Coronaviruses pp 431-436 | Cite as

Functional Characterization of CD8+ Lymphocytes during Coronavirus MHV IV Induced Encephalitides in Rats

  • A. Hein
  • H. Imrich
  • S. Schwender
  • R. Dörries
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 342)


Intracerebral infection of rodents with the murine coronavirus JHM is a well established animal model to study the pathology of virus-induced primary demyelination of the central nervous system (CNS). Although it was assumed by Weinerl that cytopathogenic effects of the virus play the dominant role in this axonal loss of myelin sheaths, a growing body of evidence suggests now a significant contribution of the virus-specific immune response to the histopathological changes in the central nervous system as well as to the clinical course of the infection. In this context, in mice action of CD8+ T-lymphocytes appears to be a two-edged sword. On the one hand, they are necessary to clear JHM virus from infected brain tissue,2,3 on the other hand, in vivo depletion of this lymphoid subset reduces drastically the appearance of white matter destruction4,5 and adoptive transfer of either viral-specific6 or naive syngeneic CD8+ splenocytes7 in immunosuppressed animals fully reconstitutes neurological disease. This suggests that cytotoxic T-lymphocytes may cause demyelination by killing of virus-infected oligodendrocytes and thereby contribute to the clinical symptomatology of the infection.


Cervical Lymph Node Brown Norway Intracerebral Inoculation Cytopathogenic Effect Cytotoxic Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L.P. Weiner, Arch. Neurol. 28:298 (1973).PubMedCrossRefGoogle Scholar
  2. 2.
    M.A. Sussman, R.A. Shubin, S. Kyuwa & S.A. Stohlman, J. Virol. 63:3051 (1989).PubMedGoogle Scholar
  3. 3.
    J.S.P. Williamson & S.A. Stohlman, J. Virol. 64:4589 (1990).PubMedGoogle Scholar
  4. 4.
    M. Rodriguez & S. Sriram, J. Immunol. 140:2950 (1988).PubMedGoogle Scholar
  5. 5.
    S. Sriram, D.J. Topham, S. Huang & M. Rodriguez, J. Virol. 63:4242 (1989).PubMedGoogle Scholar
  6. 6.
    J.O. Fleming, F.I. Wang, M.D. Trousdale, D.R. Hinton & S.A. Stohlman, Adv. Exp. Med. Biol. 276:565 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Schwender, A. Hein, H. Imrich & R. Dörries, same volume.Google Scholar
  8. 8.
    R. Dörries, S. Schwender, H. Imrich & H. Harms, Immunology 74:539 (1991).PubMedGoogle Scholar
  9. 9.
    R. Watanabe, H. Wege & V. ter Meulen, Lab. Invest. 57:375 (1987).PubMedGoogle Scholar
  10. 10.
    H. Wege, A. Müller & V. ter Meulen, J. Gen. Virol. 41:217 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Schwender, H. Imrich & R. Dörries, Immunology 74:533 (1991).PubMedGoogle Scholar
  12. 12.
    W.H. Chambers, N.L. Vujanovic, A.B. DeLeo, M.W. Olszowy, R.B. Herberman & J.C. Hiserodt, J. Exp. Med. 169: 1373 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Shulman, C.D. Wilde & G. Köhler, Nature 276:269 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    M.D. Lindsley, R. Thiemann & M. Rodriguez, J. Virol. 65:6612 (1991).PubMedGoogle Scholar
  15. 15.
    H. Imrich, S. Schwender, A. Hein & R. Dörries, sane volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • A. Hein
    • 1
  • H. Imrich
    • 1
  • S. Schwender
    • 1
  • R. Dörries
    • 1
  1. 1.Institut für Virologie und ImmunbiologieUniversität WürzburgWürzburgFederal Republic of Germany

Personalised recommendations