sciences (North-Holland, Amsterdam, 1982).Google Scholar
  24. 24.
    E. Data, M. Kashivara, M. Jimbo, T. Miva Transformation groups for soliton equations, in Nonlinear Integrable systems - Classical Theory and Quantum Theory (World Scientific, Singapore, 1983).Google Scholar
  25. 25.
    B. Dubrovin, I. Krichever, S. Novikov, Soviet Doklady 229 No 1 (1976), 15.Google Scholar
  26. 26.
    A. Gurevich, L. Pitaevskii, JETP 65 No 3 (1973), 590.Google Scholar
  27. 27.
    H. Flashka, M. Forest, L.McLaughlin, Comm. Pure and Appl. Math. 33 (6).Google Scholar
  28. 28.
    S. Yu. Dobrokhotov, V. P. Maslov, Soviet Scientific Reviews,Math. Phys. Rev. OPA Amsterdam 3 (1982), 221–280.MathSciNetzbMATHGoogle Scholar
  29. 29.
    V. E. Zakhavor, Funk. Anal. i Pril. 14 (1980), 89.CrossRefGoogle Scholar
  30. 30.
    Y. Kodama, J. Gibbons, Phys. Lett. 135A (1989), 171.MathSciNetADSGoogle Scholar
  31. 31.
    I. Krichever, Funk. Anal. i Pril. 22(3) (1988), 37–52.Google Scholar
  32. 32.
    T Eguchi, S.-K. Yang, N = 2 superconformal models as topological field theoreies, preprint of Tokyo University UT-564 (1990).Google Scholar
  33. 33.
    K.Li, Topological gravity with minimal matter, Caltech-preprint CALT-68–1662.Google Scholar
  34. 34.
    E. Martinec, Phys. Lett. 217B (1989), 431.MathSciNetADSGoogle Scholar
  35. 35.
    C. Vafa, N. Warner, Phys. Lett. 218B (1989), 51.MathSciNetADSGoogle Scholar
  36. 36.
    W. Lerche, C. Vafa, N.P. Warner, Nucl. Phys. B324 (1989), 427.MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Yu. Makeeno, Loop equations in matrix models and in 2D quantum gravity, Submitted to Mod. Phys. Lett. A.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • I. Krichever
    • 1
  1. 1.Landau Institute for Theoretical PhysicsUSSR Academy of SciencesUSSR

Personalised recommendations