Molecular Data and Polyploid Evolution in Plants

  • Pamela S. Soltis
  • Jeff J. Doyle
  • Douglas E. Soltis

Abstract

Polyploidy is a significant force in plant evolution. Approximately 47% to 52% of all angiosperm species are polyploid (V. Grant, 1981). Estimates of the frequency of polyploidy in pteridophytes range from 43.5% for the ferns alone (Vida, 1976) to 95% for pteridophytes as a whole (V. Grant, 1981), suggesting ancient polyploidy in several lineages of pteridophytes. In byrophytes polyploidy is common in mosses, but rare in liverworts (V. Grant, 1981). In contrast to angiosperms, pteridophytes, and bryophytes, polyploidy in gymnosperms is very rare and sporadic. Polyploidy has not been detected in cycads or ginkgo, and only 1.5% of the species of Coniferales are polyploid (Khoshoo, 1959). In the Gnetales, tetraploidy is common in Ephedra and rare or nonexistent in Gnetum and Welwitschia (Delevoryas, 1980).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appels, R., and Dvorak, J. (1982a) The wheat ribosomal DNA spacer region: its structure and variation in populations and among species. Theor. Appl. Genet. 63, 337–348.Google Scholar
  2. Appels, R., and Dvorak, J. (1982b) Relative rates of divergence of spacer and gene sequences within the rDNA region of species in the Triticeae: implications for the maintenance of homogeneity of a repeated gene family. Theor. Appl. Genet. 63, 361–365.Google Scholar
  3. Appels, R., and Honeycutt, R.L. (1986) rDNA: evolution over a billion years. In: DNA Systematics, Vol. II, Plants (ed. S.K. Dutta), CRC Press, Boca Raton, FL, pp. 81–135.Google Scholar
  4. Arnheim, N., Krystal, M., Schmickel, R., Wilson, G., Ryder, O., and Zimmer, E. (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc. Natl. Acad. Sci. USA 77, 7323–7327.PubMedGoogle Scholar
  5. Bingham, E.T., Cutter, G.L., and Beversdorf, W.D. (1976) Creating genetic variability: tissue culture and chromosome manipulation. In: World Soybean Research (ed. L.D. Hill), Interstate Printers, Danville, IL, pp. 246–261.Google Scholar
  6. Bold, H.C., Alexopoulos, C.J., and Delevoryas, T. (1986) Morphology of Plants and Fungi, Harper and Row, New York.Google Scholar
  7. Brochmann, C., Borgen, L., and Stedje, B. (1989a) Chromosome numbers and crossing experiments in Nordic populations of Draba (Brassicaceae). In: Biological Approaches and Evolutionary Trends in Plants (abstract), 4th International Symposium of Plant Biosystematics, p. 39.Google Scholar
  8. Brochmann, C., Soltis, P.S., and Soltis, D.E. (1989b) Evolutionary trends in Nordic populations of Draba (Brassicaceae). In: Biological Approaches and Evolutionary Trends in Plants (abstract), 4th International Symposium of Plant Biosystematics, p. 39.Google Scholar
  9. Clausen, J.D., Keck, D., and Hiesey, W.H. (1945) Experimental studies on the nature of plant species. II. Plant evolution through amphidiploidy and autopolyploidy with examples from the Madiinae. Carnegie Inst. Wash. Publ. 546, 1–174.Google Scholar
  10. Berthou, F., Mathieu, C., and Vedel, F. (1983) Chloroplast and mitochondrial DNA variation as an indicator of phylogenetic relationships in the genus Coffea L. Theor. Appl. Genet. 65, 77–84.Google Scholar
  11. Corriveau, J.L., and Coleman, A.W. (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Amer. J. Bot. 75, 1443–1458.Google Scholar
  12. Cronquist, A. (1981) An Integrated System of Classification of Flowering Plants, Columbia University Press, New York.Google Scholar
  13. Dahlgren, R. (1983) General aspects of angiosperm evolution and macrosystematics. Nordic J. Bot. 3, 119–149.Google Scholar
  14. Darlington, C.D. (1932) Recent Advances in Cytology, Churchill, London.Google Scholar
  15. Darvey, N.L., and Driscoll, C.J. (1972) Nucleolar behaviour in Triticum. Chromosoma (Berl.) 36, 131–139.Google Scholar
  16. Delevoryas, T. (1980) Polyploidy in gymnosperms. In: Polyploidy: Biological Relevance (ed. W.H. Lewis), Plenum Press, New York, pp. 215–218.Google Scholar
  17. de Wet, J.M.J. (1980) Origins of polyploids. In: Polyploidy: Biological Relevance (ed. W.H. Lewis), Plenum Press, New York, pp. 3–15.Google Scholar
  18. Doebley, J., Renfroe, W., and Blanton, A. (1987) Restriction site variation in the Zea chloroplast genome. Genetics 117, 139–147.PubMedGoogle Scholar
  19. Dover, G.A. (1982) Molecular drive: a cohesive mode of species evolution. Nature 229, 111–117.Google Scholar
  20. Doyle, J.J., and Beachy, R.N. (1985) Ribosomal gene variation in soybean (Glycine) and its relatives. Theor. Appl. Genet. 70, 369–376.Google Scholar
  21. Doyle, J.J., Beachy, R.N., and Lewis, W.H. (1984) Evolution of rDNA in Claytonia polyploid complexes. In: Plant Biosystematics (ed. W.F. Grant), Academic Press, Ottawa, pp. 321–341.Google Scholar
  22. Doyle, J.J., and Brown, A.H.D. (1989) 5S Nuclear ribosomal gene variation in the Glycine tomentella polyploid complex (Leguminosae). Syst. Bot. 14, 398–407.Google Scholar
  23. Doyle, J.J., Doyle, J.L., and Brown, A.H.D. (1990a) A chloroplast DNA phylogeny of the wild perennial relatives of the soybean (Glycine subgenus Glycine): congruence with morphological and crossing groups. Evolution 44, 371–389.Google Scholar
  24. Doyle, J.J., Doyle, J.L., and Brown, A.H.D. (1990b) Chloroplast DNA polymorphism and phylogeny in the B genome of Glycine subgenus Glycine (Leguminosae). Amer. J. Bot. 77, 772–782.Google Scholar
  25. Doyle, J.J., Doyle, J.L., Brown, A.H.D., and Grace, J.P. (1990c) Multiple origins of polyploids in the Glycine tabacina complex inferred from chloroplast DNA polymorphism. Proc. Natl. Acad. Sci. USA 87, 714–717.PubMedGoogle Scholar
  26. Doyle, J.J., Doyle, J.L., Grace, J.P., and Brown, A.H.D. (1990d) Reproductively isolated polyploid races of Glycine tabacina (Leguminosae) had different chloroplast genome donors. Syst. Bot. 15, 173–181.Google Scholar
  27. Doyle, J.J., Soltis, D.E., and Soltis, P.S. (1985) Ribosomal gene variation in Tolmiea, Tellima, and their intergeneric hybrid. Amer. J. Bot. 72, 1388–1391.Google Scholar
  28. Doyle, M.J., and Brown, A.H.D. (1985) Numerical analysis of isozyme variation in Glycine tomentella. Biochem. Syst. Ecol. 13, 413–419.Google Scholar
  29. Doyle, M.J., Grant, J., and Brown, A.H.D. (1986) Reproductive isolation between isozyme groups of Glycine tomentella (Leguminosae), and spontaneous doubling in their hybrids. Austral. J. Bot. 34, 523–535.Google Scholar
  30. Dunsmuir, P. (1985) The petunia chlorophyll a/b binding protein genes: a comparison of Cab genes from different gene families. Nucleic Acids Res. 13, 2503–2518.PubMedGoogle Scholar
  31. Ellis, T.H.N., Davies, D.R., Castleton, J.A., and Bedford, I.D. (1984) The organisation and genetics of rDNA length variants in peas. Chromosoma (Berl.) 91, 74–81.Google Scholar
  32. Ehrendorfer, F. (1980) Polyploidy and distribution. In: Polyploidy: Biological Relevance (ed. W.H. Lewis), Plenum Press, New York, pp. 45–60.Google Scholar
  33. Erickson, L.R., Strauss, N.A., and Beversdorf, W.B. (1983) Restriction patterns reveal origins of chloroplast genomes in Brassica amphidiploids. Theor. Appl. Genet. 65, 201–206.Google Scholar
  34. Flavell, R.B. (1986) Ribosomal RNA genes and control of their expression. In: Oxford Surveys of Plant Molecular and Cell Biology, Vol. 3 (ed. B.J. Miflin), Oxford University Press, Oxford, pp. 251–275.Google Scholar
  35. Gastony, G.J. (1986) Electrophoretic evidence for the origin of fern species by unreduced spores. Amer. J. Bot. 73, 1563–1569.Google Scholar
  36. Gill, B.S., and Appels, R. (1988) Relationships betweenNor-loci from different Triticeae species. Plant Syst. Evol. 160, 77–89.Google Scholar
  37. Goldblatt, P. (1980) Polyploidy in angiosperms: monocotyledons. In: Polyploidy: Biological Relevance (ed. W.H. Lewis), Plenum Press, New York, pp. 219–239.Google Scholar
  38. Goldsborough, P.B., Ellis, T.H.N., and Cullis, C.A. (1981) Organization of the 5S RNA genes in flax. Nucleic Acids Res. 9, 5895–5904.Google Scholar
  39. Grant, J.E., Brown, A.H.D., and Grace, J.P. (1984) Cytological and isozyme diversity in Glycine tomentella Hayata (Leguminosae). Austral. J. Bot. 32, 665–677.Google Scholar
  40. Grant, V. (1981) Plant Speciation, Columbia University Press, New York.Google Scholar
  41. Hadley, H.H., and Hymowitz, T. (1973) Speciation and cytogenetics. In: Soybeans: Improvement, Production, and Uses (ed. B.E. Caldwell), American Society of Agronomists, Madison, WI, pp. 97–116.Google Scholar
  42. Harlan, J.R., and de Wet, J.M.J. (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot. Rev. 41, 361–390.Google Scholar
  43. Haufler, C.H., and Soltis, D.E. (1986) Genetic evidence suggests that homosporous ferns with high chromosome numbers are diploid. Proc. Natl. Acad. Sci. USA 83, 4389–4393.PubMedGoogle Scholar
  44. Hightower, R.C, and Meagher, R.B. (1985) Divergence and differential expression of soybean actin genes. EMBO J. 4, 1–8.PubMedGoogle Scholar
  45. Hilu, K.W. (1988) Identification of the “A” genome of finger millet using chloroplast DNA. Genetics 118, 163–167.PubMedGoogle Scholar
  46. Hosaka, K. (1986) Who is the mother of the potato?—restriction endonuclease analysis of chloroplast DNA of cultivated potatoes. Theor. Appl. Genet. 72, 606–618.Google Scholar
  47. Hymowitz, T. (1970) On the domestication of the soybean. Econ. Bot. 24, 408–421.Google Scholar
  48. Jessop, C.M., and Sabrahmanyam, N.C. (1984) Nucleolar number variation in Hordeum species; their haploids and interspecific hybrids. Genetica 64, 93–100.Google Scholar
  49. Kasha, K.J., and Sadasivaiah, R.S. (1971) Genome relationships between Hordeum vulgare L. and H. bulbosum L. Chromosoma (Berl.) 35, 264–287.Google Scholar
  50. Keep, E. (1962) Satellite and nucleolar numbers in hybrids between Ribes nigrum and R. grossularia and in their backcrosses. Canad. J. Genet. Cytol. 4, 206–218.Google Scholar
  51. Khoshoo, T.N. (1959) Polyploidy in gymnosperms. Evolution 13, 24–39.Google Scholar
  52. Kihara, H., and Ono, T. (1926) Chromosomenzahlen und systematische Gruppierung der Rumex—Arten. Zeit. Zellfrosch. Mikr. Anat. 4, 475–481.Google Scholar
  53. King, L.M., and Schaal, B.A. (1989) Ribosomal-DNA variation and distribution in Rudbeckia missouriensis. Evolution 43, 1117–1119.Google Scholar
  54. Kirk, J.T.O., and Tilney-Bassett, R.A.E. (1978) The Plastids: Their Chemistry, Structure, Growth, and Inheritance, Elsevier, Amsterdam.Google Scholar
  55. Klekowski, Jr., E.J., and Baker, H.G. (1966) Evolutionary significance of polyploidy in the Pteridophyta. Science 135, 305–307.Google Scholar
  56. Lee, J.S., and Verma, D.P.S. (1984) Structure and chromosomal arrangement of leghe-moglobin genes in kidney bean suggest divergence in soybean leghemoglobin gene loci following tetraploidization. EMBO J. 3, 2745–2752.PubMedGoogle Scholar
  57. Leutwiler, L.S., Meyerowitz, E.M., and Tobin, E.M. (1986) Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes in Arabidopsis thaliana. Nucleic Acids Res. 14, 4051–4076.PubMedGoogle Scholar
  58. Levin, D.A. (1983) Polyploidy and novelty in flowering plants. Amer. Natur. 122, 1–25.Google Scholar
  59. Lewis, W.H. (1980) Polyploidy in species populations. In: Polyploidy: Biological Relevance (ed. W.H. Lewis), Plenum Press, New York, pp. 103–144.Google Scholar
  60. Long, E.O., and Dawid, I.B. (1980) Repeated genes in eukaryotes. Ann. Rev. Biochem. 49, 727–764.PubMedGoogle Scholar
  61. Longwell, A.C., and Svihla, G. (1960) Specific chromosomal control of the nucleolus and of the cytoplasm in wheat. Exp’l. Cell Res. 20, 294–312.Google Scholar
  62. Manton, I. (1950) Problems of Cytology and Evolution in the Pteridophyta, Cambridge University Press, London.Google Scholar
  63. Martini, G., and Flavell, R.B. (1985) The control of nucleolus volume in wheat; a genetic study at three developmental stages. Heredity 54, 111–120.Google Scholar
  64. Martini, G., O’Dell, M., and Flavell, R.B. (1982) Partial inactivation of wheat nucleolus organisers by the nucleolus organiser chromosomes from Aegilops umbellulatus. Chromosoma (Berl.) 84, 687–700.Google Scholar
  65. McClintock, B. (1934) The relationship of a particular chromosomal element to the development of the nucleoli in Zea mays. Zeit. Zellforsch, mik Anat. 21, 294–328.Google Scholar
  66. Mendiburu, A.O., and Peloquin, S.J. (1976) Sexual polyploidization and depolyploidiza-tion: some terminology and definitions. Theor. Appl. Genet. 48, 137–143.Google Scholar
  67. Muller, H.J. (1914) A new mode of segregation in Gregory’s tetraploid primulas. Amer. Natur. 48, 508–512.Google Scholar
  68. Muntzing, A. (1936) The evolutionary significance of autopolyploidy. Hereditas 21, 263–378.Google Scholar
  69. Navashin, M. (1934) Chromosomal alterations caused by hybridisation and their bearing upon certain genetic problems. Cytologia 5, 169–203.Google Scholar
  70. Neale, D.B., Wheeler, N.C., and Allard, R.W. (1986) Paternal inheritance of chloroplast DNA in Douglas fir. Can. J. For. Res. 16, 1152–1154.Google Scholar
  71. Ness, B.D., Soltis, D.E., and Soltis, P.S. (1989) Autopolyploidy in Heuchera micrantha Dougl. (Saxifragaceae). Amer. J. Bot. 76, 614–626.Google Scholar
  72. Ogihara, Y., and Tsunewaki, K. (1988) Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theor. Appl. Genet. 76, 321–332.Google Scholar
  73. Ohta, T., and Dover, G.A. (1983) Population genetics of multigene families that are dispersed in two or more chromosomes. Proc. Natl. Acad. Sci. USA 80, 4079–4083.PubMedGoogle Scholar
  74. Ownbey, M. (1950) Natural hybridization and amphiploidy in the genus Tragopogon. Amer. J. Bot. 37, 487–499.Google Scholar
  75. Ownbey, M., and McCollum, G. (1953) Cytoplasmic inheritance and reciprocal amphiploidy in Tragopogon. Amer. J. Bot. 70, 788–796.Google Scholar
  76. Palmer, J.D., Shields, C.R., Cohen, D.B., and Orton, T.J. (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica. Theor. Appl. Genet. 65, 181–189.Google Scholar
  77. Pichersky, E., Bernatzky, R., Tanksley, S.D., Breidenbach, R.B., Krausen, A.P., and Cashmore, A.R. (1985) Molecular characterization and genetic mapping of two clusters of genes encoding chlorophyll a/b-binding proteins in Lycopersicon esculentum (tomato). Gene 40, 247–258.PubMedGoogle Scholar
  78. Pichersky, E., Brock, T.G., Nguyen, D., Hoffman, N.E., Piechulla, B., Tanksley, S.D., and Green, B.R. (1989) A new member of the CAB gene family: structure, expression and chromosomal location of Cab-8, the tomato gene encoding the Type III chlorophyll a/b-binding polypeptide of photosystem I. Plant Mol. Biol. 12, 257–270.Google Scholar
  79. Pichersky, E., Soltis, D.E., and Soltis, P.S. (1990) Defective CAB genes in the genome of a homosporous fern. Proc. Natl. Acad. Sci. USA 87, 195–199.PubMedGoogle Scholar
  80. Rafalski, J.A., Wiewiorowski, M., and Soll, D. (1982) Organization and nucleotide sequence of nuclear 5S rRNA genes in yellow lupine (Lupinus luteus). Nucleic Acids Res. 10, 7635–7642.PubMedGoogle Scholar
  81. Ranker, T.A., Haufler, C.H., Soltis, P.S., and Soltis, D.E. (1989) Genetic evidence for allopolyploidy in the neotropical fern Hemionitis pinnatifida (Adiantaceae) and the reconstruction of an ancestral genome. Syst. Bot. 14, 439–447.Google Scholar
  82. Roose, M.L., and Gottlieb, L.D. (1976) Genetic and biochemical consequences of polyploidy in Tragopogon. Evolution 30, 818–830.Google Scholar
  83. Saghai-Maroof, M.A., Soliman, K., Jorgensen, R.A., and Allard, R.W. (1984) Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81, 8014–8018.PubMedGoogle Scholar
  84. Sears, B.B. (1980) Elimination of plastids during spermatogenesis and fertilization in the plant kingdom. Plasmid 4, 233–255.PubMedGoogle Scholar
  85. Sears, B.B. (1983) Genetics and evolution of the chloroplast. Stadler Symp. 15, 119–139.Google Scholar
  86. Singh, R.J., and Hymowitz, T. (1985a) Intra- and interspecific hybridization in the genus Glycine subgenus Glycine Willd.: chromosome pairing and genome relationships. Z. Pflanzenzucht. 95, 289–310.Google Scholar
  87. Singh, R.J., and Hymowitz, T. (1985b) The genomic relationships among six wild perennial species of the genus Glycine subgenus Glycine Willd. Theor. Appl. Genet. 71, 221–230.Google Scholar
  88. Singh, R.J., Kollipara, K.P., and Hymowitz, T. (1987) Polyploid complexes of Glycine tabacina (Labill.) Benth. and G. tomentella Hayata revealed by cytogenetic analysis. Genome 29, 490–497.Google Scholar
  89. Smith, G.P. (1976) Evolution of repeated sequences of unequal crossover. Science 191, 528–535.PubMedGoogle Scholar
  90. Snape, J. W., Flavell, R.B., O’Dell, M., Hughes, W.G., and Payne, P.I. (1984) Intrachromosomal mapping of the nucleolar organiser region relative to three marker loci on chromosome IB of wheat (Thticum aestivum). Theor. Appl. Genet. 69, 263–270.Google Scholar
  91. Soltis, D.E. (1984) Autopolyploidy in Tolmiea menziesii (Saxifragaceae). Amer. J. Bot. 71, 1171–1174.Google Scholar
  92. Soltis, D.E. (1986) Genetic evidence for diploidy in Equisetum. Amer. J. Bot. 73, 908–913.Google Scholar
  93. Soltis, D.E., and Bohm, B.A. (1986) Flavonoid chemistry of diploid and tetraploid cytotypes of Tolmiea menziesii (Saxifragaceae). Syst. Bot. 11, 293–297.Google Scholar
  94. Soltis, D.E., and Doyle, J.J. (1987) Ribosomal RNA gene variation in diploid and tetraploid Tolmiea menziesii (Saxifragaceae). Biochem. Syst. Ecol. 15, 75–78.Google Scholar
  95. Soltis, D.E., and Rieseberg, L.H. (1986) Autopolyploidy in Tolmiea menziesii (Saxifragaceae): genetic insights from enzyme electrophoresis. Amer. J. Bot. 73, 310–318.Google Scholar
  96. Soltis, D.E., and Soltis, P.S. (1988a) Are lycopods with high chromosome numbers ancient polyploids? Amer. J. Bot. 75, 238–247.Google Scholar
  97. Soltis, D.E., and Soltis, P.S. (1988b) Electrophoretic evidence for tetrasomic inheritance in Tolmiea menziesii (Saxifragaceae). Heredity 60, 375–382.Google Scholar
  98. Soltis, D.E., and Soltis, P.S. (1989a) Genetic consequences of autopolyploidy in Tolmiea (Saxifragaceae). Evolution 43, 586–594.Google Scholar
  99. Soltis, D.E., and Soltis, P.S. (1989b) Polyploidy, breeding systems, and genetic differentiation in homosporous pteridophytes. In: Isozymes in Plant Biology (eds. D.E. Soltis and P.S. Soltis), Dioscorides Press, Portland, OR, pp. 241–258.Google Scholar
  100. Soltis, D.E., and Soltis, P.S. (1989c) Tetrasomic inheritance in Heuchera micrantha (Saxifragaceae). J. Heredity 80, 123–126.Google Scholar
  101. Soltis, D.E., and Soltis, P.S. (1989d) Allopolyploid speciation in Tragopogon: insights from chloroplast DNA. Amer. J. Bot. 76, 1119–1124.Google Scholar
  102. Soltis, D.E., and Soltis, P.S. (1990a) Chloroplast DNA and nuclear rDNA variation: insights into autopolyploid and allopolyploid evolution. In: Biological Approaches and Evolutionary Trends in Plants (ed. S. Kawano), Academic Press, San Diego, pp. 97–117.Google Scholar
  103. Soltis, D.E., and Soltis, P.S. (1990b) Isozyme evidence for ancient polyploidy in primitive angiosperms. Syst. Bot. 15, 328–337.Google Scholar
  104. Soltis, D.E., Soltis, P.S., and Ness, B.D. (1989a) Chloroplast DNA variation and multiple origins of autopolyploidy in Heuchera micrantha (Saxifragaceae). Evolution 43, 650–656.Google Scholar
  105. Soltis, D.E., Soltis, P.S., Ranker, T.A., and Ness, B.D. (1989b) Chloroplast DNA variation in a wild plant, Tolmiea menziesii. Genetics 121, 819–826.PubMedGoogle Scholar
  106. Soltis, P.S., and Soltis, D.E. (1986) Anthocyanin content in diploid and tetraploid cytotypes of Tolmiea menziesii (Saxifragaceae). Syst. Bot. 11, 32–34.Google Scholar
  107. Soltis, P.S., and Soltis, D.E. (1988) Electrophoretic evidence for genetic diploidy in Psilotum nudum. Amer. J. Bot. 75, 1667–1671.Google Scholar
  108. Soltis, P.S., and Soltis, D.E. (1991) Multiple origins of the allotetraploid Tragopogon mirus (Compositae): rDNA evidence. Syst. Bot. 16, 407–413.Google Scholar
  109. Soltis, P.S., Soltis, D.E., and Wolf, P.G. (1991) Allozymic and chloroplast DNA analyses of polyploidy in Polystichum (Dryopteridaceae). I. The origins of P. californicum and P. scopulinum. Syst. Bot. 16, 245–256.Google Scholar
  110. Stebbins, G.L. (1947) Types of polyploids: their classification and significance. Adv. Genetics 1, 403–429.Google Scholar
  111. Stebbins, G.L. (1971) Chromosomal Evolution in Higher Plants, Edward Arnold, London.Google Scholar
  112. Szmidt, A.E., Alden, T., and Hallgren, J.-E. (1987) Paternal inheritance of chloroplast DNA in Larix. Plant Mol. Biol. 9, 59–64.Google Scholar
  113. Takhtajan, A. (1969) Flowering Plants—Origin and Dispersal, Smithsonian Institution Press, Washington, DC.Google Scholar
  114. Takhtajan, A. (1980) Outline of the classification of flowering plants (Magnoliophyta). Bot. Rev. 46, 225–359.Google Scholar
  115. Thorne, R.F. (1983) Proposed new realignments in the angiosperms. Nordic J. Bot. 3, 85–117.Google Scholar
  116. Tindale, M.D., and Craven, L.A. (1988) Three new species of Glycine (Fabaceae: Phaseoleae) from north-western Australia, with notes on amphicarpy in the genus. Austr. Syst. Bot. 1, 399–410.Google Scholar
  117. Vida, G. (1976) The role of polyploidy in evolution. In: Evolutionary Biology (eds. V.J. A. Novak and Pacltova), Czechoslovak Academy of Sciences, Prague, pp. 267–304.Google Scholar
  118. Wallace, H., and Langridge, W.H.R. (1971) Differential amphiplasty and the control of ribosomal RNA synthesis. Heredity 27, 1–13.Google Scholar
  119. Wendel, J.F. (1989) New World tetraploid cottons contain Old World cytoplasm. Proc. Natl. Acad. Sci. USA 86, 4132–4136.PubMedGoogle Scholar
  120. Werth, CR., Guttman, S.I., and Eshbaugh, W.H. (1985a) Electrophoretic evidence of reticulate evolution in the Appalachian Asplenium complex. Syst. Bot. 10, 184–192.Google Scholar
  121. Werth, C.R., Guttman, S.I., and Eshbaugh, W.H. (1985b) Recurring origins of allopolyploid species in Asplenium. Science 228, 731–733.PubMedGoogle Scholar
  122. Wolf, P.G., Soltis, P.S., and Soltis, D.E. (1989) Tetrasomic inheritance and chromosome pairing behaviour in the naturally occurring autotetraploid Heuchera grossulariifolia (Saxifragaceae). Genome 32, 655–659.Google Scholar
  123. Wolf, P.G., Soltis, D.E., and Soltis, P.S. (1990) Chloroplast-DNA and electrophoretic variation in diploid and autotetraploid Heuchera grossulariifolia. Amer. J. Bot. 77, 230–242.Google Scholar
  124. Yatskievych, G., Stein, D.B., and Gastony, G.J. (1988) Chloroplast DNA evolution and systematics of Phanerophlebia (Dryopteridaceae) and related fern genera. Proc. Natl. Acad. Sci. USA 85, 2589–2593.PubMedGoogle Scholar
  125. Zimmer, E.A., Jupe, E.R., and Walbot, V. (1988) Ribosomal gene structure, variation and inheritance in maize and its ancestors. Genetics 120, 1125–1136.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Pamela S. Soltis
  • Jeff J. Doyle
  • Douglas E. Soltis

There are no affiliations available

Personalised recommendations