Comparative Study of Prostatic Carcinoma Bone Metastasis among Japanese in Japan and Japanese Americans and Whites in Hawaii

  • Taizo Shiraishi
  • Shin-ichiro Atsumi
  • Ryuichi Yatani
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 324)


Metastatic prostate carcinomas in autopsy cases from three populations 49 cases of indigenous Japanese, 29 cases of Japanese Americans and 14 from whites in Hawaii) were compared in terms of their clinicopathological, immunohistochemical (tenascin and ras p21) and lectin binding (Helix Pomatia antigen, HPA) properties. Only the clinicopathological features were analyzed in the cases of whites in Hawaii.

The results indicate that poorly differentiated carcinoma is less common, whereas distant metastasis is more frequent, in indigenous Japanese. Some of the Japanese-American cases with poorly differentiated carcinomas did not show any distant metastases. HPA and ras p21 expression are more common, but tenascin is less common in indigenous Japanese. HPA expression is more common in cases with metastasis, especially with metastasis to the bone and other organs, than nonmetastatic cases. Prostatic cancer cases in indigenous Japanese were more aggressive biologically than those in Japanese Americans, but no phenotypic differences were seen relevant to the presence or absence of bone metastases.


Prostatic Cancer Bone Metastasis Autopsy Case Lectin Binding Metastatic Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yatani R., Takanari H., Miura S., Nakano H., Seto K., Clinicopathological study on prostatic cancer, in: “Basic and Clinical Research on Prostatic Cancer,” pp 35–45(in Japanese) Shida K., ed., Kinbarasyuppan, Tokyo (1988).Google Scholar
  2. 2.
    Yatani R., Kusano K., Shiraishi T., Takuji H., Stemmermann G.N., Latent prostatic arcinoma: pathological and epidemiological aspects, Jpn. J. Clin. Oncol. 19:226–319 (1989).Google Scholar
  3. 3.
    Yatani R., Chigusa K., Akazaki K., Stemmermann G.N., Welsh R. A., Correa P., Geographic pathology of latent prostatic carcinoma, Int. J. Cancer. 29:611–616 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    Liotta L.A., Tumor invasion and metastasis-role of the extracellular matrix, Cancer Res. 34:187–220 (1986).Google Scholar
  5. 5.
    Oike Y., Hiraiwa H., Kawakatsu H., Nishikai M., Okinaka T., Suzuki T., Okada A., Yatani R., Sakakura T., Isolation and characterization of human fibroblast tenascin, Int. J. Dev. Biol. 34:309–317 (1990).PubMedGoogle Scholar
  6. 6.
    Yoshida K., Hamatani E., Koide H., Nakamura N., Akiyama M., Tsuchiyama H., Nakayama E., Shiku H., Preparation of antiras MW 21,000 protein monoclonal antibodies and immunohistochemical analyses on expression of ras genes in human stomach and thyroid cancers. Cancer Res. 48:5503–5509, (1988).PubMedGoogle Scholar
  7. 7.
    Viola M.V., Fromowitz F., Oravez S., Deb S., Schlom J., Ras oncogene p21 expression is increased in premalignant lesion and high grade bladder carcinoma, J. Exp. Med. 161:1213–1218 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    Chiquet M., Fambrough D.M., Chick myotendinous antigen, 1. A monoclonal antibody as a marker for tendon and muscle morphogenesis, J. Cell. Biol. 98:1926–1936 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    Mackie E., Halfter W., Liverani D., Induction of tenascin in healing wounds, J. Cell. Biol 107:2757–2767 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    Sakakura T., Jing N., Saga Y., Tsukamoto T., Kusakabe M., Role of extracellular matrix tenascin in carcino-embryonic development, Taisya 27:137–146 (1990). (in Japanese)Google Scholar
  11. 11.
    Land H.G., Parada G., Weiberg R., Cellular oncogenes and multi-step carcinogenesis, Science 222:771–778 (1984).CrossRefGoogle Scholar
  12. 12.
    Lundy J., Grimson R., Mishiriki Y., Chao S., Oravez S., Fromowitz F., Viola M.V., Elevated ras oncogene expression correlates with lymph node metastases in breast cancer patients, J. Clin. Oncol. 4:1321–1325 (1986).PubMedGoogle Scholar
  13. 13.
    Ohuchi N., Thor A., Page D.L., Hand P.H., Halter S.A., Scholom J., Expression of the 21,000 molecular weight ras protein in a spectrum of benign and malignant human mammary tissues, Cancer Res. 46:2511–2519 (1986).PubMedGoogle Scholar
  14. 14.
    Gallick G.E., Kurzock R., Kloetzer W.S., Arlinghaus R.B., Gutterman J.U., Expression of p21 ras in fresh primary and metastatic human colorectal tumors, Proc. Natl. Acad. Sci. 82:1795–1799 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    Michelassi F., Leuthner S., Lubienski M., Bostwick D., Rodgers J., Handocock M., Block G.E., Ras oncogene p21 levels parallel malignant potential of different human colonic benign conditions, Arch. Surg. 122:1414–1416 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    Kurzrock R., Gallick G.E., Gutterman J.U., Differential expression of p21 ras gene products among histological subtypes of fresh primary human lung tumors, Cancer Res. 46:1530–1534 (1986).PubMedGoogle Scholar
  17. 17.
    Tahara H., Yasui W., Taniyama S., Ochiai A., Yamamoto T., Nakajo S., Yamamoto M., Ras oncogene product in human gastric carcinoma: correlation with invasiveness, metastasis or prognosis, Jap. J. Cancer Res. (GANN) 77:517–522 (1986).Google Scholar
  18. 18.
    Almoguera C., Shibata D., Forrester K., Martin J., Arnheim N., Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes, Cell 53:549–554 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    Viola M.V., Fromowitz F., Oravez S., Deb S., Finkel G., Lundy J., Hand P., Thor A., Schlom J., Expression of ras oncogene p21 in prostate cancer, New Eng. J. 314:132–137 (1986).Google Scholar
  20. 20.
    Sumiya H., Akakura K., Fuse H., Shimazaki J., Expression of ras oncogene product (ras p21) in prostatic cancer, Jap. J. Clin. Urol. 41:703–705 (1987). (in Japanese)Google Scholar
  21. 21.
    Steck R.A., Nicolson G.L, Cell surface glycoprotein of 13762 NF mammary adenocarcinoma clones of differing metastatic potentials, Exp. Cell Res. 147:255–267 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    Altevogt P., Fogel M.,. Cheingsong-Popov R., Dennis J., Roninson P., Schirrmcher V., Different patterns of lectin binding and cell surface sialylation detection on related high and low metastatic tumor lines. Cancer Res. 43:5138–5144 (1983).PubMedGoogle Scholar
  23. 23.
    Irimura T., Nicolson G.L., Carbohydrate chain analysis by lectin binding to electrophoretically separated glycoproteins from B16 melanoma sublines of various metastatic properties, Cancer Res. 44:791–798 (1984).PubMedGoogle Scholar
  24. 24.
    Ostrowski L.E., Ahsan A., Suthar B.P., Pagast P., Bain D.L., Wong C., Patel A., Schultz R.M., Selective inhibition of proteolytic enzyme in vivo mouse model for experimental metastasis, Cancer Res. 46:4121–4128 (1986).PubMedGoogle Scholar
  25. 25.
    Sunkara P.S., Rosenberger A.L., Antimetastatic activity of DL-(alpha)-difluoromethylornithine, an inhibitor of polyamine biosysthesis, in mice, Cancer Res. 47:933–935 (1987).PubMedGoogle Scholar
  26. 26.
    Leathern A.J. and Brooks S.A. Predictive value of lectin binding on breast cancer recurrence and survival, Lancet 1054–1056 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Taizo Shiraishi
    • 1
  • Shin-ichiro Atsumi
    • 1
  • Ryuichi Yatani
    • 1
  1. 1.Department of PathologyMie University School of MedicineTsu, MieJapan

Personalised recommendations