Advertisement

Mechanisms of Retrovirus Replication

  • Paul A. Luciw
  • Nancy J. Leung
Chapter
Part of the The Viruses book series (VIRS)

Abstract

The retrovirus family encompasses a diverse group of metazoan viruses that have a replication step whereby DNA is synthesized from virion RNA in a process designated reverse transcription (Temin and Baltimore, 1972) (Fig. 1; Table I) (see Chapter 1). Molecular mechanisms in the virus life cycle are reviewed in this chapter, and the focus is on retroviruses containing genes for virion proteins but lacking genes that regulate viral expression. Retroviruses with simple genomes express the polyproteins (i.e., precursor polypeptides) encoded by the following genes: gag for group-specific antigen in the virion core, pol for RNA-dependent DNA polymerase, and env for the viral envelope glycoproig. 2). This genome organization is a feature of three genera in the retrovirus family, and both horizontally transmitted exogenous viruses and vertically transmitted endogenous viruses are included (Table II) (see Chapters 1 and 2) (Coffin, 1982b; Coffin and Stoye, 1985). Retroviruses with complex genomes (i.e., lentiviruses, spumaviruses, and certain oncoviruses) encode regulatory genes as well as virion proteins; replication of these viruses is discussed in other chapters and volumes in this series (see also Green and Chen, 1990; Mergia and Luciw, 1991; Cullen, 1991; Haseltine, 1991). Nonetheless, many aspects of the life cycle of retroviruses with simple genomes are shared by all retroviruses.

Reference

  1. Mann, R., and Baltimore, D., 1985, Varying the position of a retrovirus packaging se-quence results in the encapsidation of both unspliced and spliced mRNAs, J. Virol. 54:401.PubMedGoogle Scholar
  2. Mann, R. S., Mulligan, R., and Baltimore, D., 1983, Construction of a retrovirus packag-ing mutant and its use to produce helper-free selective retrovirus, Cell 32:871.CrossRefGoogle Scholar
  3. Marsh, L. E., and Guilfoyle, T. J., 1987, Cauliflower mosaic virus replication interme-diates are encapsidated into virion-like particles, Virology 161:129.PubMedCrossRefGoogle Scholar
  4. Mason, W. S., Taylor, J. M., and Hull, R., 1987, Retroid virus genome replication, Adv. Virus Res. 32:35.PubMedCrossRefGoogle Scholar
  5. Mathias, S. L., Scott, A. F., Kazazian, H. H., Boeke, J. D., and Gabriel, A., 1991, Reverse transcriptase encoded by a human transposable element, Science 254:1801.CrossRefGoogle Scholar
  6. Maul, D. H., Zaiss, C. P., Mackenzie, M. R., Shiigi, S. M., Marx, P. A., and Gardner, M. B., 1988, Simian retrovirus D subgroup 1 has a broad cellular tropism for lymphoid and nonlymphoid cells, J. Virol. 62:1768.PubMedGoogle Scholar
  7. Maurer, B., Bannert, H., Darai, G., and Flugel, R. M., 1988, Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus, J. Virol. 62:1590.PubMedGoogle Scholar
  8. McClure, M. O., Marsh, M., and Weiss, R. A., 1988, Human immunodeficiency virus infection of CD4-bearing cells occurs by a pH-independent mechanism, EMBO J. 7:513.PubMedGoogle Scholar
  9. McClure, M. O., Sommerfelt, M. A., Marsh, M., and Weiss, R. A., 1990, The pH independence of mammalian retrovirus infection, J. Gen. Virol. 71:767.PubMedCrossRefGoogle Scholar
  10. McCune, J. M., Rabin, L. B., Feinberg, M. B., Lieberman, M., Kosek, J. C., Reyes, J. R., and Weissman, I. L., 1988, Endoproteolytic cleavage of gp160 is required for activation of human immunodeficiency virus, Cell 53:55.PubMedCrossRefGoogle Scholar
  11. McDougal, J. S., Kennedy, M. S., Sligh, J. M., Cort, S. P., Mawle, A., and Nicholson, J. K. A., 1986, Binding of HTLV-III/LAV to T4+ cells by a complex of the 110K viral protein and the T4 molecule, Science 231:382.PubMedCrossRefGoogle Scholar
  12. McLachlin, J. R., Cornetta, K., Eglitis, K., and Anderson, W. F., 1990, Retroviral-mediated gene transfer, Prog. Nucleic Acid Res. 38:91.CrossRefGoogle Scholar
  13. McNally, M. T., and Beemon, K., 1992, Intronic sequences and 3’ splice sites control Rous sarcoma virus RNA splicing, J. Virol. 66:6.PubMedGoogle Scholar
  14. McNally, M. T., Gontarek, R. R., and Beemon, K., 1991, Characterization of Rous sar-coma virus intronic sequences that negatively regulate splicing, Virology 185:99.PubMedCrossRefGoogle Scholar
  15. Meek, T. D., Dayton, B. D., Metcalf, B. W., et al., 1989, Human immunodeficiency virus 1 protease expressed in Escherichia coli behaves as a dimeric aspartic protease, Proc. Natl. Acad. Sci. USA 86:1841.PubMedCrossRefGoogle Scholar
  16. Mehdi, H., Ono, E., and Gupta, K. C., 1990, Initiation of translation at CUG, GUG, and ACG codons in mammalian cells, Gene 91:173.PubMedCrossRefGoogle Scholar
  17. Mellor, J., Fulton, S. M., Dobson, J., Wilson, K., Kingsman, S. M., and Kingsman, A. J., 1985, A retrovirus-like strategy for expression of a fusion protein encoded by the yeast transposon Tyl, Nature 313:243.PubMedCrossRefGoogle Scholar
  18. Mercurio, F., and Karin, M., 1989, Transcription factors AP-3 and AP-2 interact with the SV 40 enhancer in a mutually exclusive manner, EMBO J. 8:1455.Google Scholar
  19. Mergia, A., and Luciw, P. A., 1991, Replication and regulation of primate foamy viruses, Virology 184:475.PubMedCrossRefGoogle Scholar
  20. Meric, C., and Goff, S. P., 1989, Characterization of Moloney murine leukemia virus mutants with single amino acid substitutions in the Cys-His box of the nucleocapsid protein, J. Virol. 63:1558.PubMedGoogle Scholar
  21. Merle, C., and Spahr, P., 1986, Rous sarcoma virus nucleic acid binding protein p12 is necessary for viral 70S RNA dimer formation and packaging, J. Virol. 60:450.Google Scholar
  22. Meric, C., Darlix, J. L., and Spahr, P. F., 1984, It is Rous sarcoma virus p12 and not p19 that binds tightly to Rous sarcoma virus RNA, J. Mol. Biol. 173:531.PubMedCrossRefGoogle Scholar
  23. Meric, C., Gouilloud, E., and Spahr, P., 1988, Mutations in Rous sarcoma virus nucleocapsid protein p12 (NC): Deletions of Cys-His boxes, J. Virol. 62:3228.Google Scholar
  24. Miksicek, R., Borgmeyer, W., and Nowock, J., 1987, Interaction of the TGGCA-binding protein with upstream sequences is required for efficient transcription of mouse mammary tumor virus, EMBO J. 6:1355.PubMedGoogle Scholar
  25. Miller, A. D., 1990a, Retrovirus packaging cells, Hum. Gene Ther. 1:5.PubMedCrossRefGoogle Scholar
  26. Miller, A. D., 1990b, Progress toward human gene therapy, Blood 76:271.PubMedGoogle Scholar
  27. Miller, A. D., Jolly, D. J., Friedman, T., and Verma, I. M., 1983, A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): Gene transfer into cells obtained from humans deficient in HPRT, Proc. Natl. Acad. Sci. USA 80:4709.PubMedCrossRefGoogle Scholar
  28. Miller, C. K., and Temin, H. K., 1986, Insertion of several different DNAs in reticuloendotheliosis virus strain T suppresses transformation by reducing the amount of subgenomic DNA, J. Virol. 58:75.PubMedGoogle Scholar
  29. Miller, D. G., and Miller, A. D., 1992, Tunicamycin treatment of CHO cells abrogates multiple blocks to retroviral infection, one of which is due to a secreted inhibitor, J. Virol. 66:78.PubMedGoogle Scholar
  30. Miller, D. G., Adam, M. A., and Miller, A. D., 1990, Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection, Mol. Cell. Biol. 10:4239.PubMedGoogle Scholar
  31. Miller, J. T., and Stoltzfus, C. A., 1992, Regions containing cis-acting splicing signals facilitate 3’-end processing of avian sarcoma virus RNA, J. Virol. in press.Google Scholar
  32. Miller, M., Jaskolski, M., Mohana Rao, J. K., Leis, J., and Wlodawer, A., 1989, Crystal structure of a retroviral protease proves relationship to aspartic protease family, Nature 337:576.PubMedCrossRefGoogle Scholar
  33. Mitchell, P. M., and Tjian, R., 1989, Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins, Science 245:371.PubMedCrossRefGoogle Scholar
  34. Mitra, S., Goff, S., Gilboa, E., and Baltimore, D., 1979, Synthesis of a 600-nucleotide-long plus-strand DNA by virions of Moloney murine leukemia virus, Proc. Natl. Acad. Sci. USA 76:4355.PubMedCrossRefGoogle Scholar
  35. Mitsuya, H., Yarochan, R., and Broder, S., 1990, Molecular targets for AIDS therapy, Science 249:1533.PubMedCrossRefGoogle Scholar
  36. Mizuuchi, K., and Adzuma, K., 1991, Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: Evidence for a one-step transesterification mechanism, Cell 66:129.PubMedCrossRefGoogle Scholar
  37. Modak, M. J., and Marcus, S. L., 1977, Purification and properties of Rauscher leukemia virus DNA polymerase and selective inhibition of mammalian viral reverse transcriptase by inorganic phosphate, J. Biol. Chem. 252:11.PubMedGoogle Scholar
  38. Moelling, K., Bolognesi, D. P., Bauer, H., Busen, W., Plassmann, H. W., and Hausen, P., 1971, Association of viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA-DNA hybrids, Nature New Biol. 234:240.CrossRefGoogle Scholar
  39. Moore, R., Dixon, M., Smith, R., Peters, G., and Dickson, C., 1987, Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: Two frameshift suppression events are required for translation of gag and pol, J. Virol. 61:480.PubMedGoogle Scholar
  40. Mooslehner, K., Larls, U., and Harbers, K., 1990, Retroviral integration sites in transgenic Mov mice frequently map in the vicinity of transcribed regions, J. Virol. 64:3056.Google Scholar
  41. Morris, D. W., 1991, Molecular biology and pathogenesis of mouse mammary tumour virus, Rev. Med. Virol. 1:223.CrossRefGoogle Scholar
  42. Morris-Vasios, C., Kochan, J. P., and Skalka, A. M., 1988, Avian sarcoma-leukosis virus pol-endo proteins expressed independently in mammalian cells accumulate in the nucleus but can be directed to other cellular compartments, J. Virol. 62:349.PubMedGoogle Scholar
  43. Mount, S. M., and Rubin, G. M., 1985, Complete nucleotide sequence of the Drosophila transposable element copia: Homology between copia and retroviral proteins, Mol. Cell. Biol. 5:1630.PubMedGoogle Scholar
  44. Muller, M. M., Gerster, T., and Schaffner, W., 1988, Enhancer sequences and the regulation of gene transcription, Eur. J. Biochem. 176:485.PubMedCrossRefGoogle Scholar
  45. Mumm, S. R., and Grandgenett, D. P., 1991, Defining nucleic acid-binding properties of avian retrovirus integrase by deletion analysis, J. Virol. 65:1160.PubMedGoogle Scholar
  46. Munroe, D., and Jacobson, A., 1990, Tales of poly(A): A review, Gene 91:151.PubMedCrossRefGoogle Scholar
  47. Murphy, J. E., and Goff, S. P., 1988, Construction and analysis of deletion mutations in the U5 region of Moloney murine leukemia virus: Effects on RNA packaging and reverse transcription, J. Virol. 63:319.Google Scholar
  48. Nabel, G., and Baltimore, D., 1987, An inducible factor activates expression of human immunodeficiency virus in T cells, Nature 326:711.PubMedCrossRefGoogle Scholar
  49. Nanduri, V. B., and Modak, M. J., 1990, Lysine-329 of murine leukemia virus reverse transcriptase: Possible involvement in the template-primer binding function, Biochemistry 29:5258.PubMedCrossRefGoogle Scholar
  50. Navia, M. A., Fitzgerald, P. M. D., and McKeever, B. M., 1989, Three dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1, Nature 337:615.PubMedCrossRefGoogle Scholar
  51. Neil, J. C., Fulton, R., Rigby, M., and Stewart, M., 1991, Feline leukaemia virus: Generation of pathogenic and oncogenic variants, in: Retroviral Insertion and Oncogene Activation, (H. J. Kung and P. K. Vogt), pp. 67, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  52. Nigg, E. A., Baeuerle, P. A., and Luhrmann, R., 1991, Nuclear import-export: In search of signals and mechanisms, Cell 66:15.PubMedCrossRefGoogle Scholar
  53. Norton, P. A., and Coffin, J. M., 1987, Characterization of Rous sarcoma virus sequences essential for viral gene expression, J. Virol. 61:1171.PubMedGoogle Scholar
  54. Nusse, R., 1991, Insertional mutagenesis in mouse mammary tumorigenesis, in: Retroviral Insertion and Oncogene Activation, (H. J. Kung and P. K. Vogt), pp. 43–66, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  55. Oertle, S., and Spahr, P. F., 1990, Role of the gag polyprotein precursor in packaging and maturation of Rous sarcoma virus genomic RNA, J. Virol. 64:5757.PubMedGoogle Scholar
  56. O’Hara, B., Johann, S. V., Klinger, H. P., Blair, D. G., Rubinson, H., Dunn, K. J., Sass, P., Vitek, S. M., and Robbins, T., 1990, Characterization of a human gene conferring sensitivity to infection by Gibbon ape leukemia virus, Cell Growth Differ. 1:119.PubMedGoogle Scholar
  57. Olsen, J. C., Bova-Hill, C., Grandgenett, D. P., Quinn, T. P., Manfredi, J. P., and Swanstrom, R., 1990, Rearrangements in unintegrated retroviral DNA are complex and are the result of multiple genetic determinants. J. Virol. 64:5475.PubMedGoogle Scholar
  58. Olson, E. N., and Spizz, G., 1986, Fatty acylation of cellular proteins, J. Biol. Chem. 261:2458.PubMedGoogle Scholar
  59. Omer, C. A., and Faras, A. J., 1982, Mechanism of release of the avian retrovirus RNAtrp primer molecule from viral DNA by ribonuclease H during reverse transcription, Cell 30:797.PubMedCrossRefGoogle Scholar
  60. Onts, H., Kennedy, N., Skroch, P., Hynes, N. E., and Groner, B., 1985, Hormonal response region in the mouse mammary tumor virus long terminal repeat can be dissociated from the proviral promoter and has enhancer properties, Proc. Natl. Acad. Sci. USA 82:1020.CrossRefGoogle Scholar
  61. Oroszlan, S., and Luftig, R. B., 1990, Retroviral proteinases, in: Retroviruses—Strategies of Replication (R. Swanstrom and P. K. Vogt, eds.), pp. 153–185, Springer-Verlag, Berlin.Google Scholar
  62. O’Shea, E. K., Rutkowski, R., and Kim, P. S., 1989, Evidence that the leucine zipper is a coiled coil, Science 243:538.PubMedCrossRefGoogle Scholar
  63. Ou, C. Y., Boone, L. R., Koh, C. K., Tennant, R. W., and Yang, W. K., 1983, Nucleotide sequence of gag-pol regions that determine the Fv-1 host range property of BALB/c N-tropic and B-tropic murine leukemia viruses, J. Virol. 48:779.PubMedGoogle Scholar
  64. Owens, R., Dubay, J. W., Hunter, E., and Compans, R. W., 1991, Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells, Proc. Natl. Acad. Sci. USA 88:3987.PubMedCrossRefGoogle Scholar
  65. Ozer, J., Faber, M., Chalkley, R., and Sealy, L., 1990, Isolation and characterization of a cDNA clone for the CCAAT transcription factor EFIa reveals a novel structural motif, J. Biol. Chem. 36:22143.Google Scholar
  66. Palmiter, R. D., Gagnon, J., Vogt, V. M., Ripley, S., and Eisenman, R. N., 1978, The NH2-terminal sequence of the avian oncovirus gag precursor polyprotein (Pr76gag), Virology 91:423.PubMedCrossRefGoogle Scholar
  67. Panganiban, A. T., 1988, Retroviral gag gene amber codon suppression is caused by an intrinsic cis-acting component of the viral mRNA, J. Virol. 62:3574.PubMedGoogle Scholar
  68. Panganiban, A. T., and Fiore, D., 1988, Ordered interstrand and intrastrand DNA transfer during reverse transcription, Science 241:1964.CrossRefGoogle Scholar
  69. Panganiban, A. T., and Temin, H. M., 1983, The terminal nucleotides of retrovirus DNA are required for integration but not virus production, Nature 306:155.PubMedCrossRefGoogle Scholar
  70. Panganiban, A. T., and Temin, H. M., 1984a, Circles with two tandem LTRs are precur-sors to integrated retrovirus DNA, Cell 36:673.PubMedCrossRefGoogle Scholar
  71. Panganiban, A. T., and Temin, H. M., 1984b, The retrovirus pol gene encodes a product required for DNA integration: Identification of a retrovirus int locus, Proc. Natl. Acad. Sci. USA 81:7885.PubMedCrossRefGoogle Scholar
  72. Parslow, T. G., Blair, D. L., Murphy, W. J., and Granner, D. K., 1984, Structure of the 5’ ends of immunoglobulin genes: A novel conserved sequence, Proc. Natl. Acad. Sci. USA 81:2650.PubMedCrossRefGoogle Scholar
  73. Pathak, V. K., and Temin, H. M., 1990a, Broad spectrum of in vivo forward mutations, hypermutations, and mutational hot-spots in a retroviral shuttle vector after a single replication cycle: Substitutions, frameshifts, and hypermutations, Proc. Natl. Acad. Sci, USA 87:6019.PubMedCrossRefGoogle Scholar
  74. Pathak, V. K., and Temin, H. M., 1990b, Broad spectrum of in vivo forward mutations, hypermutations, and mutational hot-spots in a retroviral shuttle vector after a single replication cycle: Deletions and deletions with insertions, Proc. Natl. Acad. Sci. USA 87:6024.PubMedCrossRefGoogle Scholar
  75. Pato, M. L., 1989, Bacteriophage Mu, in: Mobile DNA (D. E. Berg and M. M. Howe, eds.), pp. 23–52, American Society for Microbiology, Washington, D.C.Google Scholar
  76. Pauza, C. D., and Price, T. M., 1988, Human immunodeficiency virus infection of T cells and monocytes proceeds via receptor-mediated endocytosis, J. Cell Biol. 107:959.PubMedCrossRefGoogle Scholar
  77. Payne, G. S., Courtneidge, S. A., Crittenden, L. B., Fadley, A. M., Bishop, J. M., and Varmus, H. E., 1981, Analyses of avian leukosis virus DNA and RNA in bursal tumors suggest a novel mechanism for retroviral oncogenesis, Cell 23:311.PubMedCrossRefGoogle Scholar
  78. Payne, G. S., Bishop, J. M., and Varmus, H. E., 1982, Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas, Nature 295:209.PubMedCrossRefGoogle Scholar
  79. Payvar, F. D., DeFranco, D., Firestone, G. L., Edgar, B., Wrange, O., Okret, S., Gustafsson, J. A., and Yamamoto, K., 1983, Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region, Cell 35:381.PubMedCrossRefGoogle Scholar
  80. Pearl, L. H., and Taylor, W. R., 1987, Sequence specificity of retroviral proteases, Nature 328:482.PubMedCrossRefGoogle Scholar
  81. Perez, L. G., and Hunter, E., 1987, Mutations within proteolytic cleavage site of the Rous sarcoma virus glycoprotein that block processing to gp85 and gp37, J. Virol. 61:1609.PubMedGoogle Scholar
  82. Perez, L. G., Davis, G. L., and Hunter, E., 1987, Mutants of the Rous sarcoma virus envelope glycoprotein that lack the transmembrane anchor and cytoplasmic domains: Analysis of intracellular transport and assembly into virions, J. Virol. 61:2981.PubMedGoogle Scholar
  83. Perlmann, T., and Wrange, O., 1988, Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome, EMBO J. 7:3073.Google Scholar
  84. Perucho, M., Hanahan, D., and Wigler, M., 1980, Genetic and physical linkage of exogenous sequences in transformed cells, Cell 22:309.PubMedCrossRefGoogle Scholar
  85. Peters, G. G., and Hu, J., 1980, Reverse transcriptase as the major determinant for selective packaging of tRNAs into avian sarcoma virus particles, J. Virol. 36:692.PubMedGoogle Scholar
  86. Petropoulos, C. J., and Hughes, S. H., 1991, Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells, J. Virol. 65:3728.PubMedGoogle Scholar
  87. Pettit, S. C., Simsic, J., Loeb, D. D., Everitt, L., Hutchison, C. A., and Swanstrom, R., 1991, Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the structural requirements of the P1 amino acid, J. Biol. Chem. 266:14539.PubMedGoogle Scholar
  88. Picard, D., Salser, S. J., and Yamamoto, K. R., 1988, A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor, Cell 54:1073.PubMedCrossRefGoogle Scholar
  89. Pillemer, E. A., Kooistra, D. A., Witte, O. N., and Weissman, I. L., 1986, Monoclonal antibody to the amino-terminal L sequence of murine leukemia virus glycosylated gag polyproteins demonstrates their unusual orientation in the cell membrane, J. Virol. 57:413.PubMedGoogle Scholar
  90. Pina, B., Bruggemeier, U., and Beato, M., 1990, Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter, Cell 60:719.PubMedCrossRefGoogle Scholar
  91. Pinter, A., 1989, Functions of murine leukemia virus envelope gene products in leukemogenesis, in: Retroviruses and Disease (H. Hanafusa, A. Pinter, and M. E. Pullman, eds.), pp. 21–39, Academic Press, San Diego, California.Google Scholar
  92. Pinter, A., and Honnen, W. J., 1988, O-linked glycosylation of retroviral envelope gene products, J. Virol. 62:1016.PubMedGoogle Scholar
  93. Pinter, A., Chen, T. E., Lowry, A., Cortez, N. G., and Silagi, S., 1986, Ecotropic murine leukemia virus-induced fusion of murine cells, J. Virol. 57:1048.PubMedGoogle Scholar
  94. Portis, J. L., Atee, F. J., and Evans, L. H., 1985, Infectious entry of murine retroviruses into mouse cells: Evidence of a post-adsorption step inhibited by acidic pH, J. Virol. 55:806.PubMedGoogle Scholar
  95. Power, M. D., Marx, P. A., Bryant, M. L., Gardner, M. B., Barr, P. J., and Luciw, P. A., 1986, Nucleotide sequence of SRV-1, a type-D simian acquired immunodeficiency syndrome retrovirus, Science 231:1567.PubMedCrossRefGoogle Scholar
  96. Prats, A. C., Sarih, L., Gabus, C., Litvak, S., Keith, G., and Darlix, J., 1988, Small finger protein of avian and murine retroviruses had nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA, EMBO J. 7:1136.Google Scholar
  97. Prats, A. C., Billy, G. D., Wang, P., and Darlix, J., 1989, CUG initiation codon used for the synthesis of a cell surface antigen coded by the murine leukemia virus, J. Mol. Biol. 205:363.PubMedCrossRefGoogle Scholar
  98. Preston, B. D., Poiez, B. J., and Loeb, L., 1988, Fidelity of HIV-1 reverse transcriptase, Science 242:1168.PubMedCrossRefGoogle Scholar
  99. Proudfoot, N. J., 1989, How RNA polymerase terminates transcription in higher eucaryotes, Trends Biochem. Sci. 14:105.PubMedCrossRefGoogle Scholar
  100. Proudfoot, N. J., 1991, Poly(A) signals, Cell 64:671.PubMedCrossRefGoogle Scholar
  101. Pryciak, P. M., Sil, A., and Varmus, H. E., 1992, Retroviral integration into minichromosomes in vitro, EMBO J. 11:291.PubMedGoogle Scholar
  102. Pryciak, P. M., and Varmus, H. E., 1992, Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection, Cell 69:769.PubMedCrossRefGoogle Scholar
  103. Ptashne, M., and Gann, A. A. F., 1990, Activators and targets, Nature 346:329.PubMedCrossRefGoogle Scholar
  104. Pulsinelli, G. A., and Temin, H. M., 1991, Characterization of large deletions occurring during a single round of retrovirus vector replication: Novel deletion mechanism involving errors in strand transfer, J. Virol. 65:4786.PubMedGoogle Scholar
  105. Putterman, D., Pepinsky, R. B., and Vogt, V. M., 1990, Ubiquitin in avian leukosis virus particles, Virology 176:633.PubMedCrossRefGoogle Scholar
  106. Quinn, T. P., and Grandgenett, D. P., 1988, Genetic evidence that the avian retrovirus DNA endonuclease domain of pol is necessary for viral integration, Virol. 62:2307.Google Scholar
  107. Quintrell, N., Hughes, S. H., Varmus, H. E., and Bishop, J. M., 1980, Structure of viral DNA and RNA in mammalian cells infected with avian sarcoma virus, J. Mol. Biol. 143:363.PubMedCrossRefGoogle Scholar
  108. Rasheed, S., Gardner, M. B., and Chan, E., 1976, Amphotropic host range of naturally occurring wild mouse leukemia viruses, J. Virol. 19:13.PubMedGoogle Scholar
  109. Reddy, S., DeGregori, J. V., von Melchner, H., and Ruley, H. E., 1991, Retrovirus promoter-trap vector to induce lacZ gene fusions in mammalian cells, J. Virol. 65:1507.PubMedGoogle Scholar
  110. Rein, A., 1982, Interference grouping of murine leukemia viruses: A distinct receptor for MCF-recombinant viruses in mouse cells, Virology 120:251.PubMedCrossRefGoogle Scholar
  111. Rein, A., McClure, M. R., Rice, N. R., Luftig, R. B., and Schultz, A. M., 1986, Myristylation site in Pr65gag is essential for virus particle formation by Moloney murine leukemia virus, Proc. Natl. Acad. Sci. USA 83:7246.PubMedCrossRefGoogle Scholar
  112. Renne, R., Friedl, E., Schweizer, M., Fleps, U., Turek, R., and Neumann-Haefelin, D., 1992, Genome organization and expression of simian foamy virus type 3 (SFV-3), Virology 186:597.PubMedCrossRefGoogle Scholar
  113. Repaske, R., Hartley, J. W., Kavlick, M. F., O’Neill, R. R., and Austin, J. B., 1989, Inhibition of RNase H activity and viral replication by single mutations in the 3’ region of Moloney murine leukemia virus reverse transcriptase, J. Virol. 63:1460.PubMedGoogle Scholar
  114. Resnick, R., Omer, C. A., and Faras, A. J., 1984, Involvement of retrovirus reversetranscriptase-associated RNase H in the initiation of strong-stop (+) DNA synthesis and the generation of the long terminal repeat, J. Virol. 51:813.PubMedGoogle Scholar
  115. Reuss, F., and Schaller, H. C., 1991, cDNA sequence and genomic characterization of intracisternal A-particle-related retroviral elements containing an envelope gene, J. Virol. 65:5702.PubMedGoogle Scholar
  116. Rhee, S. S., and Hunter, E., 1987, Myristylation is required for intracellular transport but not for assembly of D-type retrovirus capsids, J. Virol. 61:1045.PubMedGoogle Scholar
  117. Rhee, S. S., and Hunter, E., 1990a, A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus, Cell 63:77.PubMedCrossRefGoogle Scholar
  118. Rhee, S. S., and Hunter, E., 1990b, Structural role of the matrix protein of type D retroviruses in gag polyprotein stability and capsid assembly, J. Virol. 64:4383.PubMedGoogle Scholar
  119. Rhee, S. S., and Hunter, E., 1991, Amino acid substitutions within the matrix protein of type D retroviruses affect assembly, transport, and membrane association of a capsid, EMBO J. 10:535.PubMedGoogle Scholar
  120. Rhee, S. S., Hui, H., and Hunter, E., 1990, Preassembled capsids of type D retroviruses contain a signal sufficient for targeting specifically to the plasma membrane, J. Virol. 64:3844.PubMedGoogle Scholar
  121. Richter, A., Ozer, H. L., DesGroseillers, L., and Jolicoeur, P., 1984, An X-linked gene affecting mouse cell DNA synthesis also affects production of unintegrated linear and supercoiled DNA of murine leukemia virus, Mol. Cell. Biol. 4:151.PubMedGoogle Scholar
  122. Ridgway, A. A. G., Kung, H., and Fujita, D., 1989, Transient expression analysis of reticu-loendotheliosis virus long terminal repeat, Nucleic Acids Res. 17:3199.PubMedCrossRefGoogle Scholar
  123. Roberts, J. D., Bebenek, K., and Kunkel, T. A., 1988, The accuracy of reverse transcriptase from HIV-1, Science 242:11171.Google Scholar
  124. Roberts, J. D., Preston, B. D., Johnston, L. A., Soni, A., Loeb, L. A., and Kunkel, T., 1989, Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro, Mol. Cell. Biol. 9:469.PubMedGoogle Scholar
  125. Roberts, M. M., and Oroszlan, S., 1989, The preparation and biochemical characterization of intact capsids of equine infectious anemia virus, Biochem. Biophys. Res. Commun. 160:486.PubMedCrossRefGoogle Scholar
  126. Roberts, M. M., Copeland, T. D., and Oroszlan, S., 1991, In situ processing of a retroviral nucleocapsid protein by the viral proteinase, Protein Eng. 4:695.PubMedCrossRefGoogle Scholar
  127. Robinson, H., 1979, Inheritance and expression of chicken genes which are related to avian-leukosis sarcoma viruses, Curr. Top. Microbiol. Immunol. 83:1.CrossRefGoogle Scholar
  128. Robinson, H. L., and Gagnon, G. C., 1986, Patterns of proviral insertion in avian leukosis virus-induced lymphomas, J. Virol. 57:28.PubMedGoogle Scholar
  129. Robinson, W. S., 1990, Hepadnaviridae and their replication, in: Virology (B. N. Fields, D. M. Knipe, R. M. Chanock, et al. eds.), pp. 2137–2169, Raven Press, New York.Google Scholar
  130. Rohdewohld, H., Weiher, H., Reik, W., Jaenisch, R., and Breindl, M., 1987, Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites, J. Virol. 61:336.PubMedGoogle Scholar
  131. Rosen, C. A., Haseltine, W. A., Lenz, J., Ruprecht, R., and Cloyd, M. W., 1985a, Tissue selectivity of murine leukemia virus infection is determined by long terminal repeat sequences, J. Virol. 55:862.PubMedGoogle Scholar
  132. Rosen, C. A., Sodroski, J. G., and Haseltine, W. A., 1985b, Location of cis-acting regulatory sequences in human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat, Cell 41:813.PubMedCrossRefGoogle Scholar
  133. Rosenberg, S. A., Aebersold, P., Cornetta, K., et al. 1990, Gene transfer into humans—Immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction, N. Engl. J. Med. 323:570.PubMedCrossRefGoogle Scholar
  134. Roth, M. G., Srinivas, R. V., and Compans, R. W., 1983, Basolateral maturation of retroviruses in polarized epithelial cells, J. Virol. 45:1065.PubMedGoogle Scholar
  135. Roth, M. J., Tanese, N., and Goff, S. P., 1985, Purification and characterization of murine retroviral reverse transcriptase expressed in Escherichia coli, J. Biol. Chem. 260:9326.PubMedGoogle Scholar
  136. Roth, M. J., Tanese, N., and Goff, S. P., 1989a, Gene product of Moloney murine leukemia virus required for proviral integration is a DNA-binding protein, J. Mol. Biol 203:131.CrossRefGoogle Scholar
  137. Roth, M. J., Schwartzberg, P. L., and Goff, S. P., 1989b, Structure of the termini of DNA intermediates in the integration of retroviral DNA: Dependence on IN function and terminal DNA sequence, Cell 58:47.PubMedCrossRefGoogle Scholar
  138. Rothenberg, E., Smotkin, D., Baltimore, D., and Weinberg, R. A., 1977, In vitro synthesis of infectious DNA of murine leukaemia virus, Nature 296:122.CrossRefGoogle Scholar
  139. Rubin, H., 1960, A virus in chick embryos which induced resistance to in vitro infection by Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 46:1105.PubMedCrossRefGoogle Scholar
  140. Ruprecht, R. M., Mullaney, S., Bernard, L. D., Gama Sosa, M. A., Hom, R. C., and Fine-berg, R. W., 1990, Vaccination with a live retrovirus: The nature of the protective immune response, Proc. Natl. Acad. Sci. USA 87:5558.PubMedCrossRefGoogle Scholar
  141. Ryden, T. A., and Beemon, K., 1989, Avian retroviral long terminal repeats bind CCAAT/ enhancer-binding protein, Mol. Cell. Biol. 9:1155.PubMedGoogle Scholar
  142. Sali, A., Veerapandian, B., Cooper, J. B., Foundling, S. I., Hoover, D. J., and Blundell, T. L., 1989, High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: The analysis of the inhibitor binding and description of the rigid body shift in the enzyme, EMBO J. 8:2179.PubMedGoogle Scholar
  143. Samuel, C. E., 1989, Polycistronic animal virus RNAs, Prog. Nucleic Acid Res. 37:127.CrossRefGoogle Scholar
  144. Sandemeyer, S. B., Hansen, L. J., and Chalker, D. L., 1990, Integration specificity of retrotransposons and retroviruses, Annu. Rev. Genet. 24:491.CrossRefGoogle Scholar
  145. Sattentau, Q. J., and Weiss, R. A., 1988, The CD4 antigen: Physiological ligand and HIV receptor, Cell 52:631.PubMedCrossRefGoogle Scholar
  146. Sawadogo, M., and Sentenac, A., 1990, RNA polymerase B (II) and general transcription factors, Annu. Rev. Biochem. 59:711.PubMedCrossRefGoogle Scholar
  147. Sawyer, R. C., and Hanafusa, H., 1979, Comparison of the small RNAs of polymerasedeficient and polymerase-positive Rous sarcoma virus and another species of avian retrovirus, J. Virol. 29:863.PubMedGoogle Scholar
  148. Sawyer, R. C., Harada, F., and Dahlber, J. E., 1974, Virion-associated RNA primer for Rous sarcoma virus DNA synthesis: Isolation from uninfected cells, J. Virol. 28:279.Google Scholar
  149. Schatz, O., Mous, J., and LeGrice, S. F. J., 1990, HIV-1 RT-associated ribonuclease H displays both endonuclease and 3’-5’ exonuclease activity, EMBO J. 9:1171.Google Scholar
  150. Schawaller, M., Smith, G. E., Skehel, J. J., and Wiley, D. C., 1989, Studies with crosslinking reagents on the oligomeric structure of the env glycoprotein of HIV, Virology 172:367.PubMedCrossRefGoogle Scholar
  151. Scherdin, U., Rhodes, K., and Breindl, M., 1990, Transcriptionally active genome regions are preferred targets for retrovirus integration, J. Virol. 64:907.PubMedGoogle Scholar
  152. Schimmel, P., 1989, RNA pseudoknots that interact with components of the translation apparatus, Cell 58:9.PubMedCrossRefGoogle Scholar
  153. Schultz, A. M., and Oroszlan, S., 1983, In vivo modification of retroviral gag gene-encoded polyproteins by myristic acid, J. Virol. 46:355.Google Scholar
  154. Schultz, A. M., and Rein, A., 1989, Unmyristylated Moloney murine leukemia virus Pr65gag is excluded from virus assembly and maturation events, J. Virol. 63:2370.PubMedGoogle Scholar
  155. Schultz, A. M., Henderson, L. E., and Oroszlan, S., 1988, Fatty acylation of proteins, Annu. Rev. Cell Biol 4:611.PubMedCrossRefGoogle Scholar
  156. Schwartz, D. E., Tizard, R., and Gilbert, W., 1983, Nucleotide sequence of Rous sarcoma virus, Cell 32:853.PubMedCrossRefGoogle Scholar
  157. Schwartz, S., Felber, B. K., and Pavlakis, G. N., 1992, Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs, Mol. Cell. Biol. 12:207.PubMedGoogle Scholar
  158. Schwartzberg, P., Colicelli, J., and Goff, S. P., 1983, Deletion mutants of Moloney murine leukemia virus which lack glycosylated gag protein are replication competent, J. Virol. 46:538.PubMedGoogle Scholar
  159. Schwartzberg, P., Colicelli, J., and Goff, S. P., 1984a, Construction and analysis of deletion mutants in the pol gene of Moloney murine leukemia virus: A new viral function required for establishment of the integrated provirus, Cell 37:1043.PubMedCrossRefGoogle Scholar
  160. Schwartzberg, P., Colicelli, J., Gordon, M. L., and Goff, S. P., 1984b, Mutations in the gag gene of Moloney murine leukemia virus: Effects on production of virions and reverse transcriptase, J. Virol. 49:918.PubMedGoogle Scholar
  161. Sealey, L., and Chalkley, R., 1987, At least two nuclear proteins bind specifically to the Rous sarcoma virus long terminal repeat enhancer, Mol. Cell. Biol. 7:787.PubMedGoogle Scholar
  162. Seeger, C., Summers, J., and Mason, W. S., 1990, Viral DNA synthesis, in: Hepadnaviruses—Molecular Biology and Pathogenesis (W. S. Mason and C. Seeger, eds.), pp. 41–60, Springer-Verlag, Berlin.Google Scholar
  163. Shang, F., Huang, H., Revesz, K., Chen, H. C., Herz, R., and Pinter, A., 1991, Characterization of monoclonal antibodies against the human immunodeficiency virus matrix protein, pl7gag: Identification of epitopes exposed at the surfaces of infected cells, J. Virol. 65:4798.Google Scholar
  164. Shank, P. R., Hughes, S., Kung, H. J., Majors, J., Quintrell, N., Guntaka, R. V., Bishop, J. M., and Varmus, H. E., 1978, Mapping unintegrated avian sarcoma virus DNA: Termini of linear DNA bear 300 nucleotides present once or twice in two species of circular DNA, Cell 15:1383.PubMedCrossRefGoogle Scholar
  165. Shapiro, J. A., 1979, Molecular model for the transposition and replication of bacterio-phage Mu and other transposable elements, Proc. Natl. Acad. Sci. USA 76:1933.PubMedCrossRefGoogle Scholar
  166. Sharp, P. A., 1987, Splicing of messenger RNA precursors, Science 235:766.PubMedCrossRefGoogle Scholar
  167. Sherman, P. A., and Fyfe, J. A., 1990, Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleavage activity, Proc. Natl. Acad. Sci. USA 87:5119.PubMedCrossRefGoogle Scholar
  168. Shih, C., Stoye, J. P., and Coffin, J. M., 1988, Highly preferred targets for retrovirus integration, Cell 53:531.PubMedCrossRefGoogle Scholar
  169. Shinnick, T., Lerner, R., and Sutcliffe, J. G., 1981, Nucleotide sequence of Moloney murine leukemia virus, Nature 293:543.PubMedCrossRefGoogle Scholar
  170. Shoemaker, C. S., Goff, S. P., Gilboa, E., Paskind, M., Mitra, S. W., and Baltimore, D., 1980, Structure of a cloned circular Moloney murine leukemia virus molecule containing an inverted segment: Implications for retrovirus integration, Proc. Natl. Acad. Sci. USA 77:3932.PubMedCrossRefGoogle Scholar
  171. Shoemaker, C., Hoffman, J., Goff, S. P., and Baltimore, D., 1981, Intramolecular integration within Moloney murine leukemia virus DNA, J. Virol. 40:164.PubMedGoogle Scholar
  172. Short, M. K., Okenquist, S. A., and Lenz, J., 1987, Correlation of leukemogenic potential of murine retroviruses with transcriptional tissue preference of the long terminal repeats, J. Virol. 61:1067.PubMedGoogle Scholar
  173. Simpson, R. T., 1991, Nucleosome positioning: Occurrence, mechanisms, and functional consequences, Prog. Nucleic Acid Res. 40:143.CrossRefGoogle Scholar
  174. Sinn, E., Muller, W., Pattengale, P., Tepler, I., Wallace, R., and Leder, P., 1987, Coexpression of MMYT/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenes in vivo, Cell 49:465.PubMedCrossRefGoogle Scholar
  175. Skalka, A. M., 1989, Retroviral proteases: First glimpses at the anatomy of a processing machine, Cell 56:911.PubMedCrossRefGoogle Scholar
  176. Skuzeski, J. M., Nichols, L. M., Gesteland, R. F., and Atkins, J. F., 1991, The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons, J. Mol. Biol. 218:365.PubMedCrossRefGoogle Scholar
  177. Smith, J. K., Cywinski, A., and Taylor, J. M., 1984, Specificity of initiation of plus-strand DNA by Rous sarcoma virus, J. Virol. 52:314.PubMedGoogle Scholar
  178. Sommerfelt, M., and Weiss, R. A., 1990, Receptor interference groups of 20 retroviruses plating on human cells, Virology 176:58.PubMedCrossRefGoogle Scholar
  179. Sommerfelt, M. A., Williams, B. P., McKnight, A., Goodfellow, P. N., and Weiss, R. A., 1990, Localization of the receptor gene for type D simian retroviruses on human chromosome 19, J. Virol. 64:6214.PubMedGoogle Scholar
  180. Sorge, J., Ricci, W., and Hughes, S. H., 1983, Cis-acting packaging locus in the 115- nucleotide direct repeat of Rous sarcoma virus, J. Virol. 48:667.PubMedGoogle Scholar
  181. Soriano, P., Friedrich, G., and Lawinger, P., 1991, Promoter interactions in retrovirus vectors introduced into fibroblasts and embryonic stem cells, J Virol. 65:2314.PubMedGoogle Scholar
  182. Soriano, P., Gridley, T., and Jaenisch, R., 1989, Retroviral tagging in mammalian development and genetics, in: Mobile DNA (D. E. Berg and M. M. Howe, eds.), pp. 927–937, American Society for Microbiology, Washington, D.C.Google Scholar
  183. Speck, N. A., and Baltimore, D., 1987, Six distinct nuclear factors interact with the 75- base-pair repeat of the Moloney murine leukemia virus enhancer, Mol. Cell. Biol. 7:1101.PubMedGoogle Scholar
  184. Speck, N. A., Renjifo, B., Golemis, B., Frederickson, T. N., Hartley, J. W., and Hopkins, N., 1990a, Mutation of the core or adjacent LVb elements of the Moloney murine leukemia virus enhancer alters disease specificity, Genes Dev. 4:233.PubMedCrossRefGoogle Scholar
  185. Speck, N. A., Renjifo, B., and Hopkins, N., 1990b, Point mutations in the Moloney murine leukemia virus enhancer identify a lymphoid-specific viral core motif and 1,3- phorbol myristate acetate-inducible element, J. Virol. 64:543.PubMedGoogle Scholar
  186. Speers, W. C., Gautsch, J. W., and Dixon, F. J., 1980, Silent infection of murine embryonal carcinoma cells by Moloney murine leukemia virus, Virology 105:241.PubMedCrossRefGoogle Scholar
  187. Spiro, C., Li, J., Bestwick, R. K., and Kabat, D., 1988, An enhancer sequence instability that diversifies the cell repertoire for expression of a murine leukemia virus, Virology 164:350.PubMedCrossRefGoogle Scholar
  188. Stein, B. S., Gowda, S. D., Lifson, J. D., Penhallow, R. C., Bensch, K. G., and Engelman, E. G., 1987, pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane, Cell 49:659.PubMedCrossRefGoogle Scholar
  189. Stephens, E. B., and Compans, R. W., 1986, Nonpolarized expression of a secreted murine leukemia virus glycoprotein in polarized epithelial cells, Cell 47:1053.PubMedCrossRefGoogle Scholar
  190. Stephenson, J. R., 1980, Molecular Biology of RNA Tumor Viruses Academic Press, NewYork.Google Scholar
  191. Stewart, L., Schatz, G., and Vogt, V. M., 1990, Properties of avian retrovirus particles defective in viral protease, J. Virol. 64:5076.PubMedGoogle Scholar
  192. Stewart, L., and Vogt, V. M., 1991, Trans-acting viral protease is necessary and sufficient for activation of avian leukosis virus reverse transcriptase, J. Virol. 65:6218.PubMedGoogle Scholar
  193. Stewart, R. A., Hollingshead, P. G., and Pitts, S. L., 1988, Multiple regulatory domains in the mouse mammary tumor virus long terminal repeat revealed by analysis of fusion genes in transgenic mice, J. Virol. 8:473.Google Scholar
  194. Stoll, E., Billeter, M. A., Palmenberg, A., and Weissmann, C., 1977, Avian myeloblastosis virus RNA is terminally redundant: Implications for the mechanism of retrovirus replication, Cell 12:57.PubMedCrossRefGoogle Scholar
  195. Stoltzfus, C. M., 1988, Synthesis and processing of avian sarcoma retrovirus RNA, Adv. Virus Res. 35:1.PubMedCrossRefGoogle Scholar
  196. Stoltzfus, C. M., and Fogarty, C. J., 1989, Multiple regions in the Rous sarcoma virus src gene intron act in cis to affect the accumulation of unspliced RNA, J. Virol. 63:1669.PubMedGoogle Scholar
  197. Stoltzfus, C. M., Lorenzen, S. K., and Berberich, S. L., 1987a, Noncoding region between the env and src genes of Rous sarcoma virus influences splicing efficiency of the src gene 3’ splice site, J Virol. 61:177.Google Scholar
  198. Stoltzfus, C. M., Chang, L. J., Cripe, T. P., and Turek, L. P., 1987b, Efficient transformation by Prague A Rous sarcoma virus plasmid DNA requires the presence of cis-acting regions within the gag genes, J. Virol. 61:3401.PubMedGoogle Scholar
  199. Subramani, S., and Berg, P., 1983, Homologous and nonhomologous recombination in monkey cells, Mol. Cell. Biol. 3:11040.Google Scholar
  200. Suguna, K., Padlan, E. A., Smith, C. W., Carlson, W. D., and Davies, D. R., 1987, Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: Implications for a mechanism of action, Proc. Natl. Acad. Sci. USA 84:7009.PubMedCrossRefGoogle Scholar
  201. Summers, J., and Mason, W. S., 1982, Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate, Cell 29:403.PubMedCrossRefGoogle Scholar
  202. Swain, A. L., Miller, M. M., Green, J., Rich, D. H., Schneider, J., Kent, S. B. H., and Wlodawer, A., 1990, X-ray crystallographic structure of a complex between a synthetic protease of human immunodeficiency virus 1 and a substrate-based hydroxyethylamone inhibitor, Proc. Natl. Acad. Sci. USA 87:8805.PubMedCrossRefGoogle Scholar
  203. Swanstrom, R., and Vogt, P. K., eds., 1990, Retroviruses—Strategies of Replication Springer-Verlag, Berlin.Google Scholar
  204. Swanstrom, R., Varmus, H. E., and Bishop, J. M., 1982, Nucleotide sequence of the 5’ noncoding region and part of the gag gene of Rous sarcoma virus, J. Virol. 41:535.PubMedGoogle Scholar
  205. Swanstrom, R., Kaplan, A. H., and Manchester, M., 1990, The aspartic proteinase of HIV-1, in: Retrovirus Genome Organization and Gene Expression (I. S. Y. Chen, ed.), pp. 175–186, Saunders, Philadelphia, Pennsylvania.Google Scholar
  206. Tabin, C. J., Hoffman, J. W., Goff, S. P., and Weinberg, R. A., 1982, Adaptation of a retrovirus as a eucaryotic vector in transmitting the herpes simplex virus thymidine kinase gene, Mol. Cell. Biol. 2:426.PubMedGoogle Scholar
  207. Taketo, M., and Tanaka, M., 1987, A cellular enhancer of retrovirus gene expression in embryonal carcinoma cells, Proc. Natl. Acad. Sci. USA 84:3748.PubMedCrossRefGoogle Scholar
  208. Taketo, M., Gilboa, E., and Sherman, M. I., 1985, Isolation of embryonal carcinoma cell lines that express integrated recombinant genes flanked by the Moloney murine leukemia virus long terminal repeat, Proc. Natl. Acad. Sci. USA 82:2422.PubMedCrossRefGoogle Scholar
  209. Takeuchi, Y., Vile, R. G., Simpson, G., O’Hara, B., Collins, M. K. L., and Weiss, R. A., 1992, Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus, J. Virol. 66:1219.PubMedGoogle Scholar
  210. Takeya, T., and Hanafusa, H., 1983, Structure and sequence of the cellular gene homologous to the RSV src gene and the mechanism for generating transforming virus, Cell 32:881.PubMedCrossRefGoogle Scholar
  211. Tan, G. T., Pezzuto, J. M., Kinghorn, A. D., and Hughes, S. H., 1990, Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase, J. Nat. Prod. 54:143.CrossRefGoogle Scholar
  212. Tanese, N., and Goff, S. P., 1988, Domain structure of the Moloney murine leukemia virus reverse transcriptase: Mutational analysis and separate expression of the DNA polymerase and RNase H activities, Proc. Natl. Acad. Sci. USA 85:1777.PubMedCrossRefGoogle Scholar
  213. Tanese, N., Roth, M. J., and Goff, S. P., 1986, Analysis of retroviral pol gene products with antisera raised against fusion proteins produced in Escherichia coli, J. Virol. 59:328.PubMedGoogle Scholar
  214. Tanese, N., Telesnitsky, A., and Goff, S. P., 1991, Abortive reverse transcription by mutants of Moloney murine leukemia virus deficient in the reverse transcriptaseassociated RNase H function, J. Virol. 65:4387.PubMedGoogle Scholar
  215. Taylor, J. M., 1977, An analysis of the role of tRNA species as primers for the transcrip-tion into DNA of RNA tumor virus genomes, Biochim Biophys. Acta 473:57.PubMedGoogle Scholar
  216. Taylor, J. M., and Illmensee, R., 1975, Site on the RNA of an avian sarcoma virus at whichprimer is bound, J. Virol. 16:553.PubMedGoogle Scholar
  217. Teich, N., 1982, Taxonomy of retroviruses, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 25–207, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  218. Teich, N., 1985, Taxonomy of retroviruses, in: RNA Tumor Viruses—Supplements and Appendixes (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 1–16, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  219. Teich, N. M., Weiss, R. A., Martin, G. R., and Lowy, D. R., 1977, Virus infection of murine teratocarcinoma stem cell lines, Cell 12:973.PubMedCrossRefGoogle Scholar
  220. Teich, N., Wyke, J., Mak, T., Bernstein, A., and Hardy, W., 1982, Pathogenesis of retrovirus-induced disease, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 785–998, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  221. Teich, N., Wyke, J., and Kaplan, P., 1985, Pathogenesis of retrovirus-induced disease, in: RNA Tumor Viruses—Supplements and Appendixes (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 187–248, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  222. Temin, H. M., 1964, Nature of the provirus of Rous sarcoma virus, Natl. Cancer Inst. Monogr. 17:557.Google Scholar
  223. Temin, H. M., 1976, The DNA provirus hypothesis, Science 192:1075.PubMedCrossRefGoogle Scholar
  224. Temin, H. M., 1985, Reverse transcription in the eukaryotic genome: Retroviruses, pararetroviruses, retrotransposons, and retrotranscripts, Mol. Biol. Evol. 6:455.Google Scholar
  225. Temin, H. M., 1988, Evolution of retroviruses and other retrotranscripts, in: Human Retroviruses, Cancer, and AIDS: Approaches to Prevention and Therapy (D. Bolognesi, ed.), pp. 1–28, Alan R. Liss, New York.Google Scholar
  226. Temin, H. M., 1989, Retrovirus variation and evolution, Genome 31:17.PubMedCrossRefGoogle Scholar
  227. Temin, H. M., and Baltimore, D., 1972, RNA-directed DNA synthesis and RNA tumor viruses, Adv. Virus Res. 17:129.PubMedCrossRefGoogle Scholar
  228. Temin, H. M, and Mizutani, S., 1970, RNA-directed DNA polymerase in virions of Rous sarcoma virus, Nature 226:1211.PubMedCrossRefGoogle Scholar
  229. Ten Dam, E. B., Pleij, C. W. A., and Bosch, L., 1990, RNA pseudoknots: Translational frameshifting and readthrough on viral RNAs, Virus Genes 4:1211.CrossRefGoogle Scholar
  230. Thayer, R. M., Power, M. D., Bryant, M. L., Gardner, M. B., Barr, P. J., and Luciw, P. A., 1987, Sequence relationships of type D retroviruses which cause simian acquired immunodeficiency syndrome, Virology 157:317.PubMedCrossRefGoogle Scholar
  231. Thornell, A., Halberg, B., and Grundstrom, T., 1988a, Differential protein binding in lymphocytes to a sequence in the enhancer of the mouse retrovirus SL3–3, Mol. Cell. Biol. 65:42.Google Scholar
  232. Thornell, A., Halberg, B., and Grundstrom, T., 1988b, Binding of SL3–3 enhancer factor transcriptional activators to viral and chromosome enhancer sequences, J. Virol. 65:42.Google Scholar
  233. Thornell, A., Hallberg, B., and Grundstrom, T., 1991, Binding of SL3–3 enhancer factor 1 transcriptional activators to viral and chromosomal enhancer sequences, J. Virol. 65:42.PubMedGoogle Scholar
  234. Tirumalai, R. S., and Modak, M. J., 1991, Photoaffinity labeling of the primer binding domain in murine leukemia virus reverse transcriptase, Biochemistry 30:6436.PubMedCrossRefGoogle Scholar
  235. Toh, H., Hayashida, H., and Miyata, T., 1983, Sequence homology between retroviral reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower momsaic virus, Nature 305:827.PubMedCrossRefGoogle Scholar
  236. Toh, H., Kikuno, R., Hayashida, H., Miyata, T., Kugimiya, W., Inouye, S., Yuki, S., and Saigo, K., 1985, Close structural resemblance between putative polymerase of a Drosophila transposable genetic element 17.6 and pol gene product of Moloney murine leukemia virus, EMBO J. 4:1267.PubMedGoogle Scholar
  237. Tong-Starksen, S., and Peterlin, B. M., 1990, Mechanisms of retroviral transcriptional activation, in: Retrovirus Genome Organization and Gene Expression (I. S. Y. Chen, ed.), pp. 215–227, Saunders, Philadelphia, Pennsylvania.Google Scholar
  238. Tong-Starksen, S., Luciw, P. A., and Peterlin, B. M., 1987, Human immunodeficiency virus long terminal repeat responds to T-cell activation signals, Proc. Natl. Acad. Sci. USA 84:6845.PubMedCrossRefGoogle Scholar
  239. Tounekti, N., Mougel, M., Roy, C., Marquet, R., Darlix, J. L., Paoletti, J., Ehresmann, B., and Ehresmann, C., 1992, Effect of dimerization on the conformation of the encapsidation Psi domain of Moloney murine leukemia virus RNA, J. Mol. Biol. 223:205.PubMedCrossRefGoogle Scholar
  240. Towler, D., and Glaser, L., 1986, Protein fatty acid acylation: Enzymatic synthesis of an N-myristoylglycyl peptide, Proc. Natl. Acad. Sci. USA 83:2812.PubMedCrossRefGoogle Scholar
  241. Tsichlis, P. N., and Lazo, P. A., 1991, Virus-host interactions and the pathogenesis of murine and human oncogenic retroviruses, in: Retroviral Insertion and Oncogene Activation, (H. J. Kung and P. K. Vogt), pp. 95–172, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  242. Tsukiyama, T., Niwa, O., and Yokoro, K., 1989, Mechanism of suppression of the long terminal repeat of Moloney leukemia virus in mouse embryonal carcinoma cells, Mol. Cell. Biol. 9:4670.PubMedGoogle Scholar
  243. Tucker, S. P., Srinivas, R. V., and Compans, R. W., 1991, Molecular domains involved in oligomerization of the Friend murine leukemia virus envelope glycoprotein, Virology 185:710.PubMedCrossRefGoogle Scholar
  244. Valsamakis, A., Zeichner, S., Carswell, S., and Alwine, J. C., 1991, The human immunodeficiency virus type 1 polyadenylation signal: A 3’ long terminal repeat element upstream of the AAUAA necessary for efficient polyadenylation, Proc. Natl. Acad. Sci. USA 88:2108.PubMedCrossRefGoogle Scholar
  245. Varmus, H. E., 1988, Retroviruses, Science 240:1427.PubMedCrossRefGoogle Scholar
  246. Varmus, H., and Brown, P., 1989, Retroviruses, in: Mobile DNA (D. E. Berg and M. M. Howe, eds.), pp. 53–108, American Society for Microbiology, Washington, D.C.Google Scholar
  247. Varmus, H., and Swanstrom, R., 1982, Replication of retroviruses, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 369–512, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  248. Varmus, H., and Swanstrom, R., 1985, Replication of retroviruses, in: RNA Tumor Viruses—Supplements and Appendixes (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 75–134, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  249. Varmus, H. E., Padgett, T., Heasley, S., Simon, G., and Bishop, J. M., 1977, Cellular functions are required for the synthesis and integration of avian sarcoma virus-specific DNA, Cell 11:307.PubMedCrossRefGoogle Scholar
  250. Varmus, H. E., Quintrell, N., and Ortiz, S., 1981, Retroviruses as mutagens: Insertion and excision of a non-transforming provirus alters expression of a resident transforming provirus, Cell 25:23.PubMedCrossRefGoogle Scholar
  251. Verma, I. M., 1977, The reverse transcriptase, Biochem. Biophys. Acta 473:1.PubMedGoogle Scholar
  252. Verma, I. M., 1990, Gene therapy, Sci. Am. 263:68.PubMedCrossRefGoogle Scholar
  253. Vijaya, S., Steffen, D. L., and Robinson, H. L., 1986, Acceptor sites for retroviral integration map near DNase I-hypersensitive sites in chromatin, J. Virol. 60:683.PubMedGoogle Scholar
  254. Vogt, V. M., Eisenman, R. H., and Diggelmann, H., 1975, Generation of avian myeloblastosis virus structural proteins by proteolytic cleavage of a precursor polypeptide, J. Mol. Biol. 96:471.PubMedCrossRefGoogle Scholar
  255. Vora, A. C., Fitzgerald, M. L., and Grandgenett, D. P., 1990, Removal of 3’-OH-terminal nucleotides from blunt-ended long terminal repeat termini by the avian retrovirus integration protein, J. Virol. 64:5656.PubMedGoogle Scholar
  256. Wang, H., Kavanaugh, M. P., North, A., and Kabat, D., 1991a, Cell-surface receptor for ecotropic murine retroviruses is a basic amino acid transporter, Nature 352:729.PubMedCrossRefGoogle Scholar
  257. Wang, H., Paul, R., Burgeson, R. E., Keene, D. R., and Kabat, D., 1991b, Plasma membrane receptors for ecotropic murine retroviruses require a limiting accessory factor, J. Virol. 65:6468.PubMedGoogle Scholar
  258. Wang, J. C., 1985, DNA topoisomerases, Annu. Rev. Biochem. 54:665.PubMedCrossRefGoogle Scholar
  259. Wang, S., and Speck, N. A., 1992, Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers, Mol. Cell. Biol. 12:89.PubMedGoogle Scholar
  260. Watanabe, S., and Temin, H. M., 1979, Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5’ long terminal repeat and the start of the gag gene, Proc. Natl. Acad. Sci. USA 79:5986.CrossRefGoogle Scholar
  261. Watanabe, S., and Temin, H. M., 1982, Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5’ long terminal repeat and the start of the gag gene, Proc. Natl. Acad. Sci. USA 79:5986.PubMedCrossRefGoogle Scholar
  262. Weaver, T. A., and Panganiban, A. T., 1990, N-myristoylation of the spleen necrosis virus matrix protein is required for correct association of the gag polyprotein with intracellular membranes and for particle formation, J. Virol. 64:3995.PubMedGoogle Scholar
  263. Weber, F., and Schaffner, W., 1985, Enhancer activity correlates with the oncogenic potential of avian retroviruses, EMBO J. 4:949.PubMedGoogle Scholar
  264. Weber, H., Barklis, E., Ostertag, W., and Jaenisch, R., 1987, Two distinct sequence elements mediate retroviral gene expression in embryonal carcinoma cells, J. Virol. 243:928.Google Scholar
  265. Weber, I. T., 1990, Comparison of the crystal structures and intersubunit interactions of human immunodeficiency and Rous sarcoma virus proteases, J. Biol. Chem. 265:10492.PubMedGoogle Scholar
  266. Weichs van der Glon, C., Monks, J., and Proudfoot, N. J., 1991, Occlusion of the HIV poly(A) site, Genes Dev. 5:244.CrossRefGoogle Scholar
  267. Weiher, H., Barklis, E., Ostertag, W., and Jaenisch, R., 1987, Two distinct sequence elements mediate retroviral gene expression in embryonal carcinoma cells, J. Virol. 61:2742.PubMedGoogle Scholar
  268. Weiner, A. M., Deininger, P. L., and Efstratiadis, A., 1986, Nonviral retroposons: Genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information, Annu. Rev. Biochem. 55:631.PubMedCrossRefGoogle Scholar
  269. Weiss, R., 1982, Experimental biology and assay of RNA tumor viruses, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 209–260, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  270. Weiss, R. A., 1991, Receptors for human retroviruses, in: The Human Retroviruses (R. C. Gallo and G. Jay, eds.), pp. 127–139, Academic Press, New York.Google Scholar
  271. Weiss, R. A., in press, Receptors and glycoproteins involved in retrovirus entry, in: The Retroviridae, Volume 2 (J. A. Levy, ed.), Plenum Publishing Corporation, New York.Google Scholar
  272. Weiss, R. A., Mason, W. S., and Vogt, P. K., 1973, Genetic recombinants and heterozygotes derived from endogenous and exogenous avian RNA tumor viruses, Virology 52:535.PubMedCrossRefGoogle Scholar
  273. Weiss, R., Teich, N., Varmus, H., and Coffin, J., eds., 1982, RNA Tumor Viruses Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  274. Weiss, R., Teich, N., Varmus, H., and Coffin, J., eds., 1985, RNA Tumor Viruses—Supplements and Appendices 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  275. White, J. M., 1990, Viral and cellular membrane fusion proteins, Annu. Rev. Physiol. 52:675.PubMedCrossRefGoogle Scholar
  276. Wilcox, C., Hu, J. S., and Olson, E. N., 1987, Acylation of proteins with myristic acid occurs cotranslationally, Science 238:1275.PubMedCrossRefGoogle Scholar
  277. Williams, D. A., Orkin, S. H., and Mulligan, R. C., 1986, Retrovirus-mediated transfer of human adenosine deaminase gene sequences into cells in culture and into murine hematopoietic cells in vivo, Proc. Natl. Acad. Sci. USA 83:2566.PubMedCrossRefGoogle Scholar
  278. Wills, J. W., and Craven, R. C., 1991, Form, function, and use of retroviral gag proteins, AIDS 5:639.PubMedCrossRefGoogle Scholar
  279. Wills, J. W., Shrinivas, R. V., and Hunter, E., 1984, Mutations of the Rous sarcoma virus env gene that affect the transport and subcellular location of the glycoprotein products, J. Cell Biol. 99:2011.PubMedCrossRefGoogle Scholar
  280. Wills, J. W., Craven, R. C., and Achacoso, J. A., 1989, Creation and expression of myristylated forms of Rous sarcoma virus gag protein in mammalian cells, J. Virol. 63:4331.PubMedGoogle Scholar
  281. Wills, N. M., Gesteland, R. F., and Atkins, J. F., 1991, Evidence that a downstream pseudoknot is required for translational read-through of the Moloney murine leukemia virus gag stop codon, Proc. Natl. Acad. Sci. USA 88:6991.PubMedCrossRefGoogle Scholar
  282. Wilson, C. A., and Eiden, M. V., 1991, Viral and cellular factors governing hamster cell infection by murine and gibbon ape leukemia viruses, J. Virol. 65:5975.PubMedGoogle Scholar
  283. Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B. K., Baldwin, E., Weber, I. T., Selk, L. M., Clawson, L., Schneider, J., and Kent, S. B. H., 1989, Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease, Science 245:616.PubMedCrossRefGoogle Scholar
  284. Yang, W. K., Kiggans, J. O., Yang, D. M., Ou, C. Y., Tennant, R. W., Brown, A., and Bassin, R. H., 1980, Synthesis and circularization of N- and B-tropic retroviral DNA in Fv-1 permissive and restrictive mouse cells, Proc. Natl. Acad. Sci. USA 77:2994.PubMedCrossRefGoogle Scholar
  285. Yoshimoto, T., Yoshimoto, E., and Meruelo, D., 1991, Molecular cloning and characterization of a novel human gene homologous to the murine ecotropic retroviral receptor. Virology 185:10.PubMedCrossRefGoogle Scholar
  286. Yoshinaka, S., Katoh, I., Copeland, T. D., and Oroszlan, S., 1985, Murine leukemia protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon, Proc. Natl. Acad. Sci. USA 82:1618.PubMedCrossRefGoogle Scholar
  287. Yoshinaka, Y., and Luftig, 1977, Murine leukemia virus morphogenesis: Cleavage of P70 in vitro can be accompanied by a shift from a concentrically coiled internal strand (“immature”) to a collapsed (“mature”) form of the virus core, Proc. Natl. Acad. Sci. USA 74:3446.PubMedCrossRefGoogle Scholar
  288. Young, J. A. T., Bates, P., Willert, K., and Varmus, H. E., 1990, Efficient incorporation of human CD4 protein into avian leukosis virus particles, Science 250:1421.PubMedCrossRefGoogle Scholar
  289. Young, R. A., 1991, RNA polymerase II, Annu. Rev. Biochem. 60:689.PubMedCrossRefGoogle Scholar
  290. Yuki, S., Ishimaru, S., Inouye, S., and Saigo, K., 1986, Identification of genes for reverse transcriptase-like enzymes in two Drosophila retrotransposons, 412 and gypsy; a rapid detection method of reverse transcriptase genes using YXDD box probes, Nucleic Acids Res. 14:3017.PubMedCrossRefGoogle Scholar
  291. Zack, J. A., Arrigo, S. J., Weitsman, S. R., Go, A. S., Haislip, A., and Chen, I. S. Y., 1990, HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure, Cell 61:213.PubMedCrossRefGoogle Scholar
  292. Zavada, J., 1972, Pseudotypes of vesicular stomatitis virus with the coat of murine leukaemia and of avian myeloblastosis viruses, J. Gen. Virol. 15:183.PubMedCrossRefGoogle Scholar
  293. Mann, R. S., Mulligan, R., and Baltimore, D., 1983, Construction of a retrovirus packag-ing mutant and its use to produce helper-free selective retrovirus, Cell 32:871.CrossRefGoogle Scholar
  294. Marsh, L. E., and Guilfoyle, T. J., 1987, Cauliflower mosaic virus replication interme-diates are encapsidated into virion-like particles, Virology 161:129.PubMedCrossRefGoogle Scholar
  295. Mason, W. S., Taylor, J. M., and Hull, R., 1987, Retroid virus genome replication, Adv. Virus Res. 32:35.PubMedCrossRefGoogle Scholar
  296. Mathias, S. L., Scott, A. F., Kazazian, H. H., Boeke, J. D., and Gabriel, A., 1991, Reverse transcriptase encoded by a human transposable element, Science 254:1801.CrossRefGoogle Scholar
  297. Maul, D. H., Zaiss, C. P., Mackenzie, M. R., Shiigi, S. M., Marx, P. A., and Gardner, M. B., 1988, Simian retrovirus D subgroup 1 has a broad cellular tropism for lymphoid and nonlymphoid cells, J. Virol. 62:1768.PubMedGoogle Scholar
  298. Maurer, B., Bannert, H., Darai, G., and Flugel, R. M., 1988, Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus, J. Virol. 62:1590.PubMedGoogle Scholar
  299. McClure, M. O., Marsh, M., and Weiss, R. A., 1988, Human immunodeficiency virus infection of CD4-bearing cells occurs by a pH-independent mechanism, EMBO J. 7:513.PubMedGoogle Scholar
  300. McClure, M. O., Sommerfelt, M. A., Marsh, M., and Weiss, R. A., 1990, The pH independence of mammalian retrovirus infection, J. Gen. Virol. 71:767.PubMedCrossRefGoogle Scholar
  301. McCune, J. M., Rabin, L. B., Feinberg, M. B., Lieberman, M., Kosek, J. C., Reyes, J. R., and Weissman, I. L., 1988, Endoproteolytic cleavage of gp160 is required for activation of human immunodeficiency virus, Cell 53:55.PubMedCrossRefGoogle Scholar
  302. McDougal, J. S., Kennedy, M. S., Sligh, J. M., Cort, S. P., Mawle, A., and Nicholson, J. K. A., 1986, Binding of HTLV-III/LAV to T4+ cells by a complex of the 110K viral protein and the T4 molecule, Science 231:382.PubMedCrossRefGoogle Scholar
  303. McLachlin, J. R., Cornetta, K., Eglitis, K., and Anderson, W. F., 1990, Retroviral-mediated gene transfer, Prog. Nucleic Acid Res. 38:91.CrossRefGoogle Scholar
  304. McNally, M. T., and Beemon, K., 1992, Intronic sequences and 3’ splice sites control Rous sarcoma virus RNA splicing, J. Virol. 66:6.PubMedGoogle Scholar
  305. McNally, M. T., Gontarek, R. R., and Beemon, K., 1991, Characterization of Rous sar-coma virus intronic sequences that negatively regulate splicing, Virology 185:99.PubMedCrossRefGoogle Scholar
  306. Meek, T. D., Dayton, B. D., Metcalf, B. W., et al., 1989, Human immunodeficiency virus 1 protease expressed in Escherichia coli behaves as a dimeric aspartic protease, Proc. Natl. Acad. Sci. USA 86:1841.PubMedCrossRefGoogle Scholar
  307. Mehdi, H., Ono, E., and Gupta, K. C., 1990, Initiation of translation at CUG, GUG, and ACG codons in mammalian cells, Gene 91:173.PubMedCrossRefGoogle Scholar
  308. Mellor, J., Fulton, S. M., Dobson, J., Wilson, K., Kingsman, S. M., and Kingsman, A. J., 1985, A retrovirus-like strategy for expression of a fusion protein encoded by the yeast transposon Tyl, Nature 313:243.PubMedCrossRefGoogle Scholar
  309. Mercurio, F., and Karin, M., 1989, Transcription factors AP-3 and AP-2 interact with the SV 40 enhancer in a mutually exclusive manner, EMBO J. 8:1455.PubMedGoogle Scholar
  310. Mergia, A., and Luciw, P. A., 1991, Replication and regulation of primate foamy viruses, Virology 184:475.PubMedCrossRefGoogle Scholar
  311. Meric, C., and Goff, S. P., 1989, Characterization of Moloney murine leukemia virus mutants with single amino acid substitutions in the Cys-His box of the nucleocapsid protein, J. Virol. 63:1558.PubMedGoogle Scholar
  312. Merle, C., and Spahr, P., 1986, Rous sarcoma virus nucleic acid binding protein p12 is necessary for viral 70S RNA dimer formation and packaging, J. Virol. 60:450.Google Scholar
  313. Meric, C., Darlix, J. L., and Spahr, P. F., 1984, It is Rous sarcoma virus p12 and not p19 that binds tightly to Rous sarcoma virus RNA, J. Mol. Biol. 173:531.PubMedCrossRefGoogle Scholar
  314. Meric, C., Gouilloud, E., and Spahr, P., 1988, Mutations in Rous sarcoma virus nucleocapsid protein p12 (NC): Deletions of Cys-His boxes, J. Virol. 62:3228.Google Scholar
  315. Miksicek, R., Borgmeyer, W., and Nowock, J., 1987, Interaction of the TGGCA-binding protein with upstream sequences is required for efficient transcription of mouse mammary tumor virus, EMBO J. 6:1355.PubMedGoogle Scholar
  316. Miller, A. D., 1990a, Retrovirus packaging cells, Hum. Gene Ther. 1:5.PubMedCrossRefGoogle Scholar
  317. Miller, A. D., 1990b, Progress toward human gene therapy, Blood 76:271.PubMedGoogle Scholar
  318. Miller, A. D., Jolly, D. J., Friedman, T., and Verma, I. M., 1983, A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): Gene transfer into cells obtained from humans deficient in HPRT, Proc. Natl. Acad. Sci. USA 80:4709.PubMedCrossRefGoogle Scholar
  319. Miller, C. K., and Temin, H. K., 1986, Insertion of several different DNAs in reticuloendotheliosis virus strain T suppresses transformation by reducing the amount of subgenomic DNA, J. Virol. 58:75.PubMedGoogle Scholar
  320. Miller, D. G., and Miller, A. D., 1992, Tunicamycin treatment of CHO cells abrogates multiple blocks to retroviral infection, one of which is due to a secreted inhibitor, J. Virol. 66:78.PubMedGoogle Scholar
  321. Miller, D. G., Adam, M. A., and Miller, A. D., 1990, Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection, Mol. Cell. Biol. 10:4239.PubMedGoogle Scholar
  322. Miller, J. T., and Stoltzfus, C. A., 1992, Regions containing cis-acting splicing signals facilitate 3’-end processing of avian sarcoma virus RNA, J. Virol. in press.Google Scholar
  323. Miller, M., Jaskolski, M., Mohana Rao, J. K., Leis, J., and Wlodawer, A., 1989, Crystal structure of a retroviral protease proves relationship to aspartic protease family, Nature 337:576.PubMedCrossRefGoogle Scholar
  324. Mitchell, P. M., and Tjian, R., 1989, Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins, Science 245:371.PubMedCrossRefGoogle Scholar
  325. Mitra, S., Goff, S., Gilboa, E., and Baltimore, D., 1979, Synthesis of a 600-nucleotide-long plus-strand DNA by virions of Moloney murine leukemia virus, Proc. Natl. Acad. Sci. USA 76:4355.PubMedCrossRefGoogle Scholar
  326. Mitsuya, H., Yarochan, R., and Broder, S., 1990, Molecular targets for AIDS therapy, Science 249:1533.PubMedCrossRefGoogle Scholar
  327. Mizuuchi, K., and Adzuma, K., 1991, Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: Evidence for a one-step transesterification mechanism, Cell 66:129.PubMedCrossRefGoogle Scholar
  328. Modak, M. J., and Marcus, S. L., 1977, Purification and properties of Rauscher leukemia virus DNA polymerase and selective inhibition of mammalian viral reverse transcriptase by inorganic phosphate, J. Biol. Chem. 252:11.PubMedGoogle Scholar
  329. Moelling, K., Bolognesi, D. P., Bauer, H., Busen, W., Plassmann, H. W., and Hausen, P., 1971, Association of viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA-DNA hybrids, Nature New Biol. 234:240.CrossRefGoogle Scholar
  330. Moore, R., Dixon, M., Smith, R., Peters, G., and Dickson, C., 1987, Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: Two frameshift suppression events are required for translation of gag and pol, J. Virol. 61:480.PubMedGoogle Scholar
  331. Mooslehner, K., Larls, U., and Harbers, K., 1990, Retroviral integration sites in transgenic Mov mice frequently map in the vicinity of transcribed regions, J. Virol. 64:3056.Google Scholar
  332. Morris, D. W., 1991, Molecular biology and pathogenesis of mouse mammary tumour virus, Rev. Med. Virol. 1:223.CrossRefGoogle Scholar
  333. Morris-Vasios, C., Kochan, J. P., and Skalka, A. M., 1988, Avian sarcoma-leukosis virus pol-endo proteins expressed independently in mammalian cells accumulate in the nucleus but can be directed to other cellular compartments, J. Virol. 62:349.PubMedGoogle Scholar
  334. Mount, S. M., and Rubin, G. M., 1985, Complete nucleotide sequence of the Drosophila transposable element copia: Homology between copia and retroviral proteins, Mol. Cell. Biol. 5:1630.PubMedGoogle Scholar
  335. Muller, M. M., Gerster, T., and Schaffner, W., 1988, Enhancer sequences and the regulation of gene transcription, Eur. 1. Biochem. 176:485.CrossRefGoogle Scholar
  336. Mumm, S. R., and Grandgenett, D. P., 1991, Defining nucleic acid-binding properties of avian retrovirus integrase by deletion analysis, J. Virol. 65:1160.Google Scholar
  337. Munroe, D., and Jacobson, A., 1990, Tales of poly(A): A review, Gene 91:151.PubMedCrossRefGoogle Scholar
  338. Murphy, J. E., and Goff, S. P., 1988, Construction and analysis of deletion mutations in the U5 region of Moloney murine leukemia virus: Effects on RNA packaging and reverse transcription, J. Virol. 63:319.Google Scholar
  339. Nabel, G., and Baltimore, D., 1987, An inducible factor activates expression of human immunodeficiency virus in T cells, Nature 326:711.PubMedCrossRefGoogle Scholar
  340. Nanduri, V. B., and Modak, M. J., 1990, Lysine-329 of murine leukemia virus reverse transcriptase: Possible involvement in the template-primer binding function, Biochemistry 29:5258.PubMedCrossRefGoogle Scholar
  341. Navia, M. A., Fitzgerald, P. M. D., and McKeever, B. M., 1989, Three dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1, Nature 337:615.PubMedCrossRefGoogle Scholar
  342. Neil, J. C., Fulton, R., Rigby, M., and Stewart, M., 1991, Feline leukaemia virus: Generation of pathogenic and oncogenic variants, in: Retroviral Insertion and Oncogene Activation, (H. J. Kung and P. K. Vogt), pp. 67, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  343. Nigg, E. A., Baeuerle, P. A., and Luhrmann, R., 1991, Nuclear import-export: In search of signals and mechanisms, Cell 66:15.PubMedCrossRefGoogle Scholar
  344. Norton, P. A., and Coffin, J. M., 1987, Characterization of Rous sarcoma virus sequences essential for viral gene expression, J. Virol. 61:1171.PubMedGoogle Scholar
  345. Nusse, R., 1991, Insertional mutagenesis in mouse mammary tumorigenesis, in: Retroviral Insertion and Oncogene Activation, (H. J. Kung and P. K. Vogt), pp. 43–66, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  346. Oertle, S., and Spahr, P. F., 1990, Role of the gag polyprotein precursor in packaging and maturation of Rous sarcoma virus genomic RNA, J. Virol. 64:5757.PubMedGoogle Scholar
  347. O’Hara, B., Johann, S. V., Klinger, H. P., Blair, D. G., Rubinson, H., Dunn, K. J., Sass, P., Vitek, S. M., and Robbins, T., 1990, Characterization of a human gene conferring sensitivity to infection by Gibbon ape leukemia virus, Cell Growth Differ. 1:119.PubMedGoogle Scholar
  348. Olsen, J. C., Bova-Hill, C., Grandgenett, D. P., Quinn, T. P., Manfredi, J. P., and Swanstrom, R., 1990, Rearrangements in unintegrated retroviral DNA are complex and are the result of multiple genetic determinants. J. Virol. 64:5475.PubMedGoogle Scholar
  349. Olson, E. N., and Spizz, G., 1986, Fatty acylation of cellular proteins, J. Biol. Chem. 261:2458.PubMedGoogle Scholar
  350. Omer, C. A., and Faras, A. J., 1982, Mechanism of release of the avian retrovirus RNAtrp primer molecule from viral DNA by ribonuclease H during reverse transcription, Cell 30:797.PubMedCrossRefGoogle Scholar
  351. Onts, H., Kennedy, N., Skroch, P., Hynes, N. E., and Groner, B., 1985, Hormonal response region in the mouse mammary tumor virus long terminal repeat can be dissociated from the proviral promoter and has enhancer properties, Proc. Natl. Acad. Sci. USA 82:1020.CrossRefGoogle Scholar
  352. Oroszlan, S., and Luftig, R. B., 1990, Retroviral proteinases, in: Retroviruses—Strategies of Replication (R. Swanstrom and P. K. Vogt, eds.), pp. 153–185, Springer-Verlag, Berlin.Google Scholar
  353. O’Shea, E. K., Rutkowski, R., and Kim, P. S., 1989, Evidence that the leucine zipper is a coiled coil, Science 243:538.PubMedCrossRefGoogle Scholar
  354. Ou, C. Y., Boone, L. R., Koh, C. K., Tennant, R. W., and Yang, W. K., 1983, Nucleotide sequence of gag-pol regions that determine the Fv-1 host range property of BALB/c N-tropic and B-tropic murine leukemia viruses, J. Virol. 48:779.PubMedGoogle Scholar
  355. Owens, R., Dubay, J. W., Hunter, E., and Compans, R. W., 1991, Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells, Proc. Natl. Acad. Sci. USA 88:3987.PubMedCrossRefGoogle Scholar
  356. Ozer, J., Faber, M., Chalkley, R., and Sealy, L., 1990, Isolation and characterization of a cDNA clone for the CCAAT transcription factor EFIa reveals a novel structural motif, J. Biol. Chem. 36:22143.Google Scholar
  357. Palmiter, R. D., Gagnon, J., Vogt, V. M., Ripley, S., and Eisenman, R. N., 1978, The NH2-terminal sequence of the avian oncovirus gag precursor polyprotein (Pr76gag), Virology 91:423.PubMedCrossRefGoogle Scholar
  358. Panganiban, A. T., 1988, Retroviral gag gene amber codon suppression is caused by an intrinsic cis-acting component of the viral mRNA, J. Virol. 62:3574.PubMedGoogle Scholar
  359. Panganiban, A. T., and Fiore, D., 1988, Ordered interstrand and intrastrand DNA transfer during reverse transcription, Science 241:1964.CrossRefGoogle Scholar
  360. Panganiban, A. T., and Temin, H. M., 1983, The terminal nucleotides of retrovirus DNA are required for integration but not virus production, Nature 306:155.PubMedCrossRefGoogle Scholar
  361. Panganiban, A. T., and Temin, H. M., 1984a, Circles with two tandem LTRs are precur-sors to integrated retrovirus DNA, Cell 36:673.PubMedCrossRefGoogle Scholar
  362. Panganiban, A. T., and Temin, H. M., 1984b, The retrovirus pol gene encodes a product required for DNA integration: Identification of a retrovirus int locus, Proc. Natl. Acad. Sci. USA 81:7885.PubMedCrossRefGoogle Scholar
  363. Parslow, T. G., Blair, D. L., Murphy, W. J., and Granner, D. K., 1984, Structure of the 5’ ends of immunoglobulin genes: A novel conserved sequence, Proc. Natl. Acad. Sci. USA 81:2650.PubMedCrossRefGoogle Scholar
  364. Pathak, V. K., and Temin, H. M., 1990a, Broad spectrum of in vivo forward mutations, hypermutations, and mutational hot-spots in a retroviral shuttle vector after a single replication cycle: Substitutions, frameshifts, and hypermutations, Proc. Natl. Acad. Sci. USA 87:6019.PubMedCrossRefGoogle Scholar
  365. Pathak, V. K., and Temin, H. M., 1990b, Broad spectrum of in vivo forward mutations, hypermutations, and mutational hot-spots in a retroviral shuttle vector after a single replication cycle: Deletions and deletions with insertions, Proc. Natl. Acad. Sci. USA 87:6024.PubMedCrossRefGoogle Scholar
  366. Pato, M. L., 1989, Bacteriophage Mu, in: Mobile DNA (D. E. Berg and M. M. Howe, eds.), pp. 23–52, American Society for Microbiology, Washington, D.C.Google Scholar
  367. Pauza, C. D., and Price, T. M., 1988, Human immunodeficiency virus infection of T cells and monocytes proceeds via receptor-mediated endocytosis, J. Cell Biol. 107:959.PubMedCrossRefGoogle Scholar
  368. Payne, G. S., Courtneidge, S. A., Crittenden, L. B., Fadley, A. M., Bishop, J. M., and Varmus, H. E., 1981, Analyses of avian leukosis virus DNA and RNA in bursal tumors suggest a novel mechanism for retroviral oncogenesis, Cell 23:311.PubMedCrossRefGoogle Scholar
  369. Payne, G. S., Bishop, J. M., and Varmus, H. E., 1982, Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas, Nature 295:209.PubMedCrossRefGoogle Scholar
  370. Payvar, F. D., DeFranco, D., Firestone, G. L., Edgar, B., Wrange, O., Okret, S., Gustafsson, J. A., and Yamamoto, K., 1983, Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region, Cell 35:381.PubMedCrossRefGoogle Scholar
  371. Pearl, L. H., and Taylor, W. R., 1987, Sequence specificity of retroviral proteases, Nature 328:482.PubMedCrossRefGoogle Scholar
  372. Perez, L. G., and Hunter, E., 1987, Mutations within proteolytic cleavage site of the Rous sarcoma virus glycoprotein that block processing to gp85 and gp37, J. Virol. 61:1609.PubMedGoogle Scholar
  373. Perez, L. G., Davis, G. L., and Hunter, E., 1987, Mutants of the Rous sarcoma virus envelope glycoprotein that lack the transmembrane anchor and cytoplasmic domains: Analysis of intracellular transport and assembly into virions, J. Virol. 61:2981.PubMedGoogle Scholar
  374. Perlmann, T., and Wrange, O., 1988, Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome, EMBO J. 7:3073.Google Scholar
  375. Perucho, M., Hanahan, D., and Wigler, M., 1980, Genetic and physical linkage of exogenous sequences in transformed cells, Cell 22:309.PubMedCrossRefGoogle Scholar
  376. Peters, G. G., and Hu, J., 1980, Reverse transcriptase as the major determinant for selective packaging of tRNAs into avian sarcoma virus particles, J. Virol. 36:692.PubMedGoogle Scholar
  377. Petropoulos, C. J., and Hughes, S. H., 1991, Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells, J. Virol. 65:3728.PubMedGoogle Scholar
  378. Pettit, S. C., Simsic, J., Loeb, D. D., Everitt, L., Hutchison, C. A., and Swanstrom, R., 1991, Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the structural requirements of the P1 amino acid, J. Biol. Chem. 266:14539.PubMedGoogle Scholar
  379. Picard, D., Salser, S. J., and Yamamoto, K. R., 1988, A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor, Cell 54:1073.PubMedCrossRefGoogle Scholar
  380. Pillemer, E. A., Kooistra, D. A., Witte, O. N., and Weissman, I. L., 1986, Monoclonal antibody to the amino-terminal L sequence of murine leukemia virus glycosylated gag polyproteins demonstrates their unusual orientation in the cell membrane, J. Virol. 57:413.PubMedGoogle Scholar
  381. Pina, B., Bruggemeier, U., and Beato, M., 1990, Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter, Cell 60:719.PubMedCrossRefGoogle Scholar
  382. Pinter, A., 1989, Functions of murine leukemia virus envelope gene products in leukemogenesis, in: Retroviruses and Disease (H. Hanafusa, A. Pinter, and M. E. Pullman, eds.), pp. 21–39, Academic Press, San Diego, California.Google Scholar
  383. Pinter, A., and Honnen, W. J., 1988, O-linked glycosylation of retroviral envelope gene products, J. Virol. 62:1016.PubMedGoogle Scholar
  384. Pinter, A., Chen, T. E., Lowry, A., Cortez, N. G., and Silagi, S., 1986, Ecotropic murine leukemia virus-induced fusion of murine cells, J. Virol. 57:1048.PubMedGoogle Scholar
  385. Portis, J. L., Atee, F. J., and Evans, L. H., 1985, Infectious entry of murine retroviruses into mouse cells: Evidence of a post-adsorption step inhibited by acidic pH, J. Virol. 55:806.PubMedGoogle Scholar
  386. Power, M. D., Marx, P. A., Bryant, M. L., Gardner, M. B., Barr, P. J., and Luciw, P. A., 1986, Nucleotide sequence of SRV-1, a type-D simian acquired immunodeficiency syndrome retrovirus, Science 231:1567.PubMedCrossRefGoogle Scholar
  387. Prats, A. C., Sarih, L., Gabus, C., Litvak, S., Keith, G., and Darlix, J., 1988, Small finger protein of avian and murine retroviruses had nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA, EMBO J. 7:1136.Google Scholar
  388. Prats, A. C., Billy, G. D., Wang, P., and Darlix, J., 1989, CUG initiation codon used for the synthesis of a cell surface antigen coded by the murine leukemia virus, J. Mol. Biol. 205:363.PubMedCrossRefGoogle Scholar
  389. Preston, B. D., Poiez, B. J., and Loeb, L., 1988, Fidelity of HIV-1 reverse transcriptase, Science 242:1168.PubMedCrossRefGoogle Scholar
  390. Proudfoot, N. J., 1989, How RNA polymerase terminates transcription in higher eucaryotes, Trends Biochem. Sci. 14:105.PubMedCrossRefGoogle Scholar
  391. Proudfoot, N. J., 1991, Poly(A) signals, Cell 64:671.PubMedCrossRefGoogle Scholar
  392. Pryciak, P. M., Sil, A., and Varmus, H. E., 1992, Retroviral integration into minichromosomes in vitro, EMBO J. 11:291.PubMedGoogle Scholar
  393. Pryciak, P. M., and Varmus, H. E., 1992, Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection, Cell 69:769.PubMedCrossRefGoogle Scholar
  394. Ptashne, M., and Gann, A. A. F., 1990, Activators and targets, Nature 346:329.PubMedCrossRefGoogle Scholar
  395. Pulsinelli, G. A., and Temin, H. M., 1991, Characterization of large deletions occurring during a single round of retrovirus vector replication: Novel deletion mechanism involving errors in strand transfer, J. Virol. 65:4786.PubMedGoogle Scholar
  396. Putterman, D., Pepinsky, R. B., and Vogt, V. M., 1990, Ubiquitin in avian leukosis virus particles, Virology 176:633.PubMedCrossRefGoogle Scholar
  397. Quinn, T. P., and Grandgenett, D. P., 1988, Genetic evidence that the avian retrovirus DNA endonuclease domain of pol is necessary for viral integration, Virol. 62:2307.Google Scholar
  398. Quintrell, N., Hughes, S. H., Varmus, H. E., and Bishop, J. M., 1980, Structure of viral DNA and RNA in mammalian cells infected with avian sarcoma virus, J. Mol. Biol. 143:363.PubMedCrossRefGoogle Scholar
  399. Rasheed, S., Gardner, M. B., and Chan, E., 1976, Amphotropic host range of naturally occurring wild mouse leukemia viruses, J. Virol. 19:13.PubMedGoogle Scholar
  400. Reddy, S., DeGregori, J. V., von Melchner, H., and Ruley, H. E., 1991, Retrovirus promoter-trap vector to induce lacZ gene fusions in mammalian cells, J. Virol. 65:1507.PubMedGoogle Scholar
  401. Rein, A., 1982, Interference grouping of murine leukemia viruses: A distinct receptor for MCF-recombinant viruses in mouse cells, Virology 120:251.PubMedCrossRefGoogle Scholar
  402. Rein, A., McClure, M. R., Rice, N. R., Luftig, R. B., and Schultz, A. M., 1986, Myristylation site in Pr65gag is essential for virus particle formation by Moloney murine leukemia virus, Proc. Natl. Acad. Sci. USA 83:7246.PubMedCrossRefGoogle Scholar
  403. Renne, R., Friedl, E., Schweizer, M., Fleps, U., Turek, R., and Neumann-Haefelin, D., 1992, Genome organization and expression of simian foamy virus type 3 (SFV-3), Virology 186:597.PubMedCrossRefGoogle Scholar
  404. Repaske, R., Hartley, J. W., Kavlick, M. F., O’Neill, R. R., and Austin, J. B., 1989, Inhibition of RNase H activity and viral replication by single mutations in the 3’ region of Moloney murine leukemia virus reverse transcriptase, J. Virol. 63:1460.PubMedGoogle Scholar
  405. Resnick, R., Omer, C. A., and Faras, A. J., 1984, Involvement of retrovirus reversetranscriptase-associated RNase H in the initiation of strong-stop (+) DNA synthesis and the generation of the long terminal repeat, J. Virol. 51:813.PubMedGoogle Scholar
  406. Reuss, F., and Schaller, H. C., 1991, cDNA sequence and genomic characterization of intracisternal A-particle-related retroviral elements containing an envelope gene, J. Virol. 65:5702.Google Scholar
  407. Rhee, S. S., and Hunter, E., 1987, Myristylation is required for intracellular transport but not for assembly of D-type retrovirus capsids, J. Virol. 61:1045.PubMedGoogle Scholar
  408. Rhee, S. S., and Hunter, E., 1990a, A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus, Cell 63:77.PubMedCrossRefGoogle Scholar
  409. Rhee, S. S., and Hunter, E., 1990b, Structural role of the matrix protein of type D retroviruses in gag polyprotein stability and capsid assembly, J. Virol. 64:4383.PubMedGoogle Scholar
  410. Rhee, S. S., and Hunter, E., 1991, Amino acid substitutions within the matrix protein of type D retroviruses affect assembly, transport, and membrane association of a capsid, EMBO J. 10:535.PubMedGoogle Scholar
  411. Rhee, S. S., Hui, H., and Hunter, E., 1990, Preassembled capsids of type D retroviruses contain a signal sufficient for targeting specifically to the plasma membrane, J. Virol. 64:3844.PubMedGoogle Scholar
  412. Richter, A., Ozer, H. L., DesGroseillers, L., and Jolicoeur, P., 1984, An X-linked gene affecting mouse cell DNA synthesis also affects production of unintegrated linear and supercoiled DNA of murine leukemia virus, Mol. Cell. Biol. 4:151.PubMedGoogle Scholar
  413. Ridgway, A. A. G., Kung, H., and Fujita, D., 1989, Transient expression analysis of reticu-loendotheliosis virus long terminal repeat, Nucleic Acids Res. 17:3199.PubMedCrossRefGoogle Scholar
  414. Roberts, J. D., Bebenek, K., and Kunkel, T. A., 1988, The accuracy of reverse transcriptase from HIV-1, Science 242:11171.Google Scholar
  415. Roberts, J. D., Preston, B. D., Johnston, L. A., Soni, A., Loeb, L. A., and Kunkel, T., 1989, Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro, Mol. Cell. Biol. 9:469.PubMedGoogle Scholar
  416. Roberts, M. M., and Oroszlan, S., 1989, The preparation and biochemical characterization of intact capsids of equine infectious anemia virus, Biochem. Biophys. Res. Commun. 160:486.PubMedCrossRefGoogle Scholar
  417. Roberts, M. M., Copeland, T. D., and Oroszlan, S., 1991, In situ processing of a retroviral nucleocapsid protein by the viral proteinase, Protein Eng. 4:695.PubMedCrossRefGoogle Scholar
  418. Robinson, H., 1979, Inheritance and expression of chicken genes which are related to avian-leukosis sarcoma viruses, Curr. Top. Microbiol. Immunol. 83:1.CrossRefGoogle Scholar
  419. Robinson, H. L., and Gagnon, G. C., 1986, Patterns of proviral insertion in avian leukosis virus-induced lymphomas, J. Virol. 57:28.PubMedGoogle Scholar
  420. Robinson, W. S., 1990, Hepadnaviridae and their replication, in: Virology (B. N. Fields, D. M. Knipe, R. M. Chanock, et al. eds.), pp. 2137–2169, Raven Press, New York.Google Scholar
  421. Rohdewohld, H., Weiher, H., Reik, W., Jaenisch, R., and Breindl, M., 1987, Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites, J. Virol. 61:336.PubMedGoogle Scholar
  422. Rosen, C. A., Haseltine, W. A., Lenz, J., Ruprecht, R., and Cloyd, M. W., 1985a, Tissue selectivity of murine leukemia virus infection is determined by long terminal repeat sequences, J. Virol. 55:862.PubMedGoogle Scholar
  423. Rosen, C. A., Sodroski, J. G., and Haseltine, W. A., 1985b, Location of cis-acting regulatory sequences in human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat, Cell 41:813.PubMedCrossRefGoogle Scholar
  424. Rosenberg, S. A., Aebersold, P., Cornetta, K., et al. 1990, Gene transfer into humans—Immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction, N. Engl. J. Med. 323:570.PubMedCrossRefGoogle Scholar
  425. Roth, M. G., Srinivas, R. V., and Compans, R. W., 1983, Basolateral maturation of retroviruses in polarized epithelial cells, J. Virol. 45:1065.PubMedGoogle Scholar
  426. Roth, M. J., Tanese, N., and Goff, S. P., 1985, Purification and characterization of murine retroviral reverse transcriptase expressed in Escherichia coli, J. Biol. Chem. 260:9326.PubMedGoogle Scholar
  427. Roth, M. J., Tanese, N., and Goff, S. P., 1989a, Gene product of Moloney murine leukemia virus required for proviral integration is a DNA-binding protein, J. Mol. Biol 203:131.CrossRefGoogle Scholar
  428. Roth, M. J., Schwartzberg, P. L., and Goff, S. P., 1989b, Structure of the termini of DNA intermediates in the integration of retroviral DNA: Dependence on IN function and terminal DNA sequence, Cell 58:47.PubMedCrossRefGoogle Scholar
  429. Rothenberg, E., Smotkin, D., Baltimore, D., and Weinberg, R. A., 1977, In vitro synthesis of infectious DNA of murine leukaemia virus, Nature 296:122.CrossRefGoogle Scholar
  430. Rubin, H., 1960, A virus in chick embryos which induced resistance to in vitro infection by Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 46:1105.PubMedCrossRefGoogle Scholar
  431. Ruprecht, R. M., Mullaney, S., Bernard, L. D., Gama Sosa, M. A., Hom, R. C., and Fine-berg, R. W., 1990, Vaccination with a live retrovirus: The nature of the protective immune response, Proc. Natl. Acad. Sci. USA 87:5558.PubMedCrossRefGoogle Scholar
  432. Ryden, T. A., and Beemon, K., 1989, Avian retroviral long terminal repeats bind CCAAT/ enhancer-binding protein, Mol. Cell. Biol. 9:1155.PubMedGoogle Scholar
  433. Sali, A., Veerapandian, B., Cooper, J. B., Foundling, S. I., Hoover, D. J., and Blundell, T. L., 1989, High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: The analysis of the inhibitor binding and description of the rigid body shift in the enzyme, EMBO J. 8:2179.PubMedGoogle Scholar
  434. Samuel, C. E., 1989, Polycistronic animal virus RNAs, Prog. Nucleic Acid Res. 37:127.CrossRefGoogle Scholar
  435. Sandemeyer, S. B., Hansen, L. J., and Chalker, D. L., 1990, Integration specificity of retrotransposons and retroviruses, Annu. Rev. Genet. 24:491.CrossRefGoogle Scholar
  436. Sattentau, Q. J., and Weiss, R. A., 1988, The CD4 antigen: Physiological ligand and HIV receptor, Cell 52:631.PubMedCrossRefGoogle Scholar
  437. Sawadogo, M., and Sentenac, A., 1990, RNA polymerase B (II) and general transcription factors, Annu. Rev. Biochem. 59:711.PubMedCrossRefGoogle Scholar
  438. Sawyer, R. C., and Hanafusa, H., 1979, Comparison of the small RNAs of polymerasedeficient and polymerase-positive Rous sarcoma virus and another species of avian retrovirus, J. Virol. 29:863.PubMedGoogle Scholar
  439. Sawyer, R. C., Harada, F., and Dahlber, J. E., 1974, Virion-associated RNA primer for Rous sarcoma virus DNA synthesis: Isolation from uninfected cells, J. Virol. 28:279.Google Scholar
  440. Schatz, O., Mous, J., and LeGrice, S. F. J., 1990, HIV-1 RT-associated ribonuclease H displays both endonuclease and 3’-5’ exonuclease activity, EMBO J. 9:1171.PubMedGoogle Scholar
  441. Schawaller, M., Smith, G. E., Skehel, J. J., and Wiley, D. C., 1989, Studies with crosslinking reagents on the oligomeric structure of the env glycoprotein of HIV, Virology 172:367.PubMedCrossRefGoogle Scholar
  442. Scherdin, U., Rhodes, K., and Breindl, M., 1990, Transcriptionally active genome regions are preferred targets for retrovirus integration, J. Virol. 64:907.PubMedGoogle Scholar
  443. Schimmel, P., 1989, RNA pseudoknots that interact with components of the translation apparatus, Cell 58:9.PubMedCrossRefGoogle Scholar
  444. Schultz, A. M., and Oroszlan, S., 1983, In vivo modification of retroviral gag gene-encoded polyproteins by myristic acid, J. Virol. 46:355.Google Scholar
  445. Schultz, A. M., and Rein, A., 1989, Unmyristylated Moloney murine leukemia virus Pr65gag is excluded from virus assembly and maturation events, J. Virol. 63:2370.Google Scholar
  446. Schultz, A. M., Henderson, L. E., and Oroszlan, S., 1988, Fatty acylation of proteins, Annu. Rev. Cell Biol 4:611.PubMedCrossRefGoogle Scholar
  447. Schwartz, D. E., Tizard, R., and Gilbert, W., 1983, Nucleotide sequence of Rous sarcoma virus, Cell 32:853.PubMedCrossRefGoogle Scholar
  448. Schwartz, S., Felber, B. K., and Pavlakis, G. N., 1992, Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs, Mol. Cell. Biol. 12:207.PubMedGoogle Scholar
  449. Schwartzberg, P., Colicelli, J., and Goff, S. P., 1983, Deletion mutants of Moloney murine leukemia virus which lack glycosylated gag protein are replication competent, J. Virol. 46:538.PubMedGoogle Scholar
  450. Schwartzberg, P., Colicelli, J., and Goff, S. P., 1984a, Construction and analysis of deletion mutants in the pol gene of Moloney murine leukemia virus: A new viral function required for establishment of the integrated provirus, Cell 37:1043.PubMedCrossRefGoogle Scholar
  451. Schwartzberg, P., Colicelli, J., Gordon, M. L., and Goff, S. P., 1984b, Mutations in the gag gene of Moloney murine leukemia virus: Effects on production of virions and reverse transcriptase, J. Virol. 49:918.PubMedGoogle Scholar
  452. Sealey, L., and Chalkley, R., 1987, At least two nuclear proteins bind specifically to the Rous sarcoma virus long terminal repeat enhancer, Mol. Cell. Biol. 7:787.PubMedGoogle Scholar
  453. Seeger, C., Summers, J., and Mason, W. S., 1990, Viral DNA synthesis, in: Hepadnaviruses—Molecular Biology and Pathogenesis (W. S. Mason and C. Seeger, eds.), pp. 41–60, Springer-Verlag, Berlin.Google Scholar
  454. Shang, F., Huang, H., Revesz, K., Chen, H. C., Herz, R., and Pinter, A., 1991, Characterization of monoclonal antibodies against the human immunodeficiency virus matrix protein, pl7gag: Identification of epitopes exposed at the surfaces of infected cells, J. Virol. 65:4798.PubMedGoogle Scholar
  455. Shank, P. R., Hughes, S., Kung, H. J., Majors, J., Quintrell, N., Guntaka, R. V., Bishop, J. M., and Varmus, H. E., 1978, Mapping unintegrated avian sarcoma virus DNA: Termini of linear DNA bear 300 nucleotides present once or twice in two species of circular DNA, Cell 15:1383.PubMedCrossRefGoogle Scholar
  456. Shapiro, J. A., 1979, Molecular model for the transposition and replication of bacterio-phage Mu and other transposable elements, Proc. Natl. Acad. Sci. USA 76:1933.PubMedCrossRefGoogle Scholar
  457. Sharp, P. A., 1987, Splicing of messenger RNA precursors, Science 235:766.PubMedCrossRefGoogle Scholar
  458. Sherman, P. A., and Fyfe, J. A., 1990, Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleavage activity, Proc. Natl. Acad. Sci. USA 87:5119.PubMedCrossRefGoogle Scholar
  459. Shih, C., Stoye, J. P., and Coffin, J. M., 1988, Highly preferred targets for retrovirus integration, Cell 53:531.PubMedCrossRefGoogle Scholar
  460. Shinnick, T., Lerner, R., and Sutcliffe, J. G., 1981, Nucleotide sequence of Moloney murine leukemia virus, Nature 293:543.PubMedCrossRefGoogle Scholar
  461. Shoemaker, C. S., Goff, S. P., Gilboa, E., Paskind, M., Mitra, S. W., and Baltimore, D., 1980, Structure of a cloned circular Moloney murine leukemia virus molecule containing an inverted segment: Implications for retrovirus integration, Proc. Natl. Acad. Sci. USA 77:3932.PubMedCrossRefGoogle Scholar
  462. Shoemaker, C., Hoffman, J., Goff, S. P., and Baltimore, D., 1981, Intramolecular integration within Moloney murine leukemia virus DNA, J. Virol. 40:164.PubMedGoogle Scholar
  463. Short, M. K., Okenquist, S. A., and Lenz, J., 1987, Correlation of leukemogenic potential of murine retroviruses with transcriptional tissue preference of the long terminal repeats, J. Virol. 61:1067.PubMedGoogle Scholar
  464. Simpson, R. T., 1991, Nucleosome positioning: Occurrence, mechanisms, and functional consequences, Prog. Nucleic Acid Res. 40:143.CrossRefGoogle Scholar
  465. Sinn, E., Muller, W., Pattengale, P., Tepler, I., Wallace, R., and Leder, P., 1987, Coexpression of MMYT/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenes in vivo, Cell 49:465.PubMedCrossRefGoogle Scholar
  466. Skalka, A. M., 1989, Retroviral proteases: First glimpses at the anatomy of a processing machine, Cell 56:911.PubMedCrossRefGoogle Scholar
  467. Skuzeski, J. M., Nichols, L. M., Gesteland, R. F., and Atkins, J. F., 1991, The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons, J. Mol. Biol. 218:365.PubMedCrossRefGoogle Scholar
  468. Smith, J. K., Cywinski, A., and Taylor, J. M., 1984, Specificity of initiation of plus-strand DNA by Rous sarcoma virus, J. Virol. 52:314.PubMedGoogle Scholar
  469. Sommerfelt, M., and Weiss, R. A., 1990, Receptor interference groups of 20 retroviruses plating on human cells, Virology 176:58.PubMedCrossRefGoogle Scholar
  470. Sommerfelt, M. A., Williams, B. P., McKnight, A., Goodfellow, P. N., and Weiss, R. A., 1990, Localization of the receptor gene for type D simian retroviruses on human chromosome 19, J. Virol. 64:6214.PubMedGoogle Scholar
  471. Sorge, J., Ricci, W., and Hughes, S. H., 1983, Cis-acting packaging locus in the 115- nucleotide direct repeat of Rous sarcoma virus, J. Virol. 48:667.PubMedGoogle Scholar
  472. Soriano, P., Friedrich, G., and Lawinger, P., 1991, Promoter interactions in retrovirus vectors introduced into fibroblasts and embryonic stem cells, J Virol. 65:2314.PubMedGoogle Scholar
  473. Soriano, P., Gridley, T., and Jaenisch, R., 1989, Retroviral tagging in mammalian development and genetics, in: Mobile DNA (D. E. Berg and M. M. Howe, eds.), pp. 927–937, American Society for Microbiology, Washington, D.C.Google Scholar
  474. Speck, N. A., and Baltimore, D., 1987, Six distinct nuclear factors interact with the 75- base-pair repeat of the Moloney murine leukemia virus enhancer, Mol. Cell. Biol. 7:1101.PubMedGoogle Scholar
  475. Speck, N. A., Renjifo, B., Golemis, B., Frederickson, T. N., Hartley, J. W., and Hopkins, N., 1990a, Mutation of the core or adjacent LVb elements of the Moloney murine leukemia virus enhancer alters disease specificity, Genes Dev. 4:233.PubMedCrossRefGoogle Scholar
  476. Speck, N. A., Renjifo, B., and Hopkins, N., 1990b, Point mutations in the Moloney murine leukemia virus enhancer identify a lymphoid-specific viral core motif and 1,3- phorbol myristate acetate-inducible element, J. Virol. 64:543.PubMedGoogle Scholar
  477. Speers, W. C., Gautsch, J. W., and Dixon, F. J., 1980, Silent infection of murine embryonal carcinoma cells by Moloney murine leukemia virus, Virology 105:241.PubMedCrossRefGoogle Scholar
  478. Spiro, C., Li, J., Bestwick, R. K., and Kabat, D., 1988, An enhancer sequence instability that diversifies the cell repertoire for expression of a murine leukemia virus, Virology 164:350.PubMedCrossRefGoogle Scholar
  479. Stein, B. S., Gowda, S. D., Lifson, J. D., Penhallow, R. C., Bensch, K. G., and Engelman, E. G., 1987, pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane, Cell 49:659.PubMedCrossRefGoogle Scholar
  480. Stephens, E. B., and Compans, R. W., 1986, Nonpolarized expression of a secreted murine leukemia virus glycoprotein in polarized epithelial cells, Cell 47:1053.PubMedCrossRefGoogle Scholar
  481. Stephenson, J. R., 1980, Molecular Biology of RNA Tumor Viruses Academic Press, NewYork.Google Scholar
  482. Stewart, L., Schatz, G., and Vogt, V. M., 1990, Properties of avian retrovirus particles defective in viral protease, J. Virol. 64:5076.PubMedGoogle Scholar
  483. Stewart, L., and Vogt, V. M., 1991, Trans-acting viral protease is necessary and sufficient for activation of avian leukosis virus reverse transcriptase, J. Virol. 65:6218.PubMedGoogle Scholar
  484. Stewart, R. A., Hollingshead, P. G., and Pitts, S. L., 1988, Multiple regulatory domains in the mouse mammary tumor virus long terminal repeat revealed by analysis of fusion genes in transgenic mice, J. Virol. 8:473.Google Scholar
  485. Stoll, E., Billeter, M. A., Palmenberg, A., and Weissmann, C., 1977, Avian myeloblastosis virus RNA is terminally redundant: Implications for the mechanism of retrovirus replication, Cell 12:57.PubMedCrossRefGoogle Scholar
  486. Stoltzfus, C. M., 1988, Synthesis and processing of avian sarcoma retrovirus RNA, Adv. Virus Res. 35:1.PubMedCrossRefGoogle Scholar
  487. Stoltzfus, C. M., and Fogarty, C. J., 1989, Multiple regions in the Rous sarcoma virus src gene intron act in cis to affect the accumulation of unspliced RNA, J. Virol. 63:1669.PubMedGoogle Scholar
  488. Stoltzfus, C. M., Lorenzen, S. K., and Berberich, S. L., 1987a, Noncoding region between the env and src genes of Rous sarcoma virus influences splicing efficiency of the src gene 3’ splice site, J Virol. 61:177.Google Scholar
  489. Stoltzfus, C. M., Chang, L. J., Cripe, T. P., and Turek, L. P., 1987b, Efficient transformation by Prague A Rous sarcoma virus plasmid DNA requires the presence of cis-acting regions within the gag genes, J. Virol. 61:3401.PubMedGoogle Scholar
  490. Subramani, S., and Berg, P., 1983, Homologous and nonhomologous recombination in monkey cells, Mol. Cell. Biol. 3:11040.Google Scholar
  491. Suguna, K., Padlan, E. A., Smith, C. W., Carlson, W. D., and Davies, D. R., 1987, Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: Implications for a mechanism of action, Proc. Natl. Acad. Sci. USA 84:7009.PubMedCrossRefGoogle Scholar
  492. Summers, J., and Mason, W. S., 1982, Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate, Cell 29:403.PubMedCrossRefGoogle Scholar
  493. Swain, A. L., Miller, M. M., Green, J., Rich, D. H., Schneider, J., Kent, S. B. H., and Wlodawer, A., 1990, X-ray crystallographic structure of a complex between a synthetic protease of human immunodeficiency virus 1 and a substrate-based hydroxyethylamone inhibitor, Proc. Natl. Acad. Sci. USA 87:8805.PubMedCrossRefGoogle Scholar
  494. Swanstrom, R., and Vogt, P. K., eds., 1990, Retroviruses—Strategies of Replication Springer-Verlag, Berlin.Google Scholar
  495. Swanstrom, R., Varmus, H. E., and Bishop, J. M., 1982, Nucleotide sequence of the 5’ noncoding region and part of the gag gene of Rous sarcoma virus, J. Virol. 41:535.PubMedGoogle Scholar
  496. Swanstrom, R., Kaplan, A. H., and Manchester, M., 1990, The aspartic proteinase of HIV-1, in: Retrovirus Genome Organization and Gene Expression (I. S. Y. Chen, ed.), pp. 175–186, Saunders, Philadelphia, Pennsylvania.Google Scholar
  497. Tabin, C. J., Hoffman, J. W., Goff, S. P., and Weinberg, R. A., 1982, Adaptation of a retrovirus as a eucaryotic vector in transmitting the herpes simplex virus thymidine kinase gene, Mol. Cell. Biol. 2:426.PubMedGoogle Scholar
  498. Taketo, M., and Tanaka, M., 1987, A cellular enhancer of retrovirus gene expression in embryonal carcinoma cells, Proc. Natl. Acad. Sci. USA 84:3748.PubMedCrossRefGoogle Scholar
  499. Taketo, M., Gilboa, E., and Sherman, M. I., 1985, Isolation of embryonal carcinoma cell lines that express integrated recombinant genes flanked by the Moloney murine leukemia virus long terminal repeat, Proc. Natl. Acad. Sci. USA 82:2422.PubMedCrossRefGoogle Scholar
  500. Takeuchi, Y., Vile, R. G., Simpson, G., O’Hara, B., Collins, M. K. L., and Weiss, R. A., 1992, Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus, J. Virol. 66:1219.PubMedGoogle Scholar
  501. Takeya, T., and Hanafusa, H., 1983, Structure and sequence of the cellular gene homologous to the RSV src gene and the mechanism for generating transforming virus, Cell 32:881.PubMedCrossRefGoogle Scholar
  502. Tan, G. T., Pezzuto, J. M., Kinghorn, A. D., and Hughes, S. H., 1990, Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase, J. Nat. Prod. 54:143.CrossRefGoogle Scholar
  503. Tanese, N., and Goff, S. P., 1988, Domain structure of the Moloney murine leukemia virus reverse transcriptase: Mutational analysis and separate expression of the DNA polymerase and RNase H activities, Proc. Natl. Acad. Sci. USA 85:1777.PubMedCrossRefGoogle Scholar
  504. Tanese, N., Roth, M. J., and Goff, S. P., 1986, Analysis of retroviral pol gene products with antisera raised against fusion proteins produced in Escherichia coli, J. Virol. 59:328.PubMedGoogle Scholar
  505. Tanese, N., Telesnitsky, A., and Goff, S. P., 1991, Abortive reverse transcription by mutants of Moloney murine leukemia virus deficient in the reverse transcriptaseassociated RNase H function, J. Virol. 65:4387.PubMedGoogle Scholar
  506. Taylor, J. M., 1977, An analysis of the role of tRNA species as primers for the transcrip-tion into DNA of RNA tumor virus genomes, Biochim Biophys. Acta 473:57.PubMedGoogle Scholar
  507. Taylor, J. M., and Illmensee, R., 1975, Site on the RNA of an avian sarcoma virus at whichprimer is bound, J. Virol. 16:553.PubMedGoogle Scholar
  508. Teich, N., 1982, Taxonomy of retroviruses, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 25–207, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  509. Teich, N., 1985, Taxonomy of retroviruses, in: RNA Tumor Viruses—Supplements and Appendixes (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 1–16, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  510. Teich, N. M., Weiss, R. A., Martin, G. R., and Lowy, D. R., 1977, Virus infection of murine teratocarcinoma stem cell lines, Cell 12:973.PubMedCrossRefGoogle Scholar
  511. Teich, N., Wyke, J., Mak, T., Bernstein, A., and Hardy, W., 1982, Pathogenesis of retrovirus-induced disease, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 785–998, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  512. Teich, N., Wyke, J., and Kaplan, P., 1985, Pathogenesis of retrovirus-induced disease, in: RNA Tumor Viruses—Supplements and Appendixes (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 187–248, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  513. Temin, H. M., 1964, Nature of the provirus of Rous sarcoma virus, Natl. Cancer Inst. Monogr. 17:557.Google Scholar
  514. Temin, H. M., 1976, The DNA provirus hypothesis, Science 192:1075.PubMedCrossRefGoogle Scholar
  515. Temin, H. M., 1985, Reverse transcription in the eukaryotic genome: Retroviruses, pararetroviruses, retrotransposons, and retrotranscripts, Mol. Biol. Evol. 6:455.Google Scholar
  516. Temin, H. M., 1988, Evolution of retroviruses and other retrotranscripts, in: Human Retroviruses, Cancer, and AIDS: Approaches to Prevention and Therapy (D. Bolognesi, ed.), pp. 1–28, Alan R. Liss, New York.Google Scholar
  517. Temin, H. M., 1989, Retrovirus variation and evolution, Genome 31:17.PubMedCrossRefGoogle Scholar
  518. Temin, H. M., and Baltimore, D., 1972, RNA-directed DNA synthesis and RNA tumor viruses, Adv. Virus Res. 17:129.PubMedCrossRefGoogle Scholar
  519. Temin, H. M, and Mizutani, S., 1970, RNA-directed DNA polymerase in virions of Rous sarcoma virus, Nature 226:1211.PubMedCrossRefGoogle Scholar
  520. Ten Dam, E. B., Pleij, C. W. A., and Bosch, L., 1990, RNA pseudoknots: Translational frameshifting and readthrough on viral RNAs, Virus Genes 4:1211.CrossRefGoogle Scholar
  521. Thayer, R. M., Power, M. D., Bryant, M. L., Gardner, M. B., Barr, P. J., and Luciw, P. A., 1987, Sequence relationships of type D retroviruses which cause simian acquired immunodeficiency syndrome, Virology 157:317.PubMedCrossRefGoogle Scholar
  522. Thornell, A., Halberg, B., and Grundstrom, T., 1988a, Differential protein binding in lymphocytes to a sequence in the enhancer of the mouse retrovirus SL3–3, Mol. Cell. Biol. 65:42.Google Scholar
  523. Thornell, A., Halberg, B., and Grundstrom, T., 1988b, Binding of SL3–3 enhancer factor transcriptional activators to viral and chromosome enhancer sequences, J. Virol. 65:42.Google Scholar
  524. Thornell, A., Hallberg, B., and Grundstrom, T., 1991, Binding of SL3–3 enhancer factor 1 transcriptional activators to viral and chromosomal enhancer sequences, J. Virol. 65:42.PubMedGoogle Scholar
  525. Tirumalai, R. S., and Modak, M. J., 1991, Photoaffinity labeling of the primer binding domain in murine leukemia virus reverse transcriptase, Biochemistry 30:6436.PubMedCrossRefGoogle Scholar
  526. Toh, H., Hayashida, H., and Miyata, T., 1983, Sequence homology between retroviral reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower momsaic virus, Nature 305:827.PubMedCrossRefGoogle Scholar
  527. Toh, H., Kikuno, R., Hayashida, H., Miyata, T., Kugimiya, W., Inouye, S., Yuki, S., and Saigo, K., 1985, Close structural resemblance between putative polymerase of a Drosophila transposable genetic element 17.6 and pol gene product of Moloney murine leukemia virus, EMBO J. 4:1267.PubMedGoogle Scholar
  528. Tong-Starksen, S., and Peterlin, B. M., 1990, Mechanisms of retroviral transcriptional activation, in: Retrovirus Genome Organization and Gene Expression (I. S. Y. Chen, ed.), pp. 215–227, Saunders, Philadelphia, Pennsylvania.Google Scholar
  529. Tong-Starksen, S., Luciw, P. A., and Peterlin, B. M., 1987, Human immunodeficiency virus long terminal repeat responds to T-cell activation signals, Proc. Natl. Acad. Sci. USA 84:6845.PubMedCrossRefGoogle Scholar
  530. Tounekti, N., Mougel, M., Roy, C., Marquet, R., Darlix, J. L., Paoletti, J., Ehresmann, B., and Ehresmann, C., 1992, Effect of dimerization on the conformation of the encapsidation Psi domain of Moloney murine leukemia virus RNA, J. Mol. Biol. 223:205.PubMedCrossRefGoogle Scholar
  531. Towler, D., and Glaser, L., 1986, Protein fatty acid acylation: Enzymatic synthesis of an N-myristoylglycyl peptide, Proc. Natl. Acad. Sci. USA 83:2812.PubMedCrossRefGoogle Scholar
  532. Tsichlis, P. N., and Lazo, P. A., 1991, Virus-host interactions and the pathogenesis of murine and human oncogenic retroviruses, in: Retroviral Insertion and Oncogene Activation, (H. J. Kung and P. K. Vogt), pp. 95–172, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  533. Tsukiyama, T., Niwa, O., and Yokoro, K., 1989, Mechanism of suppression of the long terminal repeat of Moloney leukemia virus in mouse embryonal carcinoma cells, Mol. Cell. Biol. 9:4670.PubMedGoogle Scholar
  534. Tucker, S. P., Srinivas, R. V., and Compans, R. W., 1991, Molecular domains involved in oligomerization of the Friend murine leukemia virus envelope glycoprotein, Virology 185:710.PubMedCrossRefGoogle Scholar
  535. Valsamakis, A., Zeichner, S., Carswell, S., and Alwine, J. C., 1991, The human immunodeficiency virus type 1 polyadenylation signal: A 3’ long terminal repeat element upstream of the AAUAA necessary for efficient polyadenylation, Proc. Natl. Acad. Sci. USA 88:2108.PubMedCrossRefGoogle Scholar
  536. Varmus, H. E., 1988, Retroviruses, Science 240:1427.PubMedCrossRefGoogle Scholar
  537. Varmus, H., and Brown, P., 1989, Retroviruses, in: Mobile DNA (D. E. Berg and M. M. Howe, eds.), pp. 53–108, American Society for Microbiology, Washington, D.C.Google Scholar
  538. Varmus, H., and Swanstrom, R., 1982, Replication of retroviruses, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 369–512, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  539. Varmus, H., and Swanstrom, R., 1985, Replication of retroviruses, in: RNA Tumor Viruses—Supplements and Appendixes (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 75–134, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  540. Varmus, H. E., Padgett, T., Heasley, S., Simon, G., and Bishop, J. M., 1977, Cellular functions are required for the synthesis and integration of avian sarcoma virus-specific DNA, Cell 11:307.PubMedCrossRefGoogle Scholar
  541. Varmus, H. E., Quintrell, N., and Ortiz, S., 1981, Retroviruses as mutagens: Insertion and excision of a non-transforming provirus alters expression of a resident transforming provirus, Cell 25:23.PubMedCrossRefGoogle Scholar
  542. Verma, I. M., 1977, The reverse transcriptase, Biochem. Biophys. Acta 473:1.PubMedGoogle Scholar
  543. Verma, I. M., 1990, Gene therapy, Sci. Am. 263:68.PubMedCrossRefGoogle Scholar
  544. Vijaya, S., Steffen, D. L., and Robinson, H. L., 1986, Acceptor sites for retroviral integration map near DNase I-hypersensitive sites in chromatin, J. Virol. 60:683.PubMedGoogle Scholar
  545. Vogt, V. M., Eisenman, R. H., and Diggelmann, H., 1975, Generation of avian myeloblastosis virus structural proteins by proteolytic cleavage of a precursor polypeptide, J. Mol. Biol. 96:471.PubMedCrossRefGoogle Scholar
  546. Vora, A. C., Fitzgerald, M. L., and Grandgenett, D. P., 1990, Removal of 3’-OH-terminal nucleotides from blunt-ended long terminal repeat termini by the avian retrovirus integration protein, J. Virol. 64:5656.PubMedGoogle Scholar
  547. Wang, H., Kavanaugh, M. P., North, A., and Kabat, D., 1991a, Cell-surface receptor for ecotropic murine retroviruses is a basic amino acid transporter, Nature 352:729.PubMedCrossRefGoogle Scholar
  548. Wang, H., Paul, R., Burgeson, R. E., Keene, D. R., and Kabat, D., 1991b, Plasma membrane receptors for ecotropic murine retroviruses require a limiting accessory factor, J. Virol. 65:6468.PubMedGoogle Scholar
  549. Wang, J. C., 1985, DNA topoisomerases, Annu. Rev. Biochem. 54:665.PubMedCrossRefGoogle Scholar
  550. Wang, S., and Speck, N. A., 1992, Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers, Mol. Cell. Biol. 12:89.PubMedGoogle Scholar
  551. Watanabe, S., and Temin, H. M., 1979, Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5’ long terminal repeat and the start of the gag gene, Proc. Natl. Acad. Sci. USA 79:5986.CrossRefGoogle Scholar
  552. Watanabe, S., and Temin, H. M., 1982, Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5’ long terminal repeat and the start of the gag gene, Proc. Natl. Acad. Sci. USA 79:5986.PubMedCrossRefGoogle Scholar
  553. Weaver, T. A., and Panganiban, A. T., 1990, N-myristoylation of the spleen necrosis virus matrix protein is required for correct association of the gag polyprotein with intracellular membranes and for particle formation, J. Virol. 64:3995.PubMedGoogle Scholar
  554. Weber, F., and Schaffner, W., 1985, Enhancer activity correlates with the oncogenic potential of avian retroviruses, EMBO J. 4:949.PubMedGoogle Scholar
  555. Weber, H., Barklis, E., Ostertag, W., and Jaenisch, R., 1987, Two distinct sequence elements mediate retroviral gene expression in embryonal carcinoma cells, J. Virol. 243:928.Google Scholar
  556. Weber, I. T., 1990, Comparison of the crystal structures and intersubunit interactions of human immunodeficiency and Rous sarcoma virus proteases, J. Biol. Chem. 265:10492.PubMedGoogle Scholar
  557. Weichs van der Glon, C., Monks, J., and Proudfoot, N. J., 1991, Occlusion of the HIV poly(A) site, Genes Dev. 5:244.CrossRefGoogle Scholar
  558. Weiher, H., Barklis, E., Ostertag, W., and Jaenisch, R., 1987, Two distinct sequence elements mediate retroviral gene expression in embryonal carcinoma cells, J. Virol. 61:2742.PubMedGoogle Scholar
  559. Weiner, A. M., Deininger, P. L., and Efstratiadis, A., 1986, Nonviral retroposons: Genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information, Annu. Rev. Biochem. 55:631.PubMedCrossRefGoogle Scholar
  560. Weiss, R., 1982, Experimental biology and assay of RNA tumor viruses, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 209–260, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  561. Weiss, R. A., 1991, Receptors for human retroviruses, in: The Human Retroviruses (R. C. Gallo and G. Jay, eds.), pp. 127–139, Academic Press, New York.Google Scholar
  562. Weiss, R. A., in press, Receptors and glycoproteins involved in retrovirus entry, in: The Retroviridae, Volume 2 (J. A. Levy, ed.), Plenum Publishing Corporation, New York.Google Scholar
  563. Weiss, R. A., Mason, W. S., and Vogt, P. K., 1973, Genetic recombinants and heterozygotes derived from endogenous and exogenous avian RNA tumor viruses, Virology 52:535.PubMedCrossRefGoogle Scholar
  564. Weiss, R., Teich, N., Varmus, H., and Coffin, J., eds., 1982, RNA Tumor Viruses Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  565. Weiss, R., Teich, N., Varmus, H., and Coffin, J., eds., 1985, RNA Tumor Viruses—Supplements and Appendices 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  566. White, J. M., 1990, Viral and cellular membrane fusion proteins, Annu. Rev. Physiol. 52:675.PubMedCrossRefGoogle Scholar
  567. Wilcox, C., Hu, J. S., and Olson, E. N., 1987, Acylation of proteins with myristic acid occurs cotranslationally, Science 238:1275.PubMedCrossRefGoogle Scholar
  568. Williams, D. A., Orkin, S. H., and Mulligan, R. C., 1986, Retrovirus-mediated transfer of human adenosine deaminase gene sequences into cells in culture and into murine hematopoietic cells in vivo, Proc. Natl. Acad. Sci. USA 83:2566.CrossRefGoogle Scholar
  569. Wills, J. W., and Craven, R. C., 1991, Form, function, and use of retroviral gag proteins, AIDS 5:639.PubMedCrossRefGoogle Scholar
  570. Wills, J. W., Shrinivas, R. V., and Hunter, E., 1984, Mutations of the Rous sarcoma virus env gene that affect the transport and subcellular location of the glycoprotein products, J. Cell Biol. 99:2011.PubMedCrossRefGoogle Scholar
  571. Wills, J. W., Craven, R. C., and Achacoso, J. A., 1989, Creation and expression of myristylated forms of Rous sarcoma virus gag protein in mammalian cells, J. Virol. 63:4331.PubMedGoogle Scholar
  572. Wills, N. M., Gesteland, R. F., and Atkins, J. F., 1991, Evidence that a downstream pseudoknot is required for translational read-through of the Moloney murine leukemia virus gag stop codon, Proc. Natl. Acad. Sci. USA 88:6991.PubMedCrossRefGoogle Scholar
  573. Wilson, C. A., and Eiden, M. V., 1991, Viral and cellular factors governing hamster cell infection by murine and gibbon ape leukemia viruses, J. Virol. 65:5975.PubMedGoogle Scholar
  574. Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B. K., Baldwin, E., Weber, I. T., Selk, L. M., Clawson, L., Schneider, J., and Kent, S. B. H., 1989, Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease, Science 245:616.PubMedCrossRefGoogle Scholar
  575. Yang, W. K., Kiggans, J. O., Yang, D. M., Ou, C. Y., Tennant, R. W., Brown, A., and Bassin, R. H., 1980, Synthesis and circularization of N- and B-tropic retroviral DNA in Fv-1 permissive and restrictive mouse cells, Proc. Natl. Acad. Sci. USA 77:2994.PubMedCrossRefGoogle Scholar
  576. Yoshimoto, T., Yoshimoto, E., and Meruelo, D., 1991, Molecular cloning and characterization of a novel human gene homologous to the murine ecotropic retroviral receptor. Virology 185:10.PubMedCrossRefGoogle Scholar
  577. Yoshinaka, S., Katoh, I., Copeland, T. D., and Oroszlan, S., 1985, Murine leukemia protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon, Proc. Natl. Acad. Sci. USA 82:1618.PubMedCrossRefGoogle Scholar
  578. Yoshinaka, Y., and Luftig, 1977, Murine leukemia virus morphogenesis: Cleavage of P70 in vitro can be accompanied by a shift from a concentrically coiled internal strand (“immature”) to a collapsed (“mature”) form of the virus core, Proc. Natl. Acad. Sci. USA 74:3446.PubMedCrossRefGoogle Scholar
  579. Young, J. A. T., Bates, P., Willert, K., and Varmus, H. E., 1990, Efficient incorporation of human CD4 protein into avian leukosis virus particles, Science 250:1421.PubMedCrossRefGoogle Scholar
  580. Young, R. A., 1991, RNA polymerase II, Annu. Rev. Biochem. 60:689.PubMedCrossRefGoogle Scholar
  581. Yuki, S., Ishimaru, S., Inouye, S., and Saigo, K., 1986, Identification of genes for reverse transcriptase-like enzymes in two Drosophila retrotransposons, 412 and gypsy; a rapid detection method of reverse transcriptase genes using YXDD box probes, Nucleic Acids Res. 14:3017.PubMedCrossRefGoogle Scholar
  582. Zack, J. A., Arrigo, S. J., Weitsman, S. R., Go, A. S., Haislip, A., and Chen, I. S. Y., 1990, HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure, Cell 61:213.PubMedCrossRefGoogle Scholar
  583. Zavada, J., 1972, Pseudotypes of vesicular stomatitis virus with the coat of murine leukaemia and of avian myeloblastosis viruses, J. Gen. Virol. 15:183.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Paul A. Luciw
    • 1
  • Nancy J. Leung
  1. 1.Department of Pathology, School of MedicineUniversity of CaliforniaDavisUSA

Personalised recommendations