Advertisement

The Aharonov-Bohm Effect from the Point of View of Local Realism

  • Dipankar Home
  • Franco Selleri

Abstract

In 1959 Aharonov and Bohm pointed out that in quantum mechanics, unlike in classical physics, there can be observable effects on charged particles (such as electrons) confined to an electric and magnetic field-free space when there is an enclosed magnetic field in a region inaccessible to the electron wave function. Prediction of this striking effect, known as the Aharonov—Bohm (AB) effect, stimulated intensive investigations (more than 300 journal articles over the past 30 years) which culminated in the beautiful experiments using electron holography and microlithography that unambiguously verified the existence of this effect (these experiments have been reviewed by Tonomura(1) in a separate contribution to this volume; see also the pertinent references cited therein).

Keywords

Magnetic Flux Vector Potential Particle Trajectory SchrOdinger Equation Local Realism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Tonomura, in the present volume.Google Scholar
  2. 2.
    A. Einstein, in: Albert Einstein: Philosopher-Scientist (P. A. Schilpp, ed.), Open Court, La Salle, Ill. (1970).Google Scholar
  3. 3.
    N. Bohr, in Ref. 2.Google Scholar
  4. 4.
    Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Y. Aharonov, in: Proc. Int. Symp. on Foundations of Quantum Mechanics, Tokyo, 1983 (S. Kamefuchi et al., eds.), Physical Society of Japan, Tokyo (1984).Google Scholar
  6. 6.
    B. I. Spasskii and A. V. Moskovskii, Sov. Phys. Usp. 27, 273 (1984).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    N. G. Van Kampen, Phys. Lett. A 106, 5 (1984).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    S. Olarin and I. I. Popescu, Rev. Mod. Phys. 57, 339 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    C. Philippidis, D. Bohm, and R. D. Kaye, Nuovo Cimento B 71, 75 (1982).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    C. N. Yang, quoted by M. Peshkin and A. Tonomura, The Aharonov—Bohm Effect; Springer-Verlag, Berlin, (1989) p. 97.Google Scholar
  11. 11.
    T. Troudet, Phys. Lett. A 111, 274 (1985).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    R. A. Brown and D. Home, Locality and Causality in Time-Dependent Aharonov—Bohm Interference, Nuovo Cimento B 107 (1992).Google Scholar
  13. 13.
    H. A. Fowler et al., J. Appl. Phys. 32, 1153 (1961); G. Möllenstedt and W. Bayh, Phys. B 1 18, 299 (1962); R. G. Chambers, Phys. Rev. Lett. 5, 3 (1966).ADSCrossRefGoogle Scholar
  14. 14.
    P. Bocchieri, A. Loinger, and G. Siragusa, Nuovo Cimento A 51, 1 (1979); S. M. Roy, Phys. Rev. Lett. 44, 111 (1980); D. Home and S. Sengupta, Am. J. Phys. 51, 942 (1983).ADSCrossRefGoogle Scholar
  15. 15.
    P. Bocchieri and A. Loinger, Lett. Nuovo Cimento 35, 469 (1982).CrossRefGoogle Scholar
  16. 16.
    A. Einstein, Letter to M. Schlick, Nov. 28, 1930; quoted by A. Fine, The Shaky Game—Einstein, Realism and the Quantum Theory, University of Chicago Press, Chicago, (1986) p. 97.Google Scholar
  17. 17.
    F. Selleri Quantum Paradoxes and Physical Reality, Kluwer, Dordrecht (1990).CrossRefGoogle Scholar
  18. 18.
    A. Einstein, Ann. Phys. (Leipzig) 18, 639 (1905); L. de Broglie and J. Andrade e Silva, Phys. Rev. 172, 1284 (1968).ADSGoogle Scholar
  19. 19.
    J. L. Andrade e Silva, Thése de Doctorat, Gauthier—Villars, Paris, 1960.Google Scholar
  20. 20.
    W. Heitler, The Quantum Theory of Radiation, Oxford University Press, London, (1944) p. 58.Google Scholar
  21. 21.
    M. Peshkin and A. Tonomura, The Aharonov—Bohm Effect, Springer-Verlag, Berlin, (1989) p. 19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Dipankar Home
    • 1
  • Franco Selleri
    • 1
  1. 1.Dipartimento di FisicaUniversità di BariBariItaly

Personalised recommendations