Advertisement

Are Visual Hierarchies in the Brains of the Beholders? Constancy and Variability in the Visual System of Birds and Mammals

  • Harvey J. Karten
  • Toru Shimizu
Part of the NATO ASI Series book series (NSSA, volume 222)

Abstract

Contemporary concepts of the organization of the visual system began to emerge in the mid to late 19th century. It had long been appreciated that penetrating wounds of the occipital region of the brain resulted in blindness. Lesions of more lateral portions of the hemisphere often resulted in varying degrees of visual agnosias, though it was not until the middle third of the twentieth century that the contribution of such cortical areas to visual performance became an object of interest.

Keywords

Visual Pathway Optic Tectum Striate Cortex Middle Temporal Extrastriate Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allman, J., 1977, Evolution of the visual system in the early primates, in: “Progress in Psychobiology and Physiological Psychology. Vol. 7,” J. M. Sprague, and A. M. Epstein, eds., Academic Press, New York.Google Scholar
  2. Antonini, A., Berlucchi, G. and Sprague, J. M., 1985, Cortical systems for visual pattern discrimination in the cat as analyzed with the lesion method, in: “Pattern recognition mechanisms,” C. Chagas, R. Gattass, and C. Gross, eds., Springer-Verlag, New York.Google Scholar
  3. Chalupa, L.M., 1984, Visual physiology of the mammalian superior colliculus, in: “Comparative neurology of the optic tectum,” H. Vanegas, ed., Plenum Press: New York.Google Scholar
  4. Felleman, D. J. and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex, 1: 1.Google Scholar
  5. Fernandez, V. and Bravo, H., 1974, Autoradiographic study of development of the cerebral cortex in the rabbit, Brain Behav Evol., 9: 317.Google Scholar
  6. Frost, B. J., 1982, Mechanisms for discriminating object motion from the self-induced motion in the pigeon, in: “Analysis of visual behavior,” D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield, eds., MIT Press, Cambridge, MA.Google Scholar
  7. Hodos, W., 1976, Vision and the visual system: A bird’s eye-view, in: “Progress in Psychobiology and Physiological Psychology. Vol. 6,” J. M. Sprague, and A. M. Epstein, eds., Academic Press, New York.Google Scholar
  8. Hodos, W., Bonbright, J. C., Jr. and Karten, H. J., 1973, Visual intensity and pattern discrimination deficits after lesions of the thalamofugal visual pathway in pigeons, L Comp. Physiol. Psych., 148: 447.Google Scholar
  9. Hodos, W. and Bonbright, J. C., Jr., 1974, Intensity difference thresholds in pigeons after the tectofugal and thalamofugal visual pathways, J Comp. Physiol. Psych? 87: 1013.CrossRefGoogle Scholar
  10. Hodos, W. and Karten, H. J., 1966, Brightness and pattern discrimination deficits in the pigeon after lesions of nucleus rotundus, Exp, Brain Res., 2: 151.CrossRefGoogle Scholar
  11. Hodos, W. and Karten, H. J., 1970, Visual intensity and pattern discrimination deficits after lesions of ectostriatum in pigeons, J. Comp. Neurol., 140: 53.PubMedCrossRefGoogle Scholar
  12. Hodos, W. and Karten, H. J., 1974, Visual intensity and pattern discrimination deficits after lesions of the optic lobe in pigeons, Brain Behay. Evol., 9: 165.CrossRefGoogle Scholar
  13. Hodos, W., Macko, K. A. and Bessette, B. B., 1984, Near-field visual acuity changes after visual system lesions in pigeons. II. Telencephalon, Behay Brain Res., 13: 15.CrossRefGoogle Scholar
  14. Jarvis, C. D., 1974, Visual discrimination and spatial localization deficits after lesions of the tectofugal pathway in pigeons, Brain Behay. Evol., 9: 195.CrossRefGoogle Scholar
  15. Karten, H. J. and Shimizu, T., 1989, The origins of neocortex: connections and lamination as distinct events in evolution, J.Cog. Neurosci., 1: 291.CrossRefGoogle Scholar
  16. Kertzman, C. and Hodos, W. (1988). Size-difference thresholds after lesions of thalamic visual nuclei in pigeons, Visual Neurosci. 1: 83.Google Scholar
  17. Macko, K. A. and Hodos, W., 1984, Near-field visual acuity changes after visual system lesions in pigeons. I. Thalamus, Behay. Brain Res., 13: 1.CrossRefGoogle Scholar
  18. Movshon, J. A., Adelson, E. H., Gizzi, M. S. and Newsome, W. T., 1985, The analysis of moving visual patterns, in: “Pattern ecognition mechanisms,” C. Chagas, R. Gattass, and C. Gross, eds., Springer-Verlag, New York.Google Scholar
  19. Rodman, H. R., Gross, C. G. and Albright, T. D., 1989, Afferent basis of visual response properties in area MT of the macaque: Effects of striate cortex removal, J Neurosci., 9: 2033.Google Scholar
  20. Rogers, L. J. and Bell, G. A., 1989, Different rates of functional development in the two visual systems of the chicken revealed by [14C]2-deoxyglucose, Dev. Brain Res., 49: 161.CrossRefGoogle Scholar
  21. Schneider, G. E., 1969, Two visual systems, Science 163: 895.Google Scholar
  22. Smart, I. H. M. and Smart, M., 1977, The location of nuclei of different labelling intensities in autoradiographs of the anterior forebrain of postnatal mice injected with [3H] thymidine on the eleventh and twelfth days post-conception. J. Anat. 116: 515.Google Scholar
  23. Sprague, J. M., Hughes, H. C. and Berlucchi, G., 1981, Cortical mechanisms in pattern and form perception, in: “Brain mechanisms and perceptual awareness,” O. Pompeiano, and C. A. Marsan, eds., Raven press, New York.Google Scholar
  24. Ullman, S., 1986, Artificial intelligence and the brain: Computational studies of the visual system, Ann. Rev. Neurosci. 9: 1.PubMedCrossRefGoogle Scholar
  25. Weiskrantz, L., 1986, “Blindsight: A case study and implications,” Clarendon Press: Oxford.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Harvey J. Karten
    • 1
  • Toru Shimizu
    • 2
  1. 1.Department of NeurosciencesUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of PsychologyUniversity of South FloridaTampaUSA

Personalised recommendations